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Motion-based hand gesture is an important scheme to allow users to invoke commands on their smartphones in an eyes-free
manner. However, the existing scheme is facing some problems. On the one hand, the expression ability of one single gesture is
limited. As a result, a gesture set consisting of multiple gestures is typically adopted to represent different commands. Users must
memorize all gestures in order to make interaction successfully. On the other hand, the design of gestures needs to be complicated
to express diverse intensions. However, complex gestures are difficult to learn and remember. In addition, complex gestures set a
high recognition barrier to smart APPs.*is leads to an imbalance problem. Different gestures have different recognition accuracy
levels, which may result in instability of recognition precision in practical applications. To address these problems, this paper
proposes a novel scheme using binary motion gestures. Only two simple gestures are required to express bit “0” and “1,” and rich
information can be expressed through the permutation and combination of the two binary gestures. Firstly, four kinds of
candidate binary gestures are evaluated for eyes-free interactions. *en, an online signal cutting and merging algorithm is
designed to split accelerometer signals sequence into multiple separate gesture signal segments. Next, five algorithms, including
Dynamic Time Warping (DTW), Naive Bayes, Decision Tree, Support Vector Machine (SVM), and Bidirectional Long Short-
Term Memory (BLSTM) Network, are adopted to recognize these segments of knock gestures. *e BLSTM achieves the top
performance in terms of both recognition accuracy and recognition imbalance. Finally, an Android application is developed to
illustrate the usability of the proposed binary gestures. As binary gestures are much simpler than traditional hand gestures, they
are more efficient and user-friendly. Our scheme eliminates the imbalance problem and achieves high recognition accuracy.

1. Introduction

Eyes-free interaction is a method of controlling mobile
devices without having to look at the device [1]. A variety of
schemes have been developed to let users interact in an eyes-
free manner. In [2], a digital calculator that operated with
fingers on touch screens is developed. *is method utilizes
taps for digits input and uses swipes for other operations.
Seventeen finger gestures are defined for arithmetic tasks. In
[3], a nonvisual text entry method that uses the 6 bit Braille
character encoding is presented. A signal is an input by
touching the screen with several fingers where each finger
represents one bit, either touching the screen or not. In
addition to surface gestures, voice commands also provide a

solution [4]. Siri is one of the most prominent examples of a
mobile voice interface. Another important way is to use a
motion-based hand gesture [5]. To command a smartphone
to execute a task, a user needs to perform a hand gesture with
that phone in hand. *e type of gesture is recognized
through analysing data samples captured by motion sensors,
such as accelerometers, gyroscopes, and orientation sensors.

Motion-based hand gestures enjoy several advantages.
Firstly, users do not need to pay visual attention to the
touchscreen because the physical location of the smartphone
can be perceived via proprioception [6]. Secondly, hand-
motion-gesture interaction puts forwards a few restrictions
on the surrounding environment. For example, voice
commands are prone to error in noisy environments [7], but
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motion gestures can be performed as long as the hands of
users are free. Finally, motion-based hand gestures can be
designed in three-dimensional space. Compared to surface
gestures, there remains larger design space for a variety of
interactive tasks [8–10].

However, the scheme using motion-based hand gesture
to command smartphones is facing three problems.

(1) In order to represent different commands, a gesture
set consisting of multiple gestures is required. For
example, fourteen gestures are specified in the lit-
erature [5]; 11 gestures are proposed in the literature
[11]. Users need to learn the set of hand gestures
supported by a smartphone. *ey must memorize all
gestures in order to make interaction successfully.

(2) In order to distinguish these different gestures, hand
gestures are defined not only in terms of the
movement shape but also based on the motion ki-
nematics [12]. Users are required to learn the fea-
tures of gestures, in terms of movement shape and
kinematics. It could be a daunting barrier to grasp
details of such features. In addition, gestures with
complex features set up a barrier to achieving high
recognition accuracy.

(3) *e design of multiple gestures causes an uneven
distribution of recognition accuracy levels among
different gestures, which hinders the practical ap-
plication of such design. For example, a deep feed-
forward neural network is proposed to recognize 11
hand gestures in the literature [11]. *ey attained a
minimum hit rate of 70.35% for Gesture 1 and a
maximum hit rate of 100% for Gesture 10. As a
result, the recognition accuracy levels of different
gestures are dramatically different.

*e root cause of the above problem is that multiple
types of gestures are required to complete a specific inter-
action task with a phone. To address this problem, a novel
interaction scheme using binary gestures is proposed in this
paper. Only two kinds of hand gestures are needed to express
binary bit “0” and “1.” *rough the permutation and
combination of the two binary gestures, a bit sequence is
constructed. *e application installed on smartphones can
identify the bit sequence by analysing sensors’ signals. As the
binary gestures are much simpler than traditional hand
gestures, they are easy to learn and remember for users. High
recognition accuracy can be achieved for both gestures.
*us, there will be no imbalance problem.

Taking the swiping movement gesture as an example, it is
stipulated that users swipe of the smartphone horizontally to
left and to right represent the bit “0” and “1,” respectively. By
combining binary gestures, complex meanings can be
expressed. For instance, if the user swipes the phone to the left
four times in succession, it means that the command is “0000.”
*e permutation and combination of four binary gestures can
represent up to 16 commands. We believe that it is easier for
users to remember numbers than complex gestures.

It should be noted that we do not intend to design a set of
gestures to meet the requirement of all kinds of interaction

tasks. We just provide an alternative for the eyes-free in-
teraction scenarios. Its typical application scenarios include
visually disabled users [13], distracted interaction [14], and
covert operation [15].

*e main work and contribution of the paper are
summarized as follows.

(1) A novel user-smartphone interaction scheme using
binary gestures in an eyes-free manner is proposed.

(2) An online signal cutting and merging algorithm is
designed to extract the independent gesture signal
segment from the binary gesture sequence. *is
online algorithm achieves an accuracy rate compa-
rable to the offline SVM algorithm.

(3) Five algorithms, including DTW, Naive Bayes, De-
cision Tree, SVM, and BLSTM, are adopted to rec-
ognize binary gestures, and BLSTM has reached a
recognition accuracy of 98%.

(4) A prototype application that uses binary gestures to
send SMS messages is implemented on the Android
platform.

*e rest of this paper is organized as follows. *e def-
inition of binary gestures is introduced in Section 2. Section
3 describes the segmentation process of binary gesture se-
quences in detail. In Section 4, five algorithms are exploited
to recognize a segmented knock gesture. Section 5 intro-
duces a prototype application that uses binary gesture in-
teraction. Finally, the work of this paper is concluded.

2. Definition of Binary Gestures

We exploit four categories of binary gesture according to a
standard 3-axis coordinate system. In the standard 3-axis
coordinate system, the x-axis is horizontal and points to the
right. As illustrated in Figure 1, the y-axis is vertical and
points up, and the z-axis points toward the outside of the
screen face [27].

*e definition of the four binary gestures is shown in
Table 1. In the definition, the phone is supposed to hold in its
portrait orientation by users’ two hands. *e swipe, pitch,
and flip gestures are performed along the z-axis, x-axis, and
y-axis, respectively. For the knock gesture, the user holds the
phone in one hand and taps on the screen with the index
finger of the other hand.

A set of command encoded in binary is defined to
represent the user’s interactive intention. A specific com-
mand is transformed to a gesture sequence consisting of
single-actions and double actions. In each gesture category, a
single-action is defined to represent the meaning of “0,” and
a double-action is defined to represent the meaning of “1.” A
double-action gesture includes two consecutive single-ac-
tion gestures. Multiple gestures constitute a binary gesture
sequence for interaction. Take knock gesture as an example;
if a user wants to issue a 4-bit command “0101” to a
smartphone, he is required to perform 4 knock actions in
sequence. In other words, the user needs to perform “single-
knock, double-knock, single-knock, double-knock” on the
smartphone within a specified time range.
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An accelerometer is very common on smartphones. It is
a vital sensor to monitoring device motion, such as tilt,
shake, rotation, and swing. In addition, it uses about 10 times
less power than other motion sensors [16]. For the afore-
mentioned reasons, we consider collecting accelerometer
data to identify user gestures.*e application installed in the
smartphone analyses the acceleration sensor data to identify
the binary bit sequence.

Figure 2 illustrates the collected 3-axis accelerometer
data while performing two binary gestures in succession
under different categories. *e two successive gestures
represent a bit sequence of “01.” *e x, y, and z curves
correspond to the 3-axis accelerometer data. It can be seen
from Figure 2(a), there is a lot of noise in the acquired
accelerometer signal of the swipe gestures. It is difficult to
distinguish the two swiping action gestures. In contrast, the
pitch, flip, and knock gestures are easier to distinguish. *e
single and double actions of these gestures are mainly
distinguished according to the number of crests or troughs.
From Figure 2(b), it can be clearly seen that the single-pitch
gesture has a significant trough in the z-axis and a significant
crest in the y-axis, while the double-pitch gesture has two
troughs and crests in the corresponding axis. In Figure 2(c),
the waveform of flip gestures is similar to that of pitch

gestures, but the crests appear on the x-axis. For the knock
gesture shown in Figure 2(d), the single-knock action has a
significant crest, while double-knock action has two sig-
nificant peaks. In summary, the pitch, flip, and knock
gestures are considered in the following discussion.

In the next section, we will explain in detail how to
identify the binary bit sequence passed by the user from the
accelerometer signal.

3. Signal Segmentation

3.1. Overall Process. *e overall processing flow is shown in
Figure 3.

*e 3-axis accelerometer signals are continuously ac-
quired by an application installed on a smartphone. Before
the start of each interaction, the phone is kept motionless for
a period of time (more than 1 second). *is motionless
period is seen as a start signal of a gesture sequence. It is
called the initial quiet period.

Firstly, the collected signals are preprocessed by syn-
thesis and filtering. *en, the initial quiet period is detected.
Once the start signal appears, an online bit cutting process is
used to cut out independent gesture signal segments from a
continuous signal stream. Next, the cut-out gesture signal
segment is identified in its binary meaning. In an ideal state,
a sequence composed of N binary gestures can be divided
into N independent gestures signal segments. *e final
output is a N-bit binary sequence, which represents user’s
command message.

3.2. Signal Acquisition and Preprocessing

3.2.1. Sampling Frequency. In an Android smartphone, the
sampling frequency of the various sensor is set in the system.
*ere are four values that are available [17].

① SENSOR_DELAY_NORMAL, the sampling fre-
quency is about 5Hz.
② SENSOR_DELAY_UI, the sampling frequency is
about 16Hz.
③ SENSOR_DELAY_GAME, the sampling frequency
is about 50Hz.
④ SENSOR_DELAY_FASTEST, sample as fast as
possible.

In the samples we collected, the duration of a single-knock
gesture is about 0.2s-0.5s, which is equivalent to a gesture
frequency of 2Hz ∼ 5Hz. According to the Shannon sampling
theorem, the sampling frequency of the signal should be no
less than 10Hz. If SENSOR_DELAY_FASTEST is used, the
sampling frequency is much larger than 10Hz, and too
many samples are collected. *is brings unnecessary
overhead for subsequent calculations. *e two frequencies
of SENSOR_DELAY_UI and SENSOR_DELAY_GAME
are more reasonable. Considering the accuracy of gesture
recognition, we choose 50Hz as the sampling frequency to
obtain more sampling points.

y

x

z

Figure 1: A standard 3-axis coordinate system [27].

Table 1: *e definition of binary gestures.

Gesture category Action Meaning

Swipe (along the z-axis) Single 0
Double 1

Pitch (along the x-axis) Single 0
Double 1

Flip (along the y-axis) Single 0
Double 1

Knock (on the screen) Single 0
Double 1
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3.2.2. Signal Synthesis and Filtering. To avoid the influence
of the sensor’s own drift and gravity, we have performed
vector synthesis on the 3-axis data [18]:

A �
�����������
A2

x + A2
y + A2

z

􏽱
− G, (1)

where G represents the acceleration of gravity. Ax, Ay, and
Az represent the accelerometer sampling value of the X-axis,
Y-axis, and Z-axis, respectively.

In order to filter out abnormal points and noise in the
collected data, a low-pass filter is performed as follows:

Ai � αAi +(1 − α)Ai−1. (2)

Here, Ai represents the ith synthesized accelerometer
sample and Ai represents the value obtained after filtering.
As the new sampling points are more significant for feature
extraction and recognition, it is recommended to choose a
large value of α to retain a large proportion of sampled
values.

3.3. Bit Cutting Process. *e bit cutting process attempts to
separate independent gesture signal segments from the
continuously collected accelerometer signal stream. *e bit
cutting process operates in an online mode. Instead of ac-
quiring the complete binary gesture sequence signals,
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Figure 2: 3-axis accelerometer data for a bit sequence of “01” under different definitions. (a) Swipe. (b) Pitch. (c) Flip. (d) Knock.

Begin
Signal

acquisition
Synthesis

and filtering Bit cuttingA start signal? A complete gesture
segment?

Gesture
recognition

Binary
sequence EndY

N N

Figure 3: *e overall processing flow.
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cutting and analysing operations run simultaneously.
Figure 4 shows the complete flowchart of the bit cutting process.

*e classic Sliding Window (SW) and Sliding Window
and Bottom-up (SWAB) algorithms [19] are used to perform
online signal segmentation. *ese algorithms cannot cut out
a single complete binary gesture signal at one time. By
contrast, such algorithms obtain a large number of short
signal segments. *erefore, a merge algorithm is designed to
combine these short signal segments into a complete binary
gesture signal segment. *e pseudocode of a bit cutting
process is illustrated in Algorithm 1.

3.3.1. Cutting Algorithm. SW and SWAB are two kinds of
online signal cutting algorithms used to extract physical
signal segments from time-series signals. *e SW algorithm
read sample into a sliding window continuously then uses
linear regression to fit a line for the samples in the window.
At some points, the cumulative error is greater than a user-
specified threshold (denoted as Emax), so the subsequence in
the window is transformed into a segment. *en, the size of
the sliding window is reduced to 0, and the process iterates
until the entire time serial has been transformed into a
piecewise linear approximation. *e SWAB algorithm keeps
a small buffer to gain a “semiglobal” view of the dataset for
Bottom-Up. It scales linearly with the size of the dataset,
requires only constant space, and produces high quality
approximations of the data. *at is beneficial to application
in mobile devices.

*e cumulative error Ecum of the linear approximation is
calculated as follows:

Ecum � 􏽘
n

i�1

���������

Ai − 􏽢Ai􏼐 􏼑
2

􏽲

. (3)

Here, 􏽢Ai is the fitted value of the ith data sample after
signal synthesis and filtering, and n is the current window
size. Whenever the window size changes, the cumulative
error is recalculated.

Figure 5 shows a preprocessed accelerometer signal
sequence generated by two consecutive knock gestures,
which are a single-knock and thereafter a double-knock. As
illustrated in Figure 5, there is a relatively calm interval
between two adjacent knock gestures, such as the interval of
2.5 s–4.5 s. *is kind of interval is called the quiet period. In
contrast, the signal period with relatively strong fluctuations
is called the fluctuation period, such as the interval of
1.5 s∼2.5 s and the interval of 4.5 s∼6.0 s. *ose are the signal
segments corresponding to the user’s knock gestures. Ide-
ally, the quiet period and the fluctuation period alternate in
the signal sequence of binary gestures.

After processing by the SW/SWAB, the signal sequence
is cut into multiple short segments. As illustrated in Figure 5,
these short segments are separated by blue vertical dashed
lines. During the quiet period, there will be fitting errors due
to small fluctuations. After a period of time, the cumulative
error will eventually exceed the cutting threshold Emax.
*erefore, the signal in the quiet period will be cut into
multiple sparse segments. During the fluctuation period, due
to the relatively large fluctuation of the accelerometer signal,

the cumulative error will exceed the cutting threshold Emax
in a short time.*us, the signal in the fluctuation period will
be cut into multiple dense segments.

In order to extract a complete gesture, it is necessary to
design a merge algorithm to combine multiple signal segments
included in the fluctuation period. For the signal in Figure 5,
two complete signal segments corresponding to the two knock
gestures should be extracted after segments merging.

3.3.2. Merge Algorithm. For a segment, we can compute its
average error Eavg as in the following equation:

Eavg �
1
n

􏽘

n

i�1

���������

Ai − 􏽢Ai􏼐 􏼑
2

􏽲

. (4)

Here, Ai is the value of the ith sample after signal syn-
thesis and filtering, 􏽢Ai is the fitted value of the corresponding
sample, and n is the number of samples in the segment. In
particular, the average error of the initial quiet period is
denoted as Eavgb.

Further, a characteristic p is defined to measure the
fluctuation level of a segment. For the kth segment cut out by
the SW/SWAB algorithm, its fluctuation characteristic p(k)

is set according to the following equation:

p(k) �
0, Eavg(k)< β∗Eavgb,

1, Eavg(k)> β∗Eavgb.

⎧⎨

⎩ (5)

A fluctuation characteristic of 0 indicates that the seg-
ment’s fluctuation is low and belongs to a quiet period. By
contrast, a fluctuation characteristic of 1 indicates that the
segment’s fluctuation is high and belongs to a fluctuation
period.

β is a coefficient used to balance Eavg(k) and Eavgb. In
general, the average error of the segments included in a quiet
period is slightly larger than Eavgb. *us, the value of β
should be greater than 1. However, if β is set to a large value,
segments that belong to a fluctuation period would be
marked as segments belonging to a quiet period incorrectly.

After the above processing, we can get a binary nu-
merical sequence of the fluctuation characteristic, that is,
P � [p(1), p(2), · · · , p(k)]. *e merging algorithm pro-
cessing flow is shown in Figure 6.

When the kth segment is cut out (k≥ 3), the merge
operation is performed according to the fluctuation char-
acteristics of the last three segments, i.e., [p(k − 2),

p(k − 1), p(k)]. *ere are three cases in which a merge
operation can be performed:

(1) pk−1 equals pk−2, the (k − 1)th and the (k − 2)th
segment are merged into a new segment, and the
fluctuation characteristic of the new segment re-
mains unchanged.

(2) *e sequence P matches [0, 1, 0], and the size of the
(k− 1)th segment is less than Cmin; it means that
these three segments can be merged into a new
segment with a fluctuation characteristic of 0.

(3) *e sequence P matches [1, 0, 1], and the size of the
(k − 1)th segment is less than Cmax; it means that
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these three segments can be merged into a new
segment with a fluctuation characteristic of 1.

If none of the above cases are met, the current round of
merging operation ends, then waiting for a new segment is
cut out by the SW/SWAB.

*ere are two important parameters in the merge process,
i.e., Cmax and Cmin. *e size of the segment is actually the
duration of the signal. In Case 3, Cmax indicates the maximum

duration of a quiet period allowed in a complete gesture signal.
As a double-knock gesture is two consecutive single-knocks,
there is usually a drop in the signal. *e duration of the signal
drop is about 100–300ms in our experiments. *erefore, Cmax
is set to 15 under a sample frequency of 50Hz.

In Case 2, Cmin indicates the maximum duration of a
fluctuation allowed in a quiet period. Cmin is affected by
many factors, such as the use scenario and sensor accuracy.
*erefore, Cmin is set to 3 conservatively in our experiments.

Preprocessed
signal SW/SWAB Segment

merging
A complete gesture

segment?
Gesture segment

outputY

N

Figure 4: *e flowchart of bit cutting process.

Input: α, the coefficients of the low-pass filter
β, the coefficients to adjust the fluctuation characteristic
Emax, the user-set maximum cumulative error threshold
Ebavg, the average error of the initial quiet period
Output: A complete gesture signal segment
/∗ initialization ∗/;
i← 0, A← [];
k← 0, Segment← [], P← [];
while Get ith 3-axis acceleration sample: Ax, Ay, Az do

/∗ signal synthesis and filtering ∗/;
Ai←

�����������
A2

x + A2
y + A2

z

􏽱
− G

Ai←(1 − α)Ai + αAi;
A[i]←Ai;
i←i + 1;
/∗ SW or SWAB ∗/;
start← Segment[k− 1], end← i− 1;
􏽢A← linear regression to fit a line for A[start: end];
for j� start⟶ end do
Ecum←Ecum +

���������
(Aj − 􏽢Aj)

2
􏽱

end
if Ecum> Emax then
/∗ a new segment is cut out by SW or SWAB ∗/;
Segment[k]← i− 1;
Eavg← 1/ai Ecum;
/∗ set the fluctuation characteristic ∗/;
if Eavg< βEbavg then
P[k]← 0;

else
P[k]← 1;

end
/∗ process by merge Algorithm ∗/;
Segment, P, k←merge(Segment, P, k);
/∗ check if a complete segment is cut-out ∗/;
if [P [0], P [1], P [2]]� [1, 0, 1] then
TS←A[0: Segment[0]];
output TS for recognition;

end
k← k+ 1;

end
end

ALGORITHM 1: *e pseudocode of bit cutting process.
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Figure 7 illustrates the execution of the merge algorithm
for an independent double-knock signal. In Figure 7(a),
when the 3rd segment is cut out, the characteristic sequence
P is [1,1,0] at this time. As p1 � p2, the first and the second
segments are merged into a new segment with a fluctuation
characteristic of 1. *e characteristic sequence P is updated
to [1,0]. *en, the 4th segment is cut out with a fluctuation
characteristic of 0; thus, P is updated to [1,0,0] as in
Figure 7(b). *is does not fall into the three aforementioned
merge cases. Next, the 5th segment is cut out with a fluc-
tuation characteristic of 1. At now, the sequence P is
changed to [1,0,0,1]. *e fluctuation characteristics of the
last three segments are checked. As p2 � p3 � 0, the two
segments are merged into a new segment with a fluctuation
characteristic of 0. After that, the sequence P is changed to
[1,0,1], as in Figure 7(c). Suppose the size of the new segment
is less than Cmax, that meets the merge Case 2. *e three
segments are merged into a big segment with a fluctuation
characteristic of 1 as shown in Figure 7(d). *rough con-
tinuous online cutting and merge processing, the complete
segment of a knock gesture can be extracted. *e pseudo-
code of the merge algorithm is shown in Algorithm 2.

3.3.3. Bit Cutting Experiments. Two experimental scenarios
are designed. In Scenario 1, the smartphone is placed on the

desktop; in Scenario 2, the smartphone is held on user’s
hand. A total of 8 volunteers participated in the experiments.
Each volunteer is required to perform 4 knock gestures
during an interaction. A round of experiments contains 16
interactions, corresponding to the bit sequences “0000”-
“1111.” Ten rounds of experiments were performed, and
2,560 gesture samples for each scene are obtained.

A metric of cut-out rate is used to evaluate the effect of
the bit cutting process. *e cut-out rate is defined as follows:

cut of rate �
number of bits actually cut out

number of bits theoretically cut out
. (6)

*e setting of parameters is shown in Table 2.
*e experiments mainly analyse the cut-out rate of the

binary gestures under different cumulative error thresholds
Emax. *e threshold Emax is set as follows [19]:

Emax � E∗2m
. (7)

Here, E is 0.01, and m varies from 0 to 12. *e exper-
imental results are shown in Figure 7.

As illustrated in Figure 8, the cut-out rate decreases as
Emax increases overall. When Emax is large, some gestures
with low knock strength will be recognized as quiet periods
incorrectly. *at resulted in a situation of less cut-out, and
the cut-out rate is less than 1.

Update
sequence P

Merge
p(k – 2), p(k – 1), p(k)

Output
sequence P

Merge
p(k – 2), p(k – 1), p(k)

Merge
p(k – 1), p(k – 2)

N N

Y

Y

Y

Y N

N

Y

len(k – 1)<Cmin?

p(k – 1) ==
p(kx – 2)?

[p(k – 2), p(k – 1), p(k)]
match [0, 1, 0]?

[p(k – 2), p(k – 1), p(k)]
match [1, 0, 1]?

llen(n – 1) < Cmax?

Figure 6: *e merge algorithm processing flow.
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Figure 5: Cutting result of the SW/SWAB algorithm.
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In the scenario of handheld, we can see the reasonable
range ofm is 0–7. However, the reasonable range ofm is 0–4
in the scenario of the desktop. When a volunteer held the
phone, a small shaking of the hand will cause continuous
small fluctuations in the accelerometer signal. To discrim-
inate between fluctuations caused by a handshake and those
caused by knock gestures, Emax needs to be larger. In order to
adapt to different scenarios, the setting of Emax is studied in
the next subsection.

3.3.4. Setting of Emax. If an initial quiet period is detected,
Emax is set as in the following equation:

Emax � k · N · Eavgb. (8)

Here, k is the linear adjustment coefficient, N is the
current window size of SW/SWAB, and Eavgb is the average
error of the initial quiet period. In this way, the setting of
Emax can be dynamically adjusted according to Eavgb and the
current window size. *is achieves the purpose of scene
adaptation.

*e influence of k value on the bit cutting is analysed. k
varies in [0.001, 0.01, 0.1, 0.5, 1, 3, 5, 10]. *e experimental
results are shown in Figure 9.

As shown in Figure 9, a reasonable range of k tends to
be the same in both scenarios. Scene adaptation is
achieved to a certain degree by adaptively adjusting Emax.

For different scenarios, only parameter k needs to be
determined. When k is small, it has little effect on the cut-
out rate. When k exceeds a certain threshold, the cut-out
rate decreases rapidly. A smaller k means a small cu-
mulative error threshold. *is results in more segments
being cut out, but a good bit cut-out rate can also be
obtained by the merge algorithm. In contrast, a larger k
means a large cumulative error threshold. *is leads to
less cut-out, and the cut-out rate is less than 1. From
Figure 9, we can know that the cut-out rate is better when
k is less than or equal to 1.

3.3.5. Effectiveness of Bit Cutting. In this section, we eval-
uated the effectiveness of the proposed bit cutting algorithm.
*e online bit cutting process is compared to an offline
process using Support Vector Machine (SVM) [20]. *e
offline process is as follows.

A heuristic algorithm is used to cut the gesture signal
sequence into multiple quiet and fluctuating segments.*en,
the signal segments that are correctly cut out will be used to
train an SVM model. Two features are extracted for each
sampling point in a signal segment, namely, the 3-axis
synthetic acceleration and the synthetic acceleration dif-
ference between the current and previous sampling point.
*e label of the sample point is the category of its segment,
which is a quite segment or a fluctuating segment. After the
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Figure 7: Schematic diagram of the merge algorithm. (a) P � [1, 1, 0]. (b) P � [1, 0, 0]. (c) P � [1, 0, 1]. (d) P � [1, 1].
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above processing, we can get an SVM model to predict the
category of each sampling point. Finally, the sample points
are merged into segments according to their category labels.
A similar merge process as shown in Figure 6 is utilized in
the offline process.

*e SVM algorithm has a global view, which simplifies
the classification problem. All data samples are labelled and
the 10-fold cross-validation is used to obtain the average bit
cut-out rate of the SVM algorithm. For the bit cutting
process, Emax is set based on equation (7), and k is 0.5. *e
experimental results are shown in Figure 10. *e online bit
cutting process designed in this paper achieves a cut-out rate
comparable to the offline SVM algorithm. *is shows that
the proposed bit cutting process is suitable for online cutting
of binary gesture signals.

3.3.6. Comparison of Different Gestures. In this section, the
proposed bit cutting algorithm is applied to knock, pitch,
and flip gestures sequence. *e cut-out rate and the bit
completion time are compared for these three gestures.
Except for β, the parameters setting is the same as that in
Table 2. As discussed in Section 3.3.2, the coefficient β should
be greater than 1. Here, β varies from 1 to 10. As shown in
Figure 11, the bit cutting algorithm is effective for all three
gesture sequences. When β is set to 3, 4, and 5, the cut-out
rate of the three gesture sequences is close to 1. *at means
all signal segment is cut-out correctly. As β increases, some
segments in a fluctuation period were marked as segments
belonging to a quiet period incorrectly. *at causes the cut-
out rate of the flip gesture sequence to increase to about 1.2.

Next, we counted the length of all correctly cut-out signal
segments and obtained the average completion time to
express bit “0” and “1.” As illustrated in Figure 12, the bit
completion time of pitch and flip gestures are longer than the
knock gesture. *e single-knock action takes about 0.3
seconds on average to express the bit “0,” while the pitch and
flip actions take more than 0.5 seconds. *e double-knock
action takes about 0.65 seconds on average to express the bit
“1,” while the pitch and flip actions take more than 1.0
seconds. To issue the same command to a phone, the time
spent using the knock gesture is only about half of the pitch

Input: Segment, the signal segments produced by SW or SWAB
P, the corresponding fluctuation characteristic of segments in Segment
k, the count of segment in Segment
Output: Segment, P, k after merging process
/∗ the merge algorithm runs only there are more than 3 segments. ∗/;
if k> 3 then

if P[k− 2]� � P[k− 1] then
/∗ [0, 0, 0]⟶ [0, 0], [0, 0, 1]⟶ [0, 1] ∗/;
/∗ [1, 1, 0]⟶ [1, 0], [1, 1, 1]⟶ [1, 1] ∗/;
Segment[k− 2]← Segment[k− 1];
remove (k− 1)th item in Segment;
k← k− 1;

else if [P [k− 2], P [k− 1], P [k]]� � [0, 1, 0] then
/∗ [0, 1, 0]⟶ [0] ∗/;
if count of (k− 1)th segment in Segment<Cmin then
Segment[k− 2]← Segment[k];
remove (k− 1)th item in Segment and P;
k← k− 2;

end
else if [P [k− 2], P [k− 1], P [k]]�� [1, 0, 1] then
/∗ [1, 0, 1]⟶ [1] ∗/;
if count of (k− 1)th segment in Segment>Cmax then
Segment[k− 2]← Segment[k];
remove (k− 1)th item in Segment and P;
k← k− 2;

end
else
doing nothing;

end
end
Return Segment, P, k

ALGORITHM 2: *e pseudocode of the merge algorithm.

Table 2: Parameters setting.

Parameters Value
Smartphone Huawei honor 8x
α 0.8
β 5
Cmax 15
Cmin 3
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and flip gestures. *us, the interaction efficiency of knock
gesture outperforms the other two.

Since the proposed algorithm is better at cutting knock
and pitch gesture sequences, how to recognize the cut-out
signal segments of these two gestures to their binary
meaning is studied in Section 4.

4. Binary Gesture Recognition

After bit cutting, a complete signal segment of a gesture
sequence is obtained. To distinguish between single and
double gesture action, the DTW, traditional machine
learning, and BLSTM methods are exploited in this section.

4.1. DTW Method. Dynamic time warping (DTW) is an
algorithm for measuring similarity between two temporal
sequences, which may vary in length [21]. *e temporal
sequences of signature will be denoted as matrices like
SP×Z, where P is the number of points in the cut-out signal
segment and Z is the number of features extracted from
each point. Here, the 3-axis raw acceleration data is used.
As a result, the ith point in the sequence is a 3-dimensional
vector. In order to verify whether a sample (SP×Z) matches
its corresponding template (TQ×Z), a dissimilarity score
dis is computed between them based on the DTW algo-
rithm. dis is a cumulative distance of the two gesture
signal segments.
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Figure 8: Comparison of cut-out rates in different scenarios. (a) Handheld. (b) Desktop.
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Figure 9: Comparison of cut-out rates for different k. (a) Handheld. (b) Desktop.
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As seen in Table 1, a single-action and a double-action
are defined in each gesture category. *erefore, a single-
action signal segment and a double-action signal segment
are manually selected for each volunteer as reference
templates. When a signal segment is cut out, two dis-
similarity scores are calculated between the segment and
the two reference templates. *e segment is classified as
consistent with the template of a smaller dissimilarity
score.

4.2. SVM Methods. Support Vector Machines (SVMs) are
widely used for classification and regression tasks. Here,
gesture recognition is treated as a binary classification

problem. SVM constructs a hyperplane in a high-dimen-
sional space to separate two class of gesture, single-action,
and double-action gestures. We use LIBSVM as a classifi-
cation algorithm and use the RBF kernel as a kernel function.
*ree features are extracted to construct a 3-dimensional
feature vector for each gesture signal segment. *ey are the
gesture size, gesture energy, and the first-order components
of the signal after Discrete Cosine Transforms (DCT).

4.2.1. Gesture Size. *e size of a gesture refers to the du-
ration of the gesture. It is defined as the number of sampling
points in a cut-out gesture segment. Obviously, a double-
action gesture usually takes longer than a single-action
gesture.

4.2.2. Gesture Energy. *e energy consumption of an
object’s movement is closely related to its speed and
acceleration. Bouten’s research in recent years has proved
that the absolute integral of the acceleration and angular
velocity of an object’s movement have a linear relation-
ship with energy consumption [23]. *is provides a
theoretical basis for evaluating gestures’ movements with
an acceleration sensor. When the output signal is a digital
signal, the following formula can be used to calculate the
energy of a gesture:

En � 􏽘
n

i�1
Ax

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Ay

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + Az

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼒 􏼓. (9)

Among them, Ax, Ay, and Az are the 3-axis values of the
acceleration sensor. Since we have performed vector syn-
thesis on the 3-axis data based on equation (1), the knock
energy is defined as follows:
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Figure 10: Comparison of cut-out rates of different algorithms.
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4.2.3. DCT. A one-dimensional DCT is performed on a
knock gesture signal segment. DCT converts the gesture
signal into a set of frequencies. *e first frequency in the set
is the most meaningful. *erefore, the first-order compo-
nents of the signal after DCT is selected as one of the
features.

Two other machine learning methods, including Naive
Bayes and Decision Tree, are also used to recognize binary
gestures for comparison purposes [22].*ese algorithms use
the same feature vector as SVM for classification.

4.3. BLSTM Method. BLSTM is an extension of traditional
LSTM that can improve model performance on sequence
classification problems [24]. A 3-layer BLSTM architecture
is used to model the gesture data in this paper.*e process of
knock gesture is illustrated in Figure 13.

Since the maximum duration of a knock gesture does not
exceed 1 second, and the sample frequency is set to 50Hz, up
to 50 samples are captured for a cut-out gesture segment.
Instead of using the synthesis and filtered values, the 3-axis
raw acceleration data is used. *us, a matrix of 3 by 50 is fed
into the BLSTM model. *e forward and the backward
output are concentrated together to generate the probability
for two knock gestures. *e gesture of higher probability is
selected as the predicted result, i.e., 0 for a single-knock and
1 for a double-knock.

*e parameters of the BLSTM model are shown in
Table 3. *e same model is also applied to recognize the
pitch gesture. Because the bit completion time of pitch
gestures is longer than knock gestures, a matrix of 3 by 100 is
used as input to the model.

4.4. Experimental Results. A metric defined in equation (11)
is used to evaluate the recognition accuracy.

Macc �
(TP + TN)

(P + N)
. (11)

Here, P is the number of segments that belong to a
single-action gesture. N is the number of segments that
belong to a double-action gesture. TP is the number that is
predicted to be a single-action gesture. And TN is the
number that is predicted to be a double-action gesture.

A metric defined in the following equation is used to
evaluate the imbalance of recognition for the two action
gestures.

Mbal �
Macc(0)

Macc(1)
. (12)

Here, Macc(0) represents the recognition accuracy of
single-action gesture, and Macc(1) represents the recogni-
tion accuracy of double-action gesture.Mbal is expected to be
around 1, which means the recognition accuracy for the two
binary actions is similar. Moreover, the metrics of micro F1
and recall are also evaluated.

*e experimental results are shown in Figure 14. All
gesture recognition methods have achieved recognition
accuracy of more than 90%. *e BLSTM method out-
performed the other algorithms and achieved the highest
recognition accuracy of 98%. *e metric of micro F1 also

3 × 50 Dims

F F F

F F F

F F F

B B B

B B B

B B B

x (k – 1) x (k) x (k + 1)

Probability of
Single-Knock

Probability of
Double-Knock

Binary meaning
(0 or 1)

Figure 13: Knock gesture recognition using a 3-layer BLSTM model.

Table 3: Parameters of the BLSTM model.

Parameters Value
Learning rate 0.001
Batch size 32
Optimizer Adam
Loss Categorical cross entropy
Epochs 100
Dropout 0.5
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indicated that DTW, NB, SVM, and BLSTM methods can
recognize the cut-out signal segments into its binary
meaning in high accuracy.

From the perspective of recognition imbalance, the
recognition accuracy of DTW for single-knock gesture is
higher than a double-knock gesture, making itsMbal greater
than 1. However, the recognition accuracy of DTW for
single-pitch and double-pitch gesture are close. *e im-
balance of other recognition methods is good, and the ex-
perimental results are close to 1, among which the BLSTM
method is the best.

As seen from Figure 14, these methods achieve superior
performance in recognizing pitch gestures than knock
gestures. An important reason is that the completion time of
the pitch gesture is longer than that of the knock gesture.
Compared with knock gestures, the difference in the feature
of gesture duration between a single-pitch and a double-
pitch is more significant; *e same is true with regard to the
energy difference between the two gesture types.

*e experimental results show the effectiveness of using
knock and pitch gestures for interaction. Only two simple
gestures are required. High recognition accuracy can be

achieved for both gestures and avoid imbalance problem at
the same time.

5. Prototype Application and Discussion

In general, the knock gesture is simple and clear, which is
convenient for users to operate. *e bit completion time of
knock gesture is shorter than that of pitch gesture. In ad-
dition, the knock gesture signal segment can be recognized
in high recognition accuracy. *erefore, the knock gesture is
selected to implement interaction between human and
mobile applications.

In this prototype application, users utilize the single-
knock and double-knock gestures to command the appli-
cations in an Android smartphone to send SMS messages.
*e prototype application is useful in some scenarios where
private interaction is required; the user cannot speak or
cannot light up the screen, which may attract others’ at-
tention. *e binary knock gestures are inconspicuous and
can be used to send text messages covertly.

As the BLSTM model performs best both in recognition
accuracy and recognition imbalance, it is selected to
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Figure 14: Gesture recognition results. (a) Recognition accuracy. (b) Recognition imbalance. (c) Micro F1. (d) Recall.
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implement in our prototype application. *e framework of
TensorFlow Lite [25] is used to integrate BLSTM into
smartphones. *e development process of the prototype
application is shown in Figure 15.

A 3-layer BLSTMmodel is trained with Keras [26] in PC.
*en it is converted into a TensorFlow Lite model using the
TensorFlow Lite converter. *e TensorFlow Lite interpreter
executes the model on smartphones to make predictions
based on input accelerometer data. If the predicted binary
sequence is matched with the preset command, the appli-
cation automatically sends a short message to the corre-
sponding phone number.

*e prototype application is tested with four different
scenarios on how people interact with a smartphone. In the
last three scenarios, users interacted in an eyes-free manner.
(1) Normal: a person is sitting on a chair and holding a
mobile phone on a desk. (2) Eyes-free: a person is sitting on a
chair and holding amobile phone beneath a desk. (3) Covert:
a person is standing still with the phone in his pants pocket.
(4) Walking: a person is walking at a constant speed with the
phone in his pants pocket.

*e metrics of the cut-out rate and accuracy are eval-
uated. Figure 16 illustrated the experimental results. In the
scenarios of normal, eyes-free, and covert, they all achieved a
cut-out rate close to 1. Most of the bit signal segments are
split out from the gesture signal sequences successfully.
Meanwhile, these bits are recognized with high accuracy.
However, when people are moving, it greatly affects the cut-
out effect. *e proposed scheme is more suitable for
interacting with smartphones when people are in a sta-
tionary state.

In addition to the above interaction cases, binary
gestures can be used as a supplementary input modality
for many scenarios. For example, it can be used as an
interaction method of a blind assistive system. In [13], a
blind person can establish a voice call to a predefined
number using voice command. However, they got some
error as a sound wave is affected much for noise and
humidity. In such an environment, the blind person can
use binary gestures instead of voice. In [28], a set of hand

gestures is proposed to control the smart lighting system.
*ese vision-based hand gestures are more complex and
difficult in terms of their recognition. Under such cir-
cumstances, smartphones can be adapted as a user in-
teraction interface. By encoding these tasks into a binary
command set, users can control the lighting system by
binary motion-based gestures.

6. Conclusion

A novel user-smartphone interaction scheme using binary
gestures is proposed in this paper. Firstly, four kinds of
binary gestures are evaluated. *e gestures of flip, pitch,
and knock are selected as candidate interaction gestures.
*en, the gesture extraction process is investigated in
detail. *e accelerometer signal is captured and pre-
processed. An online signal cutting and merging
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Figure 16: *e development process of the prototype application.
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algorithm is designed to extract the independent gesture
signal segment from the binary gesture sequence. Ex-
periments show that the proposed method outperforms its
counterparts in cutting knock and pitch gesture se-
quences. Next, five algorithms, including DTW, Naive
Bayes, Decision Tree, Support Vector Machine, and
BLSTM, are exploited to recognize the flip and knock
gesture. Finally, an Android application is developed
based on the binary command channel using knock
gestures.

*e proposed scheme only requires two meta gestures.
And rich information can be expressed through the per-
mutation and combination of the two gestures. As the binary
gestures are much simpler than traditional gestures, our
method achieves high recognition accuracy and avoids the
imbalance problem.

*e proposed scheme provides an alternative for eyes-
free interaction scenarios. It is applicable to visually disabled
user-smartphone interactions, distracted interaction, and
covert operations.

As future work, we will enhance the ability to express
more complex human-smartphone interaction commands.
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