
Research Article
A Smart Parking System Based on Mini PC Platform and Mobile
Application for Parking Space Detection

Vladimir Sobeslav and Josef Horalek

Department of Information Technologies, Faculty of Informatics and Management, University of Hradec Kralove,
Rokitanskeho 62, Hradec Kralove 500 01, Czech Republic

Correspondence should be addressed to Vladimir Sobeslav; vladimir.sobeslav@uhk.cz

Received 24 June 2020; Revised 25 September 2020; Accepted 9 October 2020; Published 26 October 2020

Academic Editor: Peter Brida

Copyright © 2020 Vladimir Sobeslav and Josef Horalek. ,is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Car parking is a major problem in urban areas in developed and also in developing countries. ,e growing number of vehicles
creates a problemwith parking spaces mainly in the city center and the surrounding streets.,e local authorities have to react with
regulations, and the current situation is unpleasant for many citizens. ,erefore, the aim of this article is to propose a complex
outdoor smart parking lot system based on the mini PC platform with the pilot implementation, which would provide a solution
for the aforementioned problem. Current outdoor car park management is dependent on human personnel keeping track of the
available parking lots or a sensor-based system that monitors the availability of each car. ,e proposed solution utilizes a modern
IoT approach and technologies such as mini PC platform, sensors, and IQRF. When compared to a specialized and expensive
system, it is a solution that is cost-effective and has the potential in its expansion and integration with other IoT services.

1. Introduction

,e number of vehicles is constantly increasing, not only in
the Czech Republic but also in other countries. According to
the data from Central Auto-moto Club of the Czech Re-
public, more than 5.5 million cars are registered here, which
means that their number has increased 2.4 times since 1989.
With the increasing number of the vehicles, the problems
with the parking also arise. First and foremost, these
problems become prevalent during sport and cultural events,
as well as in the proximity of administrative buildings or
banks. Parking in the towns and cities during the traffic peak
times also poses a significant problem. A lack of knowledge
of current number of parking spaces can lead the drivers to
fully occupied parking lots, which consequently leads to
having to move to another location, along with searching for
a spot on another parking lot. ,erefore, not only do the
drivers waste their time, but also fuel, and it all causes the
deterioration of the traffic situation and negatively affects the
environment.

,e aim of this article is to propose a complex smart
parking lot system based on the mini PC platform, along

with its pilot implementation, which would provide a so-
lution for the aforementioned problem.,e solution aims to
use the newest principles in the IoTarea, mesh networks, and
tools offered by the Android OS as for the whole solution to
be affordable and quickly deployable.

,e proposed solution contains a complete design and
realization based on themini PC platform, IQRF technology,
including use of the DPA protocol. As a gateway, UpBoard
with DK-EVAL-04A communication module has been used.
Before the solution itself, an in-depth analysis of the cur-
rently used solutions and approaches has been performed.
,e findings of this analysis are provided below.

2. Related Works

Firstly, an analysis of the approach to the smart parking
solution must be performed. ,e article IoT-Based Smart
Parking System [1] is a prominent input in this area, which is
similarly to [2] and describes the architecture of a smart
parking system based on the IoT (Internet of ,ings)
technology. In [1], sensors placed on the parking spaces
detect the proximity of the vehicle and send these data to

Hindawi
Mobile Information Systems
Volume 2020, Article ID 8875301, 15 pages
https://doi.org/10.1155/2020/8875301

mailto:vladimir.sobeslav@uhk.cz
https://orcid.org/0000-0002-0917-5988
https://orcid.org/0000-0003-3534-026X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8875301

cloud using mini PC (Raspberry Pi) deployed on the parking
lot. ,e authors describe the use of Raspberry Pi GPIO pins,
to which 26 sensors can be connected. ,e number can be
increased even further using a suitable multiplexor. ,is
solution utilizes an IBM MQTT server, to which the
Raspberry sends data from the sensors via MQTTmessages.
,e user communicates with the system via a mobile app
written in Apache Cordova, which communicates with the
server with messages in the JSON format. ,e user can use
the mobile app to see the number of the free spots on the
parking lot, make a reservation of a parking space, and pay
the parking fee. In [2], besides the general architecture, the
authors focus on using Elliptic Curve Cryptography (ECC)
as an attractive alternative to the conventional public key
cryptography such as RSA. Interesting algorithms employed
in the contemporary smart parking systems are presented in
[3]. Finally, an overall overview of the approaches and so-
lutions is provided by [4].

Another topic covered by this article is the optimization
of the logic and IoT approaches used to find and navigate to
the parking space itself. Tsai et al.[5] describe the use of a
mobile app and Internet of ,ings (IoT) technology in the
parking system: the process of finding a parking lot, parking
space reservation, and indoor navigation inside the parking
lot. Another topic is finding the suitable algorithm to cal-
culate the priority for recommending a specific parking lot
based on the distance of the driver from the parking lot,
number of free parking spaces, and the parking fee, with the
preferences being set up by the user. After selecting the
parking lot, the driver has an opportunity to book the
parking space via the app. For the calculation of the distance
from the parking lot and the navigation, the app uses GPS
coordinates acquired from the Google API. Detection of the
presence of the vehicle on the parking space is realized via an
ultrasound sensor and transferred to the server via a WiFi
module. ,e described solution is designated mainly for
indoor parking lots, with the indoor navigation provided by
iBeacon Bluetooth transmitters. ,e presence of the driver
on the parking lot is detected by an RFID chip.,ematter of
parking specifically on the side of the roads is discussed in
[6]. It describes the detection of the roadside parking spaces
using sensors placed on the vehicle on the passenger’s side.
,ese sensors are placed on public transport vehicles, taxis,
or sometimes on the vehicles of the volunteers who fre-
quently pass through the marked measured areas.

,e system uses an ultrasound detector to detect the
parked vehicles and empty spots along the road in con-
junction with the GPS system, and by using MapMatching
(which compares the detected spots with the map), a map
of available parking spaces is continuously generated and
is distributed to the users via the mobile app or a website.
According to the performed measuring, to map the same
number of the parking spaces, mobile sensors are more
efficient than sensors placed directly on the parking
spaces. ,e success rate of the detection was between 76
and 94 percent, depending on the accuracy of the GPS
system.

In the hereby presented complex solution, IQRF net-
works are utilized.,eir communication system is discussed

in [7] and the spread of the networks’ usage is discussed in
[8, 9].

3. The Proposed System Architecture

,e aim of the proposed parking system is a complex and
economic system for detection of free parking spaces on an
outdoor parking lot, which is based on the mini PC
platform. ,e system partially handles the problems with
undisciplined drivers who would use the parking lot
without the respective authorization. ,is is provided by
using the automatic gate system at the parking lot entrance.
Because of the budget requirements, the variant where the
parked vehicles would be detected via ultrasound or infra-
sensors has been abandoned, and therefore, the proposed
solution discusses the variant using magnetometric sensors
connected to a mesh network. In regular intervals, the mini
PC checks whether the individual parking spaces are oc-
cupied and stores the data in a real-time database. ,e
driver is then informed via the mobile app for Android, and
so they have current information about the numbers of
available parking spaces on the selected parking lot. ,e
availability can be checked either manually or automati-
cally using the Geofencing service. ,e user is also able to
book a parking space for 60 minutes. If they do not arrive at
the parking lot during this time, the reservation is auto-
matically canceled.

,e proposed solution enables opening the parking lot
gate directly from the mobile app by adding an entry into the
real-time database. After the entry is added, the mini PC
performs the corresponding steps. To check the presence of
the driver (their smartphone, to be precise) on the parking
lot, the mobile app compares the GPS coordinates before
registering the vehicle as present on the parking lot. If the
distance between the smartphone and the parking lot is
higher than a given limit, the access is denied. ,anks to this
solution, there is no necessity for use of an RFID chip, and to
make use of the parking lot, a smartphone with the installed
app and connection to the Internet should suffice. ,e
identification of the smartphone is performed using a unique
64-bit number, ANDROID ID. ,e general model of the
proposed solution is depicted in Figure 1.

3.1. FunctionalDiagramof theProposed Solution. ,emobile
app monitors the entry in the database with the number of
empty spots. On every change, the state of the notification
icon on the app’s main screen is changed. After tapping this
icon, the current occupancy of the individual parking spaces
is loaded from the database, and it is displayed on the
smartphone screen. By tapping on the respective icon on the
main screen, navigation to the parking lot is started. Using
Google API, the application starts navigation on Google
Maps. More detailed information is described in Section 5.
To enable the automatic notifications about parking lots in
proximity and the number of available parking spaces, the
application uses Geofencing service, which is described in
Section 5.2.

,e following diagrams describe two main functions:

2 Mobile Information Systems

Displaying the available spots at the parking lot and
their current occupancy (Figure 2)
Turning on the automatic notification about available
parking lot (Figure 3)

,e following diagram (Figure 4) describes the logical
steps required for opening the parking lot gate. First, the
application checks the database of the parked vehicles to
determine whether the vehicle is entering or leaving the
parking lot.

When entering the parking lot, it is also checked whether
there are available spots or if the driver who is sending a
request to open the gate has a reservation saved in the
database. If everything is in order, the distance from the
parking lot is checked to prevent an unintentional or de-
liberate gate closure at higher distance from the parking lot.
If any condition is not met, the driver receives information
about the parking lot unavailability. Otherwise, the gate
opens, and the arriving vehicle is added to the parking lot’s
database. At the same time, the driver’s reservation validity is
checked and deleted from the database if invalid. When
leaving the parking lot, the system opens the exit gate and
deletes the record of the vehicle from the parking lot’s
database.

,e realization of the reservation process is depicted in
Figure 5. During an attempt at making a reservation, the
system first checks whether the vehicle is not currently
located at the parking lot and that its ID does not have a
reservation created already. ,en, the available spots are
checked. If all the conditions are met, a reservation entry is
made in the parking lot’s database. Otherwise, the app
informs the driver that the reservation cannot be made.
Duration of the reservation is limited to 60 minutes. For
this reason, in 1-minute intervals, the mini PC on the
parking lot checks the database if any reservation has
exceeded this limit. If this occurs, the entry is deleted from
the database.

On the general communication schema (Figure 6), you
can see that the common storage for the whole system is a
Firebase database.,e communication between the database
and the mini PC is procured via TCP/IP protocol. ,e
communication between the database and the mobile app
uses mobile network data transfers and the communication
between the mini PC and the individual sensors is procured
by the IQRF technology described in Chapter 3.

4. IQRF Communication Platform

From the principle of the intelligent parking system pro-
posal, it is necessary for the system itself to be able to detect
whether the respective physical spot is occupied or not, and
it must also be connected to the suitable network so it can
communicate with the central mini PC. For this purpose,
IQRF technology has been chosen [10].

IQRF is a platform suitable for wireless data transfer,
which utilizes wireless data transfer, using the frequencies of
868MHz and 433MHz for the communication. ,e IQRF
platform makes use of special transceivers that reciprocally
interchange the data. ,e IQRF transceivers are known to
have a very low consumption rate (12.3mA during com-
munication and 380 nA in sleep mode), and thanks to the
supported MESH topology, communication at relatively
long distance is possible. ,ese parameters appear to be an
ideal solution for the IoT technologies. ,e wireless IQRF
network uses the IQMEST protocol [11, 12], which uses the
principle that in any given area, and there are always at least
two IQRF transceivers within the transmission reach. ,e
maximum distance between two communicating trans-
ceivers is around 500 meters in space without obstacles. ,e
transceivers transmit in synchronization, so they do not
interrupt each other during the transmission. ,e com-
munication is governed by a coordinator, which sends the
data, transceivers in the reach receive the data, during their
time-slot send the data further, and this way the data
gradually spread through the whole network. ,anks to this
principle, the whole network is very reliable and has a high
success rate of the data transmission. Because of the du-
plicate paths between individual transceivers, the data reach
their destination even if multiple communication paths are
disrupted at the same time. ,e principle is depicted in
Figure 7, where the coordinator C sends the data for the
transceiver N2. ,e communication paths that are inter-
rupted, e.g., by signal disruption, are represented by the red
crosses. ,e data reach their destination, as the green arrows
suggest, via the transceivers N1, N3, and N4.

4.1. DPA Protocol. Every transceiver has a hardware profile
(HWP). Assigning a HWP to the transceivers enables their
control via messages with DPA (direct peripheral access)
protocol [13]. Because of this protocol, it is possible to build

IQRF

IQRF

Figure 1: General system structure design.

Mobile Information Systems 3

a network comprised of up to 240 transceivers, and the
transceivers can be controlled by sending the data in the
specific format (Table 1).

NADR (node address) has the address 0x00 for the
coordinator and 0x01–0xEF for the other transceivers and
PNUM (peripheral number) 0x03 EEPROM, 0x08 SPI, 0x0C
UART, etc. PCMD (peripheral command) is designated only
by the type of the used periphery; HWPID (hardware profile
ID) uniquely determines the functionality of the periphery
device. If 0xFFFF number is used, the command is executed
on any HW profile. PDATA (peripheral data) is an optional
56-byte field for additional command parameters.

4.2. CustomDPAHandler. For creating the own logic of the
transceiver, custom DPA handler is used, i.e., it uses code
written in C, which can be used to define custom user
periphery and set up its behavior during received a DPA
command with this periphery’s ID and the ID of the

respective command. Using the DPA handler, it is also
possible to expand the set of the HW groups described
above, and thus it enables the filtering of control message for
the groups of peripheries of the respective type.

4.3. FRC. Fast response command (FRC) is a special co-
ordinator DPA periphery, which enables sending a com-
mand that can be processed by all the transceivers in the
network. ,e moment the transceiver processes the com-
mand, it stores the response on the specific position in the
message and it passes through the whole network along with
the data and collects the responses of individual transceivers.
If we need to get the same information from all the
transceivers, which is, in our case, the input from a detector
about the presence of a vehicle on a parking space, the use of
FRC is very practical as it is not necessary to send indi-
vidually to every transceiver, but sending one command is
enough. ,is positively affects not only the amount of the

Mobile apps

Firebase

Read data from
database when
changing value

Mobile apps

Displaying the current
occupancy of parking

spaces

The number of
free parking

spaces

Firebase

Command to display the
current occupancy of

parking spaces

Reading data
from a

database

Figure 2: Functional diagram to show the number of available parking spaces and their current occupancy.

Launch services
Geofencing

View notification of
available car park

with free space

Command to start
automatic parking
detection within

range
Mobile apps

Parking in
the vicinity

Yes

Automatic
detection by
geofencing No

Figure 3: Functional diagram to trigger the automatic notification of available car parking.

4 Mobile Information Systems

Mobile apps

Firebase

Command to open the
barrier

Car in the
parking lot?

Free places?
Reservation?

Finding the distance
from the GPS car

park

Exceeding the
specified

limit?

Information about
the impossibility of
opening the barrier

Opening the barrier

Opening the
barrier

Firebase

Deleting a
vehicle record

from the parking
database

View the current
occupancy of the car

park

Firebase

Entry of vehicle
entry

information

There is a
reservation?

Firebase

Delete
reservation

Read data from
the database

No

Yes

Yes

NO

Yes

No

Yes

Figure 4: Functional diagram of the entry and exit gate control.

Booking
order

Mobile apps

Read from
database

Firebase

Car in the
parking lot?
Is there a

reservation?
Free place?

Firebase

Information about
the inability to

make a reservation

No

Yes

Write a
reservation to
the database

Y
e
s

N
o

Figure 5: Functional diagram for making a reservation.

Mobile Information Systems 5

transferred data but also time needed to get a response. ,e
FRC command is sent via the DPA protocol (Table 2).

User data item is not required by all the FRC commands,
and if not used, it must be replaced by a 2-byte value of 00.00.
SEND command can be replaced by the SEND selective
(0x02) command, which makes it possible to send the
command only to the chosen transceivers, which are defined
in the data field between ID and user data entries.

,e selected transceivers can be specified through 30-
byte binary information. In IQRF network, there can be the
maximum of 240 transceivers, which corresponds to 30
bytes, i.e., 240 bits. If the respective bit has a value of 1, the
command will be sent to the corresponding transceiver.
Otherwise (the value of 0), the transceiver will not be in-
cluded into processing of the command.

For the initial configuration of the transceivers and for
the creation of the IQRF network, it is necessary to use
CK–USB–04K programmer and IQRF IDE development
interface. It is also necessary to get hardware profiles for the
coordinator and the individual nodes.

Into the newly created project, the author must add the
HW profiles and the DPA custom handler for FRC com-
mand for detecting the state of the sensors on the parking
spaces. ,e HW profiles belong to plug-ins section and the
DPA custom handler to source section. Considering the
fact that the inserted DPA handler is in the format of the
source file written in C, this file must be compiled to ∗ hex
format so it can be uploaded to the transceiver. After
inserting the first transceiver into the programmer and
connecting it to a USB port of a PC, in the “Project”
window in the “TR Configuration” section, the configu-
ration settings for the inserted transceiver can be opened.
For all the communicating transceivers, it is necessary to set
the same communication channel (typically 52) in the “OS”
tab. Next, in the “HWP” section, the option to process the
FRC commands for the coordinator and use of custom
DPA handler for every node must be enabled. In the
“Security” tab, a password and communication encryption
can be set up (Figure 8).

After programming all the transceivers and inserting
them into the DK-EVAL-04A testing modules or alterna-
tively by connecting custom modules that would need to be
adjusted according to the transceiver connection schema
(Figure 9), for the transceiver to be powered by the right
voltage and have accessible RESET and bonding buttons, by
connecting the coordinator into the CK–USB–04K pro-
grammer, an IQRF network can be created.

If a red LED is blinking after connecting the power source, it
means that no previous bonding is stored in the memory.
Otherwise, it is necessary to manually unbond by pressing the
reset and the user buttons on the testing module and then
releasing the reset button. After a green LED blinks, the user
button must be released at once. For erasing the data about
bonding from the coordinator, IQMESH Network Manager,
which is a part of the IQRF IDE program, must be used. To do
so, press the “Clear All Bonds” button. Afterwards, by pressing
the “Bond” button, the coordinator start searching for a new
node, and in the frame of ten seconds, the bonding must be
confirmed by pressing the user button on the respective testing
module. By repeating this procedure, all the nodes must be
bonded with the coordinator. At the time of the bonding, all the
nodes must be in the communication reach of the coordinator.
After the bonding is finished and the respective nodes are placed
on their final positions, by clicking the “Discovery” button in
IQMESH Network Manager, the IQMESH network topology is
created. It can be viewed in the “MapView” tab (Figure 10).

4.4. IQRF Gateway. ,e created IQRF network requires a
gateway for transmitting the data to the database/cloud via
the Internet. For the purposes of the best compatibility and
technical support, a one-board computer UpBoard has been
used as it, in comparison to Raspberry Pi, offers a micro-
processor with better performance in Intel Atom, as well as
higher memory capacity, and does not require an OS to be
installed on an external memory card, which can pose po-
tential problems in conjunction with the mechanical con-
nector. UpBoard is also used in Intel® RealSense™ Robotic
Development Kit and has the following characteristics:

Intel® Atom™ x5-Z8350 SoC
Onboard DDR3L Memory up to 4GB
Onboard eMMC Storage up to 64GB
Gigabit LAN× 1, USB 2.0× 4, USB 3.0×1, HDMI× 1
5V DC-in
40 pin GPIO× 1
DSI/eDP× 1
MIPI-CSI× 1

Mobile apps

GPRS, EDGE,
LTE ..

Firebase

Mini PC

TCP/IP

Sensor set

IQRF

Figure 6: Functional diagram to communication.

C

N5

N1 N4

N2
N3

Figure 7: Principle of IQRF communication between coordinator
C and N2 transceiver.

6 Mobile Information Systems

Considering the availability of the technical support,
Ubilinux OS has been chosen for the smart parking system.
,e chosen mini PC serves for controlling the IQRF net-
work and for conjoining the whole app via the Internet and
the database. For those reasons, the IQRF coordinator had
to be connected using an available reduction with
UpBoard’s GPIO pins, and corresponding utilities for the
communication with the IQRF network and the database
had to be installed as well. For interchanging the infor-
mation between the UpBoard and the IQRF network, an
MQTT Broker has been used. For the administration, we
have chosen a web app for IQRF Daemon and NodeRED
environment that will serve for programming the IQRF
network maintenance. For the IQRF gateway we have used
the following software setup. As an MQTT broker, we have
decided to use the mosquito and mosquito-clients pack-
ages. Furthermore, the dirmngr server was used for cer-
tificate management. ,e IQRF Gateway Daemon package
was used as an open-source IQRF gateway solution which is
being widely used in this area, and it is supported also by
Raspberry, Belagone, traditional PC and others. Node.js
open-source server platform was used for code execution;

for programming of IQRF network jobs, a database
management, a NodeRED, was utilized.

4.5. Android Geofencing. ,e last component used in the
presented solution is the Android Geofencing service, which
serves to alert the driver about the availability of a parking lot
within the mobile application. ,is service uses the capa-
bilities of the mobile phone to determine its current location
using GPS, the availability of known WIFI networks, and
the distance from the mobile operator’s BTS based on the
signal strength of the mobile network. To use the service,
firstly, it is needed to enter the latitude and longitude of a
specific place (parking lot) and the radius of the circle
centered in this coordinate. ,e circle created in this way is
called geofence, and then it serves for detecting notifica-
tions or other actions such as turning on Bluetooth and
turning off the phone’s ringtone. ,e notification can be set
for a situation when the phone enters a defined circle (we
use this notification in the presented solution), or if it leaves
the circle or stays in it for a certain period of time. Each
Android user can have up to 100 geofences (circles) reg-
istered in all applications on their phone. If the phone is
located at the intersection of several geofences, it can
perform actions separately for each of them, or a notifi-
cation of the availability of multiple geofences (parking
lots) and the distance to the center of each can be sent and
calculated from the difference of two GPS coordinates
(phone and geofence).

5. Implementation of Key System Functions

In Section 5.1, the solutions described above, including the
used IQRF network and NodeRED and the main component
of the Android app are documented in detail.

5.1. Vehicle Detection. Vehicle detection is realized via
MPU-9250 magnetometric sensor, which is connected via
I2C bus with an Arduino Mini microprocessor unit
(Figure 11).

For the communication with the sensor, MPU9250_a-
sukiaaa.h has been used as it enables a simplemaintenance of
the magnetometric sensor. After the initial establishment,
the measured values are stored for a reference and then

Table 1: DPA packet structure.

NADR (node address) PNUM (peripheral
number) PCMD (peripheral command) HWPID (hardware profile ID) PDATA (peripheral data)

[2B] [1B] [1B] [2B] [0–56B]

Table 2: FRC (SEND) command structure.

NADR (node address) PNUM (peripheral number) PCMD (peripheral
command)

HWPID (hardware
profile ID) PDATA (peripheral data)

0x00 0x0D 0x00 0xFFFF ID User data
Coordinator FRC SEND All groups Command ID Data for FRC processing

Figure 8: Example of HWP setting for “NOD” transceiver.

Mobile Information Systems 7

compared with the currently measures values in the 500-
millisecond intervals (during the initialization, the parking
space must be empty). ,e measured values are transferred
to the serial port for the purpose of checking the func-
tionality of the sensor and checking the measured values. See
the following code for the main program enabling the
communication with the magnetometric sensor:

void loop() {
if(start){delay(5000);}
mySensor.magUpdate();
mX�mySensor.magX();
mY�mySensor.magY();
mZ�mySensor.magZ();
if(start){initSensor(); start� false;}
Serial.println(“magX: ” + String(mX));
Serial.println(“maxY: ” + String(mY));
Serial.println(“magZ: ” + String(mZ));
testSensor();
Serial.println(“”); // Add an empty line
delay(500);

}

If a metal object (a vehicle) is detected in the proximity
and the values in any of the axes exceed the given limit, the
digital output signalizes the presence of a vehicle. After every

vehicle detection and its subsequent departure from the
parking space, new rest values are saved as referential in
order to reduce the amount of unprompted or erroneous
detections caused by long-term changes of the magnetic field
intensity. ,e implementation of the vehicle detection
through the change of the magnetic field is described below.

void testSensor(){
deltaMx� abs(normalMx-mX);
deltaMy� abs(normalMy-mY);
deltaMz� abs(normalMz-mZ);
Serial.println(“deltaMx: ” + String(deltaMx));
Serial.println(“deltaMy: ” + String(deltaMy));
Serial.println(“deltaMz: ” + String(deltaMz));
if(deltaMx> 7 || deltaMy> 7 || deltaMz> 7){

Serial.println(“Car is present”);
digitalWrite(13, HIGH);
detect� true;

}
else

{Serial.println(“Car is not present”);
digitalWrite(13, LOW);
if(detect){start� true; detect� false;}

}
}

,e digital output of the Arduinomodule is connected to
the IQRF transceiver, which provides the connection of the
individual sensors into the IQMESH network.

5.2. Car Parking with NodeRED. As it has been already
mentioned, the database communicates not only on the

USB
VIN

XC3

1 1

2 2

3

4

3

4

5

5

8
9

6

IC1

GND

VBATVIN

MCP73831MC

LED3

Ref.

+

F1
SN035-16

Accu
3.6V

JP1

VBAT

SW2

SW1

LED2

LDO
3.3V

SIM

XC1

LED1

C1

C2

C3

C4

C5

C6

C7

C8

10

6

8

5

4

3

2

9

7

1

Figure 9: DK-EVAL-04A test module connection.

Figure 10: Example of network topology in IQMESH Network
Manager.

I2CMPU-9250 Arduino IQRF tranceiver

Digital out Digital in

Figure 11: Block diagram of vehicle detector.

8 Mobile Information Systems

mobile app but also the mini PC via NodeRED. For greater
clarity, individual program flows are split into individual
IQRF_Request tabs. ,e commands are sent to the IQRF
network, IQRF_Response processes the responses from the
IQRF network, Firebase communicates with the Firebase
database, Gate operates the entrance and exit gate, and
Reservations maintains the user reservations.

5.3. IQRF_Request. ,e program flow IQRF_Request
(Figure 12) uses program nodes on the lies 2 through 5,
which send the requests to open or close the entrance or exit
gate. ,e requests come from other tabs via the connections
(grey arrows at the beginning of the lines).

Individual requests are realized via custom functions
written in JavaScript. ,at is the DPA command for the
IQRF network (code: create a request for an IQRF network).
Because of the physical absence of a gate, for the tuning
purposes of the app, the commands were simulated by turn
on or off a red LED on the IQRF coordinator (entry gate)
and a green LED (exit gate). In practice, the LED would be
replaced by a digital output that would send the command to
the gate.

var data� {
type: “raw”,
request: {
nadr: “0x0000”,
pnum: “0x06”,
pcmd: “0x01”,
hwpid: “0xFFFF”,
pdata: “”,

},
timeout: 1000

}
msg.payload� data;
return msg;

5.4. Gate. For the communication itself and its procure-
ment, the gate is a key component of the whole architecture.
,e gate process flow is split into two parts. ,e first part
controls the entry gate, and the other controls the exit gate
(Figure 13).

,e first flow begins with the Gate node, which is, in fact,
a listener that watches the Gate item in the database. It
follows with the switch on the value of 1 (opens the gate) and
continues with the second path to the GateEntranceOpen
node. ,e next node is a time delay for the vehicle to pass
(sensors for the detection of a vehicle in the gate space are its
part) and then the flow continues with the link to Gate-
EntranceClose and sets the value of the gate item in the
database to 0. In that case, the switch ensures that the gate
does not open again after the value in the database is
changed when the value of 0 is added, and so it takes the path
1, to which no other program node is connected. After
opening the entry gate, the ID of the smartphone that asked

for the gate to open is stored in reservationID item.,is ID is
then compared to the records in reservations, and if a valid
reservation is found, it is deleted. After the time delay, the
reservationID item is reset by ResetReservID.

,e second flow starts with the GateID node, which
continuously checks the database for changes in the gateID
item. Into this item, the mobile app saves the ID of the
smartphone registered on the parking lot (it has a record in
carInPark) and sends a request to open the exit gate. ,e
program continues with the link to IQRF_Request, where it
opens the exit gate via the GateExitOpen node. After a time
delay for the vehicle to pass through, the gate is closed again
via the link to GateExitClose. ,e flow continues with
loading the CarInPark items from the database and coverts
them to the JSON format. ,ese data are passed to the
FirebaseConvert function (code: finding and passing the
item ID for deletion), which, from the smartphone ID stored
in GlobalContext, searches for a record in the database and
deletes the record via the DeleteValue node. ,e last step of
the program is the gateID item reset.

5.5. Reservations. In the case of this flow, a division into two
parts has been done too (Figure 14). Every minute, the first
part checks the reservation length, and in case of exceeding
the time limit, the reservation is removed. ,e other part
checks the reservations of the drivers entering the parking
lot, and if such an entry exists, it is deleted.

Everyminute, the inject node loads the reservations from
the database and converts them to JSON.,e data are passed
by the FirebaseConvert (code: check out booking timeout)
function, which checks the length of every reservation and in
case of exceeding the time limit and passes the respective
reservation for deletion. If a reservation that should be
deleted is found, the switch continues with the second path.
Otherwise, it continues with the first path, where the pro-
gram ends.

var response�msg.payload;
var data� “”;
var nic� 1;

var data1� response.split(“{”).toString();
var l� data1.length;
for(i�0;i<l;i++){

var s� data1.substring(i, i + 1);
if(s�� “\””){}
else if(s�� “{”){}
else if(s�� “}”){}
else {data� data + s;}

}
var allmsg� data.split(“,−”);
l� allmsg.length;
for(i�1;i<l;i++){
var data1� allmsg[i].split(“:”);
var fh� parseInt(data1[4]);

Mobile Information Systems 9

var fm� parseInt(data1[5]);
var date� new Date();
var h� date.getHours()+1;
var m� date.getMinutes();
var delta� (h∗ 60 +m)−(fh∗60+fm);

if(delta> 60){

var cesta� “parkings/parking1/reservations/
−” + data1[0];

node.send({childpath:cesta});
}
else{

node.send({payload:nic});

Inject Request JSON Gateway request

Gateentranceopen

Gateentranceclose

Gateexitopen

Gateexitclose

connected

Figure 12: Program flow IQRF_Request.

Gate

Gate

GateID

GlobalContext

CarInPark

Ready

Ready Ready

Ready

Ready

Ready Ready
Switch Delay 2s

Delay 10s

Delay 10s

ResetreservID

Json FirebaseConvert

DeleteValue

GateIDUpdate

Figure 13: Program flow gate.

1 Reservations

Reservations Reservationsconvert

Json

Json

Switch

Firebaseconvert

Globalcontext

ReservationID

Switch Deletevalue

Deletevalue

Ready

Ready

Ready

ReadyReady

Figure 14: Parking reservation management.

10 Mobile Information Systems

}
}
return;

As mentioned previously, when the entrance barrier is
opened, the phone ID is written to the reservationID entry.,e
change of its state is monitored by the ResourceID node, which
begins the second part of this flow.,e phone ID is stored in a
global variable, and all reservations are read from the database,
converted to JSON format and passed to the Reser-
vationConvert (code: delete driver’s reservation for parking)
function, which compares the records in the database with the
stored phone ID. When a match is found, the entry is deleted.
,e switch performs the same function as in the previous case.

var response�msg.payload;
var reservationID� global.get(“reservationID”);
var data� “”;
var data1� response.split(“{”).toString();
var l� data1.length;
for(i�0;i<l;i++){

var s� data1.substring(i, i + 1);
if(s�� “\””){}
else if(s�� “{”){}
else if(s�� “{”){}
else {data� data + s;}

}
var allmsg� data.split(“,−”);
var al� allmsg.length;
for(i�1;i<al;i++){

var data3� allmsg[i].split(“,”);
var androidID� data3[1].substring(10, data3

[1].length);
var path� “parkings/parking1/reservations/” +
data3[2].substring(3, data3[2].length);
if(androidID�� reservationID){
node.send({childpath:path});
else {node.send({payload:1});}

}
return;

5.6. SmartphoneApplication. For the purposes of the testing
and validating, an Android app has been developed.,is app
enables control of all the functions on the screen, so the
controls are user-friendly and simple. ,e functions are
started by tapping simple icons, so the driver is not forced to
read through the context menus while driving. ,e overview
of all the functions and meaning of the individual icons is
represented by the image.

5.7. Automatic Detection of a Nearby Parking Lot. As de-
scribed in chapter 4.5, the automatic detection of a nearby

parking lot is procured via geofencing service For this
purpose, the Constants class is used. It contains the pa-
rameters such as creating a geofence (GPS coordinates and
radius). Using a hash map, several geofences can be created
simply by adding a name and coordinates via another
command.

LANDMARKS.put(.)); (code: set geofence
parameters).
public class Constants {

public static final float GEOFENCE_RADIUS_
IN_METERS� 1000;

public static final HashMap< String,
LatLng> LANDMARKS� new HashMap< String,
LatLng> ();

static {
// Parking 1
LANDMARKS.put(“Parking 1”, new LatLng

(50.420860, 16.185796));
}

}

By calling the populateGeofenceList() method in
MainActivity, custom geofence is created (code: creating
geofence).

public void populateGeofenceList() {
for (Map.Entry< String, LatLng> entry: Con-

stants.LANDMARKS.entrySet()) {
mGeofenceList.add(new Geofence.Builder()

setRequestId(entry.getKey())
setCircularRegion(
entry.getValue().latitude,
entry.getValue().longitude,
Constants.GEOFENCE_RADIUS_IN_
METERS

)
setExpirationDuration(Geofence.
NEVER_EXPIRE)
setTransitionTypes(Geofence.GEOFENCE_
TRANSITION_ENTER)
build());

}
}

,e GeofenceTransitionsIntentService class subse-
quently creates a notification channel that it uses to inform
the driver with a notification about available parking lot
upon entering inside the created geofence (Figure 15).

5.8. Navigation to the Parking Lot. To run the navigation, the
app uses Google API and Google Maps for Android, which
enables running a map in the following modes:

Display the map on a given place with given zoom level

Mobile Information Systems 11

Searching for a place and displaying it on the map
Navigation with the selected means of transport (car,
bicycle, and walking)
Displaying the panorama view in Google Street View
service

To run the map, it is first necessary to create an “Intent”
object and specify the mode in which the map will be
opened. Intent contains a special string (URI), which ac-
curately specifies the requested action. After creating the
Intent, the activity gets started by the startActivity() method.
As you can see in the following code (code: create Intent and
run Map Activity), Intent is created via URI, which defines
the type of the action as navigation to a set GPS coordinate.
Subsequently, the Intent is injected with a packet to secure
that is processed by Google Maps.

public void startNavigationButtonHandler(View view)
{

Uri gmmIntentUri�Uri.parse(“google.navigation:
q� 50.475367, 16.179489”);

Intent mapIntent� new Intent(Intent.ACTION_-
VIEW, gmmIntentUri);

mapIntent.setPack-
age(“com.google.android.apps.maps”) ;

startActivity(mapIntent);
}

5.9. Information about the Parking Lot Occupancy. ,e in-
formation about number of available and occupied parking
space is saved by NodeRED into the Firebase database, and in
the Android app, the instance of the database is created:
FirebaseDatabase database� FirebaseDatabase.getInstance(),
along with the references for its individual items: Data-
baseReference myRef. . . � database.getReference(“parkings/
parking1/.”). ,is is followed by the listener per-
forming the corresponding actions every time a value changes
in any of the values it is monitoring.

public void readFreePlaces(){
myRefFplaces.addValueEventListener(new Val-

ueEventListener() {

@Override
public void onDataChange(@NonNull DataSnap-

shot dataSnapshot) {
places� dataSnapshot.getValue().toString();
int pl� Integer.parseInt(places);
int cr� (int) (pl− countRes);
Fplaces.setText(String.valueOf(cr));

}
@Override

public void onCancelled(@NonNull DatabaseError
databaseError) {

places� “Error”;
}

});

On every change of the available parking spaces, themethod
above (code: setting the listener to change the number of free
parking spaces) sets the textView value on the main activity via
the setText method, so the button always contains the current
number of available spaces on the parking lot. When tapping
this button, a new activity is run. It contains listView, which
informs the driver about current occupancy of the individual
parking spaces on the parking lot. ,e same activity is run also
upon entering the parking lot after the request to open the entry
gate, so the driver has an overview of the available spaces. For
this purpose, the app uses, similarly to the previous case, the data
stored in the database, whose changes are monitored by the
listener. ,e data about the occupancy of the individual spaces
are stored in the database via NodeRED in the form of a string
“0000110100110010”, which contains sixteen bits: “1” or “0”. If
the given position has the value of “1”, it means that the space is
occupied. Otherwise, the space is available. ,e getOccupancy()
method (code: filling a text field based on database data) in this
activity fills the OCCUPANCY[] array with the values “FREE”
or “OCCUPIED”.

public void getOccupancy(){
for(int i�0;i< 8;i++){

System.out.println(places.substring(i, i + 1));

if(places.substring(i, i + 1).equals(“0”)){OCCU-
PANCY[i]� “FREE”;}

if(places.substring(i, i + 1).equals(“1”)){OCCU-
PANCY[i]� “OCCUPIED”;}

if(places.substring(i + 8, i + 9).equals(“0”)){OC-
CUPANCY[i + 8]� “FREE”;}

if(places.substring(i + 8, i + 9).equals(“1”)){OC-
CUPANCY[i + 8]� “OCCUPIED”;}

NUMBERS[i]� i + 1;
}

}

Afterwards, these values are in the adapter using listView
passed to individual textView (code: filling text boxes and
setting font color based on content), as is shown in the image
(Figure 16).

Figure 15: Notification after entering geofence.

12 Mobile Information Systems

public View getView(int i, View view, ViewGroup
viewGroup) {

view-
� getLayoutInflater().inflate(R.layout.customlayout,
null);

TextView
tvNumbers� view.findViewById(R.id.tvNumbers);

TextView
tvOccupancy� view.findViewById(R.id.tvOccupancy);

TextView tvOccu-
pancy1� view.findViewById(R.id.tvOccupancy1) ;

tvNumbers.setText(String.valueOf(NUMBERS
[i]));

tvOccupancy.setText(String.valueOf(OCCU-
PANCY[i]));

tvOccupancy1.setText(String.valueOf(OCCU-
PANCY[i+8]));

if(OCCUPANCY[i].equals(“FREE”)){tvOccu-
pancy.setTextColor(Color.parseColor(“#00ff00”));}
if(OCCUPANCY[i].equals(“OCCUPIED”)){tvOccu-
pancy.setTextColor(Color.parseColor(“#ff0000”));}
if(OCCUPANCY[i+8].equals(“FREE”)){tvOccu-
pancy1.setTextColor(Color.parseColor(“#00ff00”));}
if(OCCUPANCY[i+8].equals(“OCCUPIED”)){tvOc-
cupancy1.setTextColor(Color.parseColor(“#ff0000”));}

return view;
}

}

5.10. Creating a Parking Space Reservation. Every driver can
make one short-term reservation of one parking space. For
this purpose, the app uses the Reservation.java class, which
has three attributes:

id–item ID generated by the Firebase database

androidID–unique 64-bit number generated by the
Android OS
time–the time when the reservation is created

Before creating a reservation, based on the Android ID, the
app checks whether the user is already saved in the database
(has a valid reservation or is already on the parking lot) (Sample
14) and if there are any spaces available for reservation on the
parking lot (number of free spaces—number of valid reser-
vations). If a reservation is possible, it asks the database for a
new item id: id�myRefRes.push().getKey(). It then creates a
new instance of the Reservation class: myRe-
fRes.child(id).setValue(reservations; and finally, this newly
created instance is stored in the database (Figure 17): myRe-
fRes.child(id).setValue(reservations) (code: determining the
status of a user’s reservation).

public void onDataChange(DataSnapshot snapshot) {
countRes� snapshot.getChildrenCount();
updateCountReservation();
resIndicator� false;
for (DataSnapshot postSnapshot: snapshot.getCh-

ildren()) {
Reservation

post� postSnapshot.getValue(Reservation.class);
String resCheck� post.getAndroidID();
if(resCheck.equals(androidID)){resIn-

dicator� true;}
}

}

,e state of the reservations is regularly monitored also
by the mini PC via NodeRED, and if the time limit for the
reservation is exceeded, it is automatically removed from the
database. ,e reservation is removed also if a driver with a
valid reservation arrives on the parking lot and sends a
request to open the entry gate. ,e procedure for removing
the reservation from the database is described later.

Figure 16: Parking occupancy is displayed.

Mobile Information Systems 13

5.11. Opening the Entry/Exit Gate. To open the entry/exit
gate, the app again uses the Firebase database, which con-
tains two items:

gate: it can contain two values: 1 and 0 (entry gate open/
closed)
gateID: in case the car is present on the parking lot, the
app saves the androidID of the user who wants to open
the exit gate

,e app contains the CarInPark.java class, which has,
similarly to the Reservation.java class, three attributes:

id–item ID generated by the Firebase database
androidID–unique 64-bit number generated by the
Android OS
time–time of arrival on the parking lot

,e same as with the requirement to create a reservation,
during the requirement to open the gate, the app first checks
whether the vehicle is currently present at the parking lot
(has a record in the database) via androidID. ,en, by
comparing two GPC coordinates, it checks whether the
maximum distance of the smartphone from the gate is not
exceeded. If these conditions are met, by entering the value
of “1” to the gate item of the Firebase database, NodeRED
procures that the entry gate is open. ,en, it follows with a
request for a new id to save the item in the database: String
id�myRefCar.push().getKey(); then, a new instance of the
CarInPark class is created: carInPark� new CarInPark(id,
androidID, time); and finally, the item is saved in the da-
tabase: myRefCar.child(id).setValue(carInPark) (Figure 18).
After closing the gate, using NodeRED, a potential reser-
vation belonging to the driver entering the parking lot is
deleted.

If the vehicle is on the parking lot (user’s androidID is in
the database), androidID is saved in the gateID item, and
based upon this action, NodeRED opens the exit gate and
removes the corresponding user’s record. ,e processes of
opening and closing the parking lot gates using NodeRED
have been described in Chapter 6.3.

6. Discussion

During the pilot operation, vehicle detection using a mag-
netometric sensor has been tested in two phases. In the first
phase, unprompted detection testing has been performed. In
the second phase, testing for detection of vehicles of various
sizes was followed. For the first phase of the testing, an

Arduino module program was modified to count the vehicle
detections. ,e testing was carried out for the period of 24
hours, performing a check twice per second. ,e sensor was
placed and fixed so its move in any direction was impossible.
In 24 hours, 172,800 checks were performed, and only four
detections were faulty, with the error rate of 2.3%.

In the second phase, correct detection of five vehicles of
different sizes (Toyota Yaris, Škoda Roomster, Škoda Octavia
combi, Citroën Jumpy, and Nissan Navara) was tested. Every
vehicle was placed thirty times over the magnetometric
sensor. ,e detection success rate was very high—there has
been only one faulty detection, which happened with the
smallest of the vehicles (Toyota Yaris).

,e automatic nearby parking lot detection has been
carried out over the course of two weeks. ,e first week,
testing for choosing the appropriate radius of the geofence
was carried out, so the driver would get an information
about an available parking lot in time and would be able to
respond to this information easily. After one-week testing,
1,000 meters was chosen as the most suitable radius. Because
of the delay described earlier, the driver in town traffic would
the information about 500 to 800 meters before the parking
lot. ,e second week, after setting the suitable radius, testing
on a 10-kilometer route was carried out. On this route, five
geofences were set up. Ten drivers have driven in this route
ten times in total, which means that 500 tests have been
performed. In three cases, the notification was not received,
and in four cases, the driver received the notification in
distance under 200 meters from the parking lot.,is adds up
to the error rate of 1.4%.

One of the important factors for successful adoption of
any car parking solution is the economic efficiency. ,e
financial costs of traditional and complex solutions, which
have been stated in related works, are certainly higher than
the low-cost solutions based mini PC.,e final costs are also
affected by the selection of individual components, so the
final cost of the solution was not high. ,e approximate
retail prices, at which the individual components of the
system were purchased, are summarized in the following list:

MPU–9250 (3 €)
Arduino Mini (2 €)
IQRF TR-72D (14 €)
Battery (19 €)
UbBoard-mini PC (90 €)
Entrance barrier (606 €)

Reservations

AndroidID: “fd5ee236f37652ff

-LYY5_Y2ueZ33fHK2Zq8

Id: “-LYY5_Y2ueZ33fHK2Zq8

Time: “20 : 06”

Figure 17: Example of saving the reservation to the database.

Parkings

Parking1

CarInPark

-LYhBh5zxFsxum8tn2Y4

AndroidID: “fd528236f37652aa

Id: “-LYhBh5zxFsxum8tn2Y4

Time: “19 : 09”

Figure 18: Record the vehicle present in the parking lot.

14 Mobile Information Systems

7. Conclusion

,e presented solution has been used for pilot deployment,
and in case the solution was to be used commercially, some
enhancements of its functionality would be needed. In the
current state, since the time is saved in the database upon
vehicle entering the parking lot, the app would be capable of
calculating the parking fee if price tariffs were to be added.
For the commercial use, it would be necessary to implement
a way to pay the parking fee, which could be done either
using a parking machine placed directly on the parking lot or
implementing a connection to a payment gateway to the app.
It would also be suitable to also develop an iOS app, so that
the iPhone users could use the system as well. Another
option would be to develop a web app for communication
with the system.,e app would run directly in a smartphone
web browser, and therefore, the system would be cross-
platform. ,e majority of the system parts and the mobile
app have been designed in the way that would allow future
development of more functionalities. ,e structure of the
data stored in the database makes it possible to add addi-
tional parking lots, and the automatic parking lot availability
detection enables to display notifications about more than
one parking lot.

,erefore, after some modifications, the system could be
used by, for example, owners of permanent parking lots, also
during large occasional events. Considering its low expenses,
the system could not only help the drivers solve their
problems with searching for empty parking spaces and
improve the traffic in the towns and cities, but it could also
help to deal with the problems with the drivers who avoid
paying the parking fees, especially on the open parking lots
with the parking machines.

Data Availability

,emeasured data used to support the findings of this study
are available from the corresponding author upon request.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is work was supported by a Specific Research Project,
Faculty of Informatics and Management, University of
Hradec Kralove, Czech Republic. We would like to thank
Mrs. H. Svecova, a doctoral student, and Mr. J. Dian, a
graduate, of Faculty of Management and Informatics,
University of Hradec Kralove, for the practical verification of
the proposed solutions and close cooperation in the solution.

References

[1] A. Khanna and R. Anand, “IoT based smart parking system,”
in Proceedings of International Conference on Internet of
<ings and Applications (IOTA), pp. 266–270, Pune, India,
January 2016.

[2] I. Chatzigiannakis, A. Vitaletti, and A. Pyrgelis, “A privacy-
preserving smart parking system using an IoT elliptic curve
based security platform,” Computer Communications,
vol. 89–90, pp. 165–177, 2016.

[3] S. Kubler, J. Robert, A. Hefnawy, C. Cherifi, A. Bouras, and
K. Främling, “IoT-based smart parking system for sporting
event management,” in Proceedings of the 13th International
Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services-MOBIQUITOUS 2016 [online],
pp. 104–114, New York, USA, November 2016.

[4] H. Arasteh et al., “Iot-based smart cities: a survey,” in Pro-
ceedings of IEEE 16th International Conference on Environ-
ment and Electrical Engineering (EEEIC), pp. 1–6, Florence,
Italy, June 2016.

[5] MF. Tsai, Y. C. Kiong, and A. Sinn, “Smart service relying on
internet of things technology in parking systems,”<e Journal
of Supercomputing, vol. 74, no. 9, pp. 4315–4338, 2018.

[6] C. Roman, R. Liao, P. Ball, S. Ou, and M. de Heaver,
“Detecting on-street parking spaces in smart cities: perfor-
mance evaluation of fixed and mobile sensing systems,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19,
no. 7, pp. 2234–2245, 2018.

[7] I. Calvo, J. M. Gil-Garćıa, I. Recio, A. López, and J. Quesada,
“Building IoT applications with raspberry Pi and low power
IQRF communication modules,” Electronics, vol. 5, no. 4,
p. 54, 2016.

[8] V. Jan, P. Martin, and R. Hajovsky, “Wireless measurement of
carbon dioxide by use of IQRF technology,” IFAC-Paper-
sOnLine, vol. 51, no. 6, pp. 78–83, 2018.

[9] J. Skovranek, P. Martin, and R. Hajovsky, “Use of the IQRF
and Node-RED technology for control and visualization in an
IQMESH network,” IFAC-PapersOnLine, vol. 51, no. 6,
pp. 295–300, 2018.

[10] M. Pies and R. Hajovsky, “Using the IQRF technology for the
internet of things: case studies,” in Mobile and Wireless
Technologies 2017. ICMWT 2017. Lecture Notes in Electrical
Engineering, K. Kim and N. Joukov, Eds., vol. 425, Singapore,
Springer, 2017.

[11] J. Kopják and G. Sebestyén, “Comparison of data collecting
methods in wireless mesh sensor networks,” in Proceedings of
IEEE 16th World Symposium on Applied Machine Intelligence
and Informatics (Sami), pp. 000155–000160, Kosice, Slovakia,
February 2018.

[12] O. Vondrouš, Z. Kocur, T. Hégr, and O. Slavı́ček, “Perfor-
mance evaluation of IoTmesh networking technology in ISM
frequency band,” in Proceedings of 17th International Con-
ference on Mechatronics-Mechatronika (ME), pp. 1–8, Prague,
Czech Republic, December 2016.

[13] IQRF Tech sro, IQRF DPA framework Technical Guide,
Vol. 10, IQRF Tech, Jič́ın, Czech Republic, 2018.

Mobile Information Systems 15

