
Research Article
Multiprocessor Scheduling of Sensor Transactions for Real-Time
Data Quality Maintenance

Tian Bai , Zhijie Li, and Bo Fan

School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang 414000, China

Correspondence should be addressed to Bo Fan; bondfan@163.com

Received 19 April 2020; Revised 14 August 2020; Accepted 31 August 2020; Published 21 September 2020

Academic Editor: Paolo Bellavista

Copyright © 2020 Tian Bai et al.)is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In cyber-physical systems, sensor transactions should be effectively scheduled to maintain the temporal validity of real-time data
objects. Previous studies on sensor transaction scheduling mainly focus on uniprocessor systems. In this paper, we study the
problem of data quality-based scheduling of sensor transactions on multiprocessor platforms.)e data quality is defined to
describe the validity degree of real-time data objects. Two methods, named the Partitioned Scheduling for Quality Maximization
(P-QM) and the improved P-QM scheduling (IP-QM), are proposed. P-QM maximizes the data quality by judiciously de-
termining the preallocated computation time of each sensor transaction and assigns the transactions to different processors. IP-
QM improves the data quality obtained from P-QM by adaptively executing transaction instances on each processor based on the
current status of the system. It is demonstrated through experiments that IP-QM can provide higher data quality than P-QM
under different system workloads.

1. Introduction

Cyber-physical systems (CPS) feature a tight combination of
the computational and physical elements of the systems
[1–3].)ey are widely used in applications that need to
process real-time data in a timely manner. Example appli-
cations include road traffic control and industry process
control [4–6].)e real-time data objects model the current
status of entities in a system environment. Different from the
traditional data objects, their values may become invalid
with the passage of time. Associated with each real-time data
object is a validity interval that specifies the lifetime of its
current value. If this lifetime does not expire, the data object
is temporally valid. Otherwise, it becomes invalid and a new
data value needs to be installed.

In CPS, sensor transactions are generated to sample the
status of external entities and update the corresponding data
values.)ey should be effectively scheduled to maintain the
temporal validity of real-time data objects.)is scheduling
problem consists of two issues.)at is, the determination of
the release time and the deadline of each transaction instance
and the scheduling of these instances. Various methods have

been proposed to solve this problem. Some examples are the
More-Less scheme (ML), the deferrable scheduling algo-
rithm with fixed priority (DS-FP), and HSEDF[7–9].)ese
methods aim to reduce the update workload while providing
a complete guarantee on temporal validity, i.e., guaranteeing
that the data objects are valid all the time.)e update
workload reduction allows a system to consume less energy.
In addition, it leaves more processor resources to other types
of transactions, such as user transactions and triggered
transactions.

For many systems, providing completely guaranteed
temporal validity for real-time data objects could be difficult.
At first, the user transactions in the system may have strict
timeliness requirements.)ey compete with the sensor
transactions for the same set of resources for execution. To
guarantee temporal validity, more resources should be given
to sensor transactions.)is could lead to high deadline miss
ratio of user transactions. Secondly, the system workload can
be highly dynamic.)e computation time of a transaction in
the worst case can be much larger than that in the normal
case.)e arrivals of transaction instances may be aperiodical
and unpredictable. As a result, data validity violations may

Hindawi
Mobile Information Systems
Volume 2020, Article ID 8834383, 13 pages
https://doi.org/10.1155/2020/8834383

mailto:bondfan@163.com
https://orcid.org/0000-0003-0540-5472
https://orcid.org/0000-0002-9665-8581
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8834383

occur during system overloads. To tackle these problems,
several quality of service- (QoS-) based methods have been
proposed to schedule sensor transactions and user trans-
actions to maintain the quality of real-time data objects and
the quality of transactions [10–22].

Current methods for sensor transaction scheduling are
mainly restricted to uniprocessor systems. In this paper, we
study the problem of data quality-based scheduling of sensor
transactions on multiprocessor platforms. We consider the
partitioned scheduling approach. On each processor, the
earliest deadline first (EDF) scheme is adopted.)e major
contributions of the paper are as follows:

(i) A definition of data quality is presented to describe
the validity degree of real-time data objects.)e
definition considers the validity of individual data
objects and the validity of correlated data object sets.

(ii) Two scheduling methods, named the Partitioned
Scheduling for Quality Maximization (P-QM) and
the improved P-QM scheduling (IP-QM), are
proposed to maximize the data quality.

(iii) Experiments are conducted to evaluate the perfor-
mance of the proposed methods.)e results show that
IP-QM outperforms P-QM in terms of the average
quality of individual data objects and the average
quality of correlated sets.

)e rest of the paper is organized as follows. Section 2
reviews previous studies on temporal validity maintenance.
Section 3 describes the system model.)e definition of data
quality is also presented in this section.)e details of the
P-QM method and the IP-QM method are presented in
Section 4 and Section 5, respectively. Performance studies
are given in Section 6. Finally, Section 7 concludes the paper.

2. Related Studies

In recent years, there have been a number of studies on
maintaining temporal validity of real-time data. ML adopts
the periodic task model and the deadline monotonic scheme
(DM) [7]. InML, a sensor transaction’s period is set to be no
shorter than its relative deadline.)e sum of the period and
the deadline is equal to the validity interval.)e Half-Half
scheme (HH) can be viewed as a special case ofML [23]. DS-
FP adopts a sporadic task model [8]. It reduces the processor
workload by judiciously deferring the release times of
transaction instances. Two extensions of DS-FP were pre-
sented in [24] to reduce the online scheduling overhead.)e
basic idea is to produce a hyperperiod of the DS-FP schedule
and repeat the hyperperiod infinitely. A necessary and
sufficient schedulability condition forDS-FP in discrete time
systems was proposed in [25].)e problem of temporal
validity maintenance under dynamic priority scheduling was
first studied in [9].)ree algorithms were proposed to derive
the periods and deadlines of sensor transactions under the
earliest deadline first scheme (EDF). A two-phase algorithm
was proposed in [26] to reduce the searching cost of period
and deadline assignment under EDF. Li et al. [27] presented
two methods to maintain temporal validity for EDF when

transmission delays are considered. DS-FP was extended in
[25] to be a dynamic priority scheduling algorithm by ap-
plying EDF to schedule update instances.)e problem of
scheduling tasks with both maximum distance constraints
(i.e., temporal validity constraints) and minimum distance
constraints was investigated in [28]. Jha et al. [29] investi-
gated how to maintain the mutual temporal consistency of
real-time data objects. Han et al. studied the problem of
maintaining temporal validity in the presence of mode
changes [30]. Two algorithms were presented to search for
proper mode switch points.)ese studies are all limited to
uniprocessor systems.

In [31], Li et al. proposed several algorithms to partition
a set of sensor transactions on multiprocessors under EDF
and DM.)e resource augmentation bounds of these al-
gorithms were also derived.)e global EDF algorithm and
the half-half principle were applied in [32] to satisfy the data
validity constraints.)e energy-aware real-time data pro-
cessing problem on multicore platforms was studied in [33].
Efficient techniques were proposed to maintain temporal
validity while reducing energy cost.

)e studies described above focus on providing a
complete guarantee on temporal validity.)e co-scheduling
problem of periodic application transactions and update
transactions was investigated in [10–12].)e aim is to meet
the deadlines of all the application transactions while
maximizing the quality of data objects.)e algorithms based
on fixed priority scheduling scheme, EDF and DS-LALF,
were presented, respectively. In [13], a set of extensions of
ML was proposed to achieve the trade-off between QoS of
temporal validity and the number of supported transactions.
Labrinidis and Roussopoulos studied the problem of
maintaining the freshness of views on a web server [14]. A
quality-aware update scheduling algorithm was proposed
based on the popularity of views. In [15], a QoS management
architecture was proposed to support the desired QoS by
applying feedback control, admission control, and flexible
freshness management. On-demand schemes were proposed
in [16] to skip the updates with similar data object values.
Amirijoo et al. employed the notion of imprecise compu-
tation for QoS specification and management [17]. Differ-
entiated data service approaches for transaction classes with
diverse importance and QoS requirements were proposed in
[18]. An effective approach was presented in [19] to decrease
both the deadlinemiss ratio and power consumption by real-
time query aggregation and data freshness adaptation. All
the above QoS-based methods are designed for uniprocessor
systems.

In [20], a scheduling framework was presented to assign
update jobs to multiple tracks and schedule them on each
track, with the objective of minimizing the total staleness of
data objects in a streaming warehouse. A track here rep-
resents a fraction of the computing resources. Bateni et al.
proposed an update scheduling algorithm upon multipro-
cessors that has bounded stretch and weighted staleness
under the quasiperiodic model [21]. In [22], Kang and
Chung proposed a multiple inputs/multiple outputs
(MIMO) feedback control method to support the timeliness
of data-intensive tasks running on multicore-based

2 Mobile Information Systems

embedded platforms. Although these studies have also
studied the data quality maintenance upon multipro-
cessors, their definitions of data quality are different from
ours. In [20, 21], the data quality is defined in terms of the
data staleness. A data value will become stale after its
generation.)e staleness increases linearly with the
passage of time until a new value is installed. In [22], the
data quality is defined as the ratio of the number of fresh
data objects to the total number of data objects. In our
work, however, a data value remains valid during its
validity interval.)e data quality is then defined based on
the validity of individual data objects and the validity of
correlated data object sets.

3. System Model

Let X � Xi􏼈 􏼉
n
i�1 denote a set of real-time data objects and

Γ � τi􏼈 􏼉
n
i�1 a set of sensor transactions.)e data object

Xi(1≤ i≤ n) is associated with a validity interval Vi. It is
value is updated by transaction τi(1≤ i≤ n). τi consists of a
sequence of instances (update jobs), in which each samples a
value of Xi and installs it.)e jth instance of τi is denoted as
τi,j. We assume that the jitter between the sampling time and
the release time of an instance is zero. gi(t) is the probability
density function that describes the distribution of the actual
computation times of τi’s instances. Transactions in Γ are
indexed according to nondecreasing order of their validity
intervals, i.e., Vi ≤Vi+1 for all i, 1≤ i< n.

)e transaction set Γ is scheduled upon a multiprocessor
platform Π � πi􏼈 􏼉

m
i�1. In general, there are three approaches

to schedule Γ: partitioned approach, global approach, and
hybrid approach [34]. In the partitioned approach, each
transaction is assigned to a processor and is always executed
on it. In the global approach, an instance that has been
preempted on one processor can resume its execution on a
different processor.)e hybrid approach is the combination
of partitioned and global approach. It can be further clas-
sified into semipartitioned approach and cluster-based ap-
proach. In this paper, the partitioned approach is adopted.
On each processor, the EDF scheme is used to schedule the
transaction instances.

Definition 1. Xi is temporally valid at time t if, for its update
job finished latest before t, the sampling time of this job (tr)

plus Vi is not less than t, i.e., tr + Vi ≥ t[7].
According toDefinition 1, ifXi’s current value is sampled at

tc, it should be updated before tc + Vi. Otherwise, it will become
invalid. However, when the actual computation time of the
corresponding update job is large, the update may not be
finished before tc + Vi due to the lack of processor resources.
Consider a time period [0, T]. Let vi(t) denote the valid state of
Xi at time t(0≤ t≤T). vi(t) is 1 if Xi is valid at t and is 0
otherwise.)e quality of Xi, q(Xi), is defined as follows:

q Xi(􏼁 �
1
T

􏽚
T

0
vi(t)dt. (1)

A correlated data object set is a set of real-time data
objects whose values are used together to compute the
corresponding derived data or to make decisions. It is often

required that a certain percentage of the data objects in the
correlated set are valid to produce the result with sufficient
accuracy. Let Y � Yk | Yk ⊆X􏼈 􏼉

nc

k�1 denote the correlated sets
in the system. For each Yk(1≤ i≤ nc), let Nth(Yk) denote the
valid threshold of Yk. If the number of data objects in Yk that
are valid at time t is no less than Nth(Yk), then Yk is
considered to be valid at t. Nth(Yk) is set by users based on
application requirements.)e quality of Yk, q(Yk), is de-
fined as follows:

q Yk(􏼁 �
1
T

􏽚
T

0
I 􏽘

Xi∈Yk

vi(t)≥Nth Yk(􏼁⎛⎝ ⎞⎠dt. (2)

)e overall data quality of the system, q(X), is defined as
follows:

q(X) � 􏽘
Xi∈X

q Xi(􏼁 + 􏽘
Yk∈Y

q Yk(􏼁. (3)

Sensor transactions should be effectively scheduled on Π
to maximize q(X).)is scheduling problem consists of two
subproblems.)e first is to assign the sensor transactions to
processors in a data quality-aware manner. Notice that,
different from the traditional real-time tasks, the periods and
deadlines of sensor transactions are unknown.)ey must
also be derived during the assignment.)e second is to
determine which instances can be executed in the system
and how to execute them. Table 1 summarizes the major
symbols that are used in the paper.

4. The P-QM Method

In this section, we present the P-QM method. Instead of
maximizing q(X) directly, P-QM tries to maximize an
approximated overall data quality. Let Cp � C

p
i􏽮 􏽯

n

i�1 denote
the preallocated computation times of transactions in Γ.)e
actual computation time of instance τi,j is denoted as ci,j.)e
quality of Xi with respect to C

p

i , q(Xi | C
p

i), is defined as the
probability that ci,j is no larger thanC

p

i , i.e., Pr(ci,j ≤C
p

i). For
a correlated set Yk, let Cp(k) denote the preallocated
computation times of the corresponding transactions.)e
quality of Yk with respect to Cp(k), q(Yk | Cp(k)), is defined
as follows:

q Yk

􏼌􏼌􏼌􏼌 C
p
(k)􏼐 􏼑 � 􏽘

S∈Sv
k

􏽙
Xi∈S

Pr ci,j ≤C
p
i􏼐 􏼑 􏽙

Xi∈Yk/S
1 − Pr ci,j ≤C

p
i􏼐 􏼑􏼐 􏼑.

(4)

In equation (4), Sv
k � S | S⊆Yk, |S|≥Nth(Yk)􏼈 􏼉.

q(Yk | Cp(k))) can be viewed as the probability that the
number of data objects in Yk that are valid at a time instant is
no less than Nth(Yk) under Cp(k).)e overall data quality
of the system with respect to Cp, q(X | Cp), is defined as
follows:

q X | C
p

(􏼁 � 􏽘
Xi∈X

q Xi

􏼌􏼌􏼌􏼌 C
p
i􏼐 􏼑 + 􏽘

Yk∈Y
q Yk

􏼌􏼌􏼌􏼌 C
p
(k)􏼐 􏼑. (5)

P-QM maximizes q(X | Cp) by judiciously determining
Cp and assigning the transactions to processors. A trans-
action assignmentmethod under the givenCp is presented at

Mobile Information Systems 3

first.)en, based on this method, a greedy heuristic is
presented to determine Cp in order to maximize q(X | Cp).

4.1. Assigning Transactions to Processors. In P-QM, sensor
transactions are assigned to processors in a way that the
temporal validity of data objects in X is completely guar-
anteed under the given Cp. Let Pi and Di denote the period
and the deadline of transaction τi, respectively.)e as-
signment problem is described as follows.

Given the transaction set Γ with Cp and the multipro-
cessor platform Π, assign each τi to a processor in Π and
derive Pi and Di, such that the following constraints are
satisfied:

(1) Validity constraints: ∀i, 1≤ i≤ n, Pi + Di ≤Vi

(2) Deadline constraints: ∀i, 1≤ i≤ n, C
p

i ≤min Pi, Di􏼈 􏼉

(3) Feasibility constraints: ∀j, 1≤ j≤m, the transactions
assigned to πj with given preallocated computation
times and derived deadlines and periods are feasible
by using EDF scheduling

Notice that if the above constraints are all satisfied, then
the temporal validity of data objects is guaranteed.)is is
because for each Xi, its jth (j≥ 2) value sampled at (j − 1)Pi

is updated by instance τi,j which will finish before
(j − 2)Pi + Vi.)is means a value is certain to be refreshed
before its validity interval expires.

Next, we present the algorithm used in P-QM to solve
the assignment problem. Let Δi and λi denote the cumulative
density and the density of τi with respected to C

p

i , respec-
tively. Δi � 􏽐1≤j<i(Vj − 2C

p
j)C

p
j /((Vj − C

p
j)Vi), λi � C

p
i /Vi.

Let λmax � max λi|1≤ i≤ n􏼈 􏼉, λsum � 􏽐1≤i≤nλi, and
Δmax � max Δi|1≤ i≤ n􏼈 􏼉.)e following conditions are
checked at first:

m≥
2 Δmax + λsum − λmax(􏼁

1 − 2λmax
, (6)

Δmax + λsum ≤
1
2

. (7)

If equation (6) or equation (7) holds, the assignment
mode is set to be the restricted mode. In this mode,
transaction τi’s deadline is restricted to be no larger than
Vi/2. Otherwise, it is set to be the unrestricted mode. In this
mode, τi’s deadline can be larger than Vi/2 but should be no
larger than Vi. Suppose the first i transactions have been
successfully assigned to processors. Let Γk denote the set of
transactions that are assigned to processor πk.)e utilization
of τi is ui � (C

p

i /Pi). If |Γk| � 0, the deadline of τi on πk is set
to be C

p

i . Otherwise, it is computed as follows:

Di � max Dj

􏼌􏼌􏼌􏼌􏼌 τj ∈ Γk􏼚 􏼛 +
C

p
i

1 − 􏽘τj∈Γk
uj

. (8)

)e period of τi is set to be Vi − Di. τi is assigned to the
first processor πk such that the following conditions are
satisfied:

(1) Di ≤Vi/2 if the assignment mode is restricted mode,
or Di ≤Vi − CP

i if the assignment mode is unre-
stricted mode.

(2) 􏽐τj∈Γkuj + ui ≤ 1.

)e assignment fails if no such processor exists.)is
process is described in Algorithm 1. Notice that both the
calculation of τi’s deadline and the check of condition 2 can
be carried out in an incremental way.)us, the time required
to assign τi to a processor is O(m).)e check of equations
(6) and (7) takes O(n) time.)erefore, the time complexity
of Algorithm 1 is O(mn + n).)e following theorem shows
the correctness of the algorithm.

Theorem 1. If Algorithm 1 succeeds, then the temporal
validity of data objects in X is completely guaranteed.

Proof. For each τi ∈ Γ, when it is assigned to a processor, its
deadline Di is set to be no less than C

p
i and no larger than

Vi − C
p
i due to equation (8) and condition 1 of the algo-

rithm. Its period Pi is set to be Vi − Di.)us, the validity
constraints and the deadline constraints are satisfied. We
only need to show the feasibility constraints are also satisfied.

)e first transaction τ1 is assigned to processor π1 with
deadline C

p
1 and period V1 − C

p
1 . Obviously, it is EDF-

schedulable. Suppose that the first i − 1 transactions have
been assigned to processors and the transactions on each
processor are EDF-schedulable. Consider that transac-
tion τi is assigned to processor πk.)e transaction set on
processors except πk are not affected by τi; thus, they are
still EDF-schedulable. If τi is the first transaction assigned
to πk, then obviously it is EDF-schedulable. Let h∗(τi, t)

denote the approximated demand bound of τi in [0, t).
h∗(τi, t) is C

p

i + ui · (t − Di) if t≥Di and is 0 otherwise.
Notice that Di is larger than the deadlines of transactions
that are assigned to πk prior to τi. According to [35],
Γk ∪ τi􏼈 􏼉 is EDF-schedulable if 􏽐τj∈Γkuj + ui ≤ 1 and

Di − 􏽘
τj∈Γk

h
∗ τj, Di􏼐 􏼑≥C

p
i .

(9)

Table 1: Definition of symbols.

Symbol Definition
Xi)e ith real-time data object
Vi)e validity interval of Xi

πi)e ith processor
τi)e sensor transaction used to update Xi

τi,j)e jth instance of τi

Pi)e period of τi

Di)e deadline of τi

C
p
i)e preallocated computation time of τi

Yk)e kth correlated data object set
q(Xi))e quality of Xi

q(Yk))e quality of Yk

q(X))e overall data quality of the system
λi)e density of τi

Δi)e cumulative density of τi

λmax)e maximum density among λ1, λ2, . . ., λn

4 Mobile Information Systems

Let Γk,j denote the transactions in Γk ∪ τi􏼈 􏼉 that are
assigned to πk before τj. Based on equation (8), one has

􏽘
τj∈Γk

h
∗ τj,Di􏼐 􏼑� 􏽘

τj∈Γk

C
p
j + 􏽘

τl∈Γk∪ τi{ }

C
p

l uj

1− 􏽘τs∈Γk,l
us

− 􏽘

τl∈Γk,j∪ τj􏼈 􏼉

C
p

l uj

1− 􏽘τs∈Γk,l
us

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

� 􏽘
τj∈Γk

C
p

j

1− 􏽘τl∈Γk,j
ul

+
C

p
i

1− 􏽘τj∈Γk
uj

􏽘
τj∈Γk

uj

�Di − C
p

i .

(10)

Equation (10) means the transaction set on πk is EDF-
schedulable after τi is added. By induction, the feasibility
constraints are satisfied when all transactions have been
assigned to processors. □

Theorem 2. Algorithm 1 succeeds if equation (6) or equation
(7) holds.

Proof. At first, we consider the case in which equation (6)
holds and equation (7) does not hold. Suppose in this case,
transaction τi fails to be assigned to any processor.)en, on
each processor, one or both of the conditions of the algo-
rithm are not satisfied. LetΠ1 denote the set of processors on
which condition 1 is not satisfied and Π2 denote the set of
processors on which condition 1 is satisfied and condition 2
is not satisfied. |Π1| + |Π2| � m.)e transactions assigned to
processors in Π1 and Π2 are denoted as Γ1 and Γ2, re-
spectively. For each πk ∈ Π1, it must be

max Dj

􏼌􏼌􏼌􏼌􏼌 τj ∈ Γk􏼚 􏼛 +
C

p
i

1 − 􏽘τj∈Γk
uj

>
Vi

2
. (11)

According to)eorem 1, equation (11) implies

C
p

i + 􏽘
τj∈Γk

C
p

j +
C

p
j

Pj

Vi

2
− Dj􏼒 􏼓⎛⎝ ⎞⎠>

Vi

2
. (12)

Notice that, for each τj ∈ Γk, Vj/2≤Pj ≤Vj − C
p
j .

Summing over all processors in Π1 and making some
transformations, we obtain

Π1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
2 􏽘τj∈Γ1

C
p

j /Vi − 1/Vi􏽘τj∈Γ1
C

p

j C
p

j􏼐 􏼑/ Vj − C
p

j􏼐 􏼑 + 􏽘τj∈Γ1
C

p

j /Vj􏼐 􏼑􏼒 􏼓

1 − 2 C
p
i /Vi􏼐 􏼑

.

(13)

For each πk ∈ Π2, it must be

􏽘
τj∈Γk

uj +
2C

p
i

Vi

> 1. (14)

Summing over all processors in Π2 and making some
transformations, we obtain

Π2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
􏽘τj∈Γ2

2C
p
j /Vj􏼐 􏼑

1 − 2 C
p
i /Vi􏼐 􏼑

. (15)

If both |Π1| and |Π2| are larger than zero, then based on
equations (13) and (15) and the definition of Δmax and λsum,
we obtain

m<
2 Δmax + λsum − λj􏼐 􏼑

1 − 2λj

. (16)

Since equation (7) does not hold, it must be

Input： Γ, Cp, m

Output：)e assigned processor of each transaction
1. assignment mode⟵ restricted if equation (6) or (7) holds. Otherwise assignment mode⟵ unrestricted;
2. for i � 1 to n do
3. for j � 1 tom do
4. Di⟵C

p
i if |Γk| � 0. Otherwise compute Di using equation (8);

5. Pi⟵Vi − Di;
6. if condition 1 and condition 2 are satisfied then
7. Γk⟵Γk ∪ τi􏼈 􏼉;
8. break;
9. end if
10. end for
11. if j � m + 1 then
12. Γ is infeasible on Π under Cp, return failure;
13. end if
14. end for
15. return success;

ALGORITHM 1: Transaction assignment.

Mobile Information Systems 5

m<
2 Δmax + λsum − λmax(􏼁

1 − 2λmax
. (17)

If |Π2| � 0, we also obtain equation (17). If |Π1| � 0, then
λsum > 1/2, otherwise equation (15) does not hold. We then
obtain

m<
2 λsum − λmax(􏼁

1 − 2λmax
. (18)

Both equations (17) and (18) contradict the assumption
that equation (6) holds.

)en, we consider the case in which equation (7) holds.
Suppose that the first i − 1 transactions have been suc-
cessfully assigned to processors. For each πk ∈ Π, it must be

C
p
i + 􏽘

τj∈Γk

C
p
j +

C
p

j

Pj

Vi

2
− Dj􏼒 􏼓⎛⎝ ⎞⎠≤ 2Δmax + 2λsum(􏼁

Vi

2
≤

Vi

2
.

(19)

Equation (19) means the deadline of τi is not larger than
Vi/2; thus, condition 1 of the algorithm holds. Condition 2 of
the algorithm also holds since equation (7) holds implies
λsum ≤ (1/2).)erefore, each transaction can be assigned to a
processor.

Notice that there may exist some transactions in Γ with
λi � (1/2). Let Γh denote the set of such transactions. If
|Γh|>m, or |Γh| � m and n≥ |Γh| + 1, then Γ is infeasible onΠ
since a processor can only accommodate just one transaction
from Γh. If |Γh|<m, then)eorem 2 can be applied to Γ/Γh and
m − |Γh|. □

4.2. Determining the Preallocated Computation Times.
)e problem of determining the preallocated computation
times Cp is formulated as an optimization problem:

max q X | C
p

(􏼁, (20)

subject to

(1) Feasibility constraint: the transactions in Γ can be
successfully assigned to processors under Cp by
Algorithm 1

(2) Computation time constraint: ∀i, 1≤ i≤ n, Cmin
i ≤C

p
i

≤Cmax
i

Theorem 3. Let Xk
l denote the lth data object in Yk, C

k,p

l the
preallocated computation time of Xk

l . Given two sets of pre-
allocated computation times Cp1(k) and Cp2(k) of Yk. If for
each l, 1≤ l≤ |Yk|, C

k,p1
l ≤C

k,p2
l , then

q(Yk | Cp1(k))≤ q(Yk | Cp2(k)).

Proof. Let q(i, j, 1) and q(i, j, 2) denote the quality of
Xk

l􏼈 􏼉
i

l�1 with a valid threshold of j under Cp1(k) and Cp2(k),
respectively. For each i, 1≤ i≤ |Yk|, it must be

(1) For all j, 1≤ j≤ i, q(i, j, 1)< q(i, j − 1, 1) and
q(i, j, 2)< q(i, j − 1, 2)

(2) q(Xk
i | C

k,p1
i)≤ q(Xk

i | C
k,p2
i)

(3) q(i, 0, 1) � q(i, 0, 2) � 1 and q(i, j, 1) � q(i, j, 2) � 0
if i< j

For Xk
1􏼈 􏼉, q(1, 1, 1) � q(Xk

1 | C
k,p1
1) and q(1, 1, 2) �

q(Xk
1 | C

k,p2
1); therefore, q(1, 1, 1)≤ q(1, 1, 2). Suppose for

Xk
l􏼈 􏼉

i− 1
l�1, q(i − 1, j, 1)≤ q(i − 1, j, 2) holds for all j,

1≤ j≤ i − 1. Now, consider Xk
l􏼈 􏼉

i

l�1. For each j, 1≤ j≤ i, let
q(Xk

j | C
k,p2
j) � q(Xk

j | C
k,p1
j) + φj, q(i − 1, j, 2) � q(i − 1, j,

1) + Δi− 1,jand q(i − 1, j − 1, 2) � q(i − 1, j − 1, 1) + Δi− 1,j− 1.
q(i, j, 1) can be calculated as follows:

q(i, j, 1) � q(i − 1, j − 1, 1) · q X
k
j

􏼌􏼌􏼌􏼌􏼌 C
k,p
j􏼒 􏼓

+ q(i − 1, j, 1) · 1 − q X
k
j

􏼌􏼌􏼌􏼌􏼌 C
k,p
j􏼒 􏼓􏼒 􏼓.

(21)

q(i, j, 2) can also be calculated in the same way. By
applying equation (21), we obtain

q(i, j, 2) − q(i, j, 1) � (q(i − 1, j − 1, 1)

− q(i − 1, j, 1))φj

+ Δi− 1,j− 1q X
k
j

􏼌􏼌􏼌􏼌􏼌 C
k,p2
j􏼒 􏼓

+ Δi− 1,j 1 − q X
k
j

􏼌􏼌􏼌􏼌􏼌 C
k,p2
j􏼒 􏼓􏼒 􏼓.

(22)

In equation (22), q(i − 1, j − 1, 1) − q(i − 1, j, 1)> 0 and
φj ≥ 0 due to (1) and (2), respectively. Δi− 1,j− 1 and Δi− 1,j are
no smaller than 0 due to the assumption on Xk

l􏼈 􏼉
i− 1
l�1 and (3).

)erefore, q(i, j, 2)≥ q(i, j, 1). By induction, we know that
q(|Yk|, Nth(Yk), 2)≥ q(|Yk|, Nth(Yk), 1).

According to)eorem 3, q(X | Cp) will increase by
increasing the preallocated computation times of some
transactions. Based on this observation, P-QM adopts a
greedy heuristic to determine Cp. For each τi, the heuristic
sets the initial value of C

p
i to be its minimum computation

time at the start. It then selects one transaction at a time to
increase its preallocated computation time.

Let Δqi denote the increase in the overall data quality due
to an increase of current C

p
i by the step size of δ. Δqi is

computed as follows:

Δqi � q Xi

􏼌􏼌􏼌􏼌 C
p
i + δ􏼐 􏼑 − q Xi

􏼌􏼌􏼌􏼌 C
p
i􏼐 􏼑

+ 􏽘
Xi∈Yk

q Yk

􏼌􏼌􏼌􏼌 C
p
(k)/ C

p
i􏽮 􏽯⋃ C

p
i + δ􏽮 􏽯􏼐 􏼑􏼐

− q Yk

􏼌􏼌􏼌􏼌 C
p
(k)􏼐 􏼑􏼓.

(23)

In every step, transaction τi is selected to increase C
p

i if
Δqi � max Δqj | Cp/ C

p

j􏽮 􏽯∪ C
p

j + δ􏽮 􏽯 is feasible􏽮 􏽯.
To determine whether increasing C

p

i by δ is feasible, the
following condition is checked at first:

􏽘
1≤j≤n,j≠i

C
p
j

Vj − C
p
j

+
C

p

i + δ
Vi − C

p
i − δ
>m. (24)

If equation (24) holds, then increasing C
p
i by δ is in-

feasible. To see why, let us suppose increasing C
p

k by δ is
feasible; then, for each τj(j≠ i), there must exist at least one

6 Mobile Information Systems

instance of τj finished in any interval with length Vj − C
p
j ,

otherwise the data object Xj will be invalid at some time
points.)is is also true for τi with C

p
i + δ.)e total time

required to execute the instances should not exceed the
platform capacity.)us, it must be

m Vi − C
p

i − δ􏼐 􏼑 􏽙
1≤ l≤ n,l≠ i

Vl − C
p

l􏼐 􏼑≥ C
p

i + δ􏼐 􏼑 􏽙
1≤ l≤ n,l≠ i

Vl − C
p

l􏼐 􏼑

+ 􏽘
1≤ j≤ n,j≠ i

C
p

j Vi − C
p

i − δ􏼐 􏼑 􏽙
1≤ l≤ n,l≠ i,l≠ j

Vl − C
p

l􏼐 􏼑. (25)

Dividing both sides of the negation of equation (25) by
(Vi − C

p
i − δ)􏽑1≤l≤n,l≠i(Vl − C

p

l), we obtain equation (24).
Notice that if equation (24) holds, then τi cannot be

selected to increase C
p

i in the future. Equation (24) can be
evaluated in constant time since the value of the sum term in
it can be obtained in the previous step.

If equation (24) does not hold, the following condition is
checked:

4δ
Vi

+(2m − 2)max λmax, λi +
δ
Vi

􏼨 􏼩≤m − 4λsum. (26)

If equation (26) holds, then increasing C
p
i by δ is

feasible according to equation (6) and)eorem 2.
Equation (26) can be checked in an incremental way;
thus, the time required is O(1). If equation (26) does not
hold, Algorithm 1 is applied. If no transaction can be
selected in a step or every transaction’s preallocated
computation time has reached its maximum value, the
algorithm terminates and returns the current Cp.)e
selection process is described in Algorithm 2.

More sophisticated optimization algorithms can be used
for our optimization problem to obtain better solutions,
such as the evolutionary algorithm and particle swarm
optimization [36, 37]. However, as the number and the worst
case computation times of sensor transactions can be large,
these optimization algorithms may coverage slowly.)e
usage of these algorithms for our optimization problem will
be left as our future work. In addition, as will be illustrated in
the experiment section, by applying the adaptive instance
execution method on the transactions with preallocated
computation times obtained from the greedy heuristic, the
data quality can be greatly improved.

After determining the preallocated computation times
and assigning transactions to processors, the system will
execute the transaction instances to update the corre-
sponding real-time data objects. In P-QM, when instance τi,l

arrives, if ci,l is no larger than C
p
i , then τi,l is admitted,

otherwise it is dropped.)e admitted instances are sched-
uled using the EDF scheme. □

5. The IP-QM Method

IP-QM also uses Algorithms 1 and 2 to determine C
p
i and

assign transactions to processors. It further improves the
data quality by executing transaction instances adaptively on
each processor. Figure 1 shows the adaptive execution of
instances on a processor.

As shown in Figure 1, when instance τi,l arrives at
processor πk, the instance dropper determines whether τi,l is
admitted or not. If τi,l’s actual computation time ci,l is no
larger than C

p
i , then τi,l is admitted. Otherwise, the following

condition is checked:

􏽘
τs∈Γk

c
r

s, ri,l􏼐 􏼑 + 􏽘
τs∈Γk,s≠ i

E(s) · N s, ri,l􏼐 􏼑 + ci,l ≤Di. (27)

In equation (27), cr(s, ri,l) is the total remaining com-
putation time of τs’s instances with release times no larger
than ri,l and deadlines no larger than di,l. di,l is the (absolute)
deadline of τi,l, di,l � (l − 1)Pi + Di. E(s) is the average
computation time of an instance of τs:

E(s) � 􏽚
t<Cp

s

t · gs(t)dt + Pr t≥C
p
s(􏼁C

p
s . (28)

N(s, ri,l) is the number of τs’s instances with release
times larger than ri,l and deadlines no larger than di,l:

N s, ri,l􏼐 􏼑 � max ⌊
di,l − Ds

Ps

⌋ − ⌈
ri,l

Ps

⌉ + 1, 0􏼨 􏼩. (29)

τi,l is admitted if equation (27) is satisfied and is dropped
otherwise.)e remaining computation times of instances
are obtained from the scheduler. E(s) can be precomputed
in stage one. N(s, ri,l) can be computed in constant time.
)us, the time required to check equation (27) is O(|Γk|).
)e check is only required when ci,l >C

p
i .

Two queues Qp and Qa are maintained for πk.)e in-
stances in each queue are arranged in nondecreasing order of
their absolute deadlines.)e admitted instance τi,l is put into
Qp if ci,l ≤C

p
i . Otherwise, τi,l is spitted into two instances: τ

p

i,l

with computation time C
p
i and τa

i,l with computation time
ci,l − C

p
i . τ

p

i,l and τa
i,l are put into Qp and Qa, respectively.

Both of them have the deadline Di. τa
i,l can only be executed

after τp

i,l finishes. Each time the scheduler selects the instance
at the head of Qp for execution. If Qp is empty, the instance
at the head of Qa is selected. An instance is aborted if it
cannot be finished before its deadline.

In addition to admit the arriving instances, the instance
dropper is also used to drop some instances that are already
in the system. Let cu

i,l(t) denote the computation time of the
finished part of τi,l at time instant t.)e following rules are
used for dropping:

(1) When τi,l arrives, if τi,l− 1 is not finished and
cu

i,l− 1(ri,l) + ci,l ≤min ci,l− 1, C
p

i􏽮 􏽯, then τi,l− 1 is drop-
ped.)e deadline of τi,l is set to be di,l− 1.

(2) When τs,j arrives, if τi(i≠ s)’s latest two instances τi,l

and τi,l− 1 are not finished, τi,l− 2 has been finished,
ds,j ≤ di,l− 1 and cu

i,l− 1(rs,j) + ci,l ≤C
p

i + max C
p
s −􏽮

cs,j, 0}, then τi,l− 1 is dropped.)e deadline of τi,l is set
to be di,l− 1. If ci,l >C

p
i , then τa

i,l is removed from Qa

and put into Qp with deadline di,l− 1.

For rule 2, if there are more than one transaction sat-
isfying the dropping condition, the transaction with the
largest skippable computation time, i.e., ci,l− 1 − cu

i,l− 1(rs,j), is
selected for dropping. If C

p
s > cs,j, τs,j will not be considered

Mobile Information Systems 7

as an dropping candidate in the future.)e time required to
evaluate the condition of rule 1 and rule 2 are O(1) and
O(|Γk|), respectively.

)e instance dropping does not affect the validity of
data objects. Consider rule 1. If τi,l− 1 is dropped, then τi,l is
certain to be finished before di,l− 1.)e corresponding data
object Xi is valid in the time interval [t1, di,l+1]. t1 is the
finish time of τi,l. If τi,l− 1 is not dropped and finished before
di,l− 1, then Xi is valid in [t2, di,l+1]. t2 is the minimum of the
finish time of τi,l− 1 and τi,l. Otherwise, Xi is valid in
[t3, di,l+1]. t3 is the finish time of τi,l. It can be seen that t2
and t3 are no smaller than t1 since the remaining part of
τi,l− 1 may be executed and ci,l is no larger than
ci,l− 1 − cu

i,l− 1(ri,l). Consider rule 2. Xi is valid from the finish
time of τi,l− 2 to di,l− 1. If τi,l− 1 is dropped, then the unused
computation time of τs,j, i.e., C

p
s − cs,j, will be used by τi,l.

)us, τi,l is certain to be finished before di,l− 1 and Xi is valid
in [di,l− 1, di,l+1]. If τi,l− 1 is not dropped, then τi,l− 1 and τi,l

may not be finished before their deadlines if their actual
computation times are larger than C

p
i ; thus, Xi may be

invalid in some intervals in [di,l− 1, di,l+1].

6. Experiment Evaluation

)is section presents the results obtained from performance
studies on the proposed methods.

)e performance metrics used in the experiments are the
average quality of individual data objects (ADQ_IND), the
average quality of correlated sets (ADQ_COR), and the
average update workload (AUW).)e definition of

ADQ_IND and ADQ_COR are given by equations (1) and
(2). Let W denote the simulation time and Lp the total time
that processor πp is busy executing the transaction instances:

AUW �
􏽘1≤p≤mLp/W

m
. (30)

)e parameters and default settings used in the exper-
iments are presented in Table 2.)e validity interval of a data
object is uniformly distributed in [2000, 4000].)e com-
putation time of a sensor transaction is generated following
the normal distribution with mean computation time ECi

and standard deviation DC given in Table 2. ECi itself is
uniformly selected in [10, 20].)e number of data objects in
a correlated set is uniformly distributed in [2, 8].)ese
objects are randomly selected from the data object set.)e
threshold of a correlated set is set to be Nc

k · Pth, where Pth
indicates the percentage of data objects in Yk that are
permitted to be invalid at a time point.

Figure 2 shows the average quality of individual data
objects when the number of sensor transactions varies from
100 to 200.)e number of processors is 2. Pth is set to be 0.4.
When the number of transactions is no larger than 120, the
ADQ_IND of P-QM and IP-QM are equal to 1. Both
methods’ ADQ_IND decrease as the number of transactions
increases. However, the ADQ_IND of IP-QM keeps higher
than that of P-QM.)is is because for an incoming instance
with actual computation time larger than the preallocated
computation time, IP-QM will accept it for execution if
equation (27) is satisfied, while P-QM always drops it. In
addition, IP-QMwill drop some instances that are already in

Input: Γ, m

Output:)e preallocated computation time for each transaction
1.C

p⟵ Cmin
i􏼈 􏼉

n

i�1, Γc⟵Γ;
2. if Algorithm 1 fails for Γc under Cp then
3. Γ is infeasible on Π, return failure;
4. end if
5. while true do
6. Δqmax⟵ 0, pos⟵ 0;
7. for each τi ∈ Γc do
8. if equation (24) holds for Γc under Cp/ C

p
i􏽮 􏽯∪ C

p
i + δ􏽮 􏽯 and Δqi >Δqmax then

9. Γc⟵Γc/ τi􏼈 􏼉;
10. else if equation (26) holds for Γc under Cp/ C

p
i􏽮 􏽯∪ C

p
i + δ􏽮 􏽯 and Δqi >Δqmax then

11. pos⟵ i,Δqmax⟵Δqi;
12. else if Algorithm 1 succeeds for Γc under Cp/ C

p
i􏽮 􏽯∪ C

p
i + δ􏽮 􏽯 then

13. pos⟵ i,Δqmax⟵Δqi;
14. end if
15. end for
16. if pos � 0 then
17.)e assignment is finished, return success;
18. else
19. C

p
pos⟵C

p
pos + δ;

20. end if
21. if C

p
i � Cmax

i then
22. Γc⟵Γc/ τi􏼈 􏼉;
23. end if
24. end while

ALGORITHM 2: Preallocated computation time determination.

8 Mobile Information Systems

the system. As discussed in Section 5, this kind of dropping
does not affect the validity of data objects. However, it can
leave more processor resources to instances with long ex-
ecution times. Notice that the difference in the data quality
between the two methods increases as the number of
transactions increases. When the number reaches 200, the
difference goes to about 0.37.

Figure 3 shows the average quality of correlated sets. It
can be seen that the ADQ_COR of IP-QM is constantly
higher than that of P-QM. For example, when the number of
transactions is 180, the ADQ_COR of IP-QM is about 0.98,
while the ADQ_COR of P-QM is about 0.87. Both methods’
ADQ_COR decrease with the increase in the number of
transactions. However, IP-QM’s ADQ_COR drops much

slower than P-QM. One observation from Figures 2 and 3 is
that the ADQ_COR is higher than theADQ_IND under both
methods.)e reason is that the threshold of a correlated set
is not large, which leads to a high probability that the
correlated set is valid at a time point while the individual
data objects in it are not. In addition, since the data objects in
a correlated set are selected randomly from the whole data
object set, the average valid ratio of them is very close to the
average valid ratio of all data objects.

Figure 4 shows the average update workload. It can be
seen that when the number of sensor transactions is larger
than 120, the AUW of IP-QM is higher than that of P-QM.
In addition, the AUW of IP-QM always goes up when the
number of transactions increases, while the AUW of P-QM

Incoming instances
Instance dropper

Dropped

Instances in the system

Scheduler

Qp

Qa

Admitted

Figure 1: Adaptive execution of transaction instances on a processor.

Table 2: Parameters and settings.

Parameters Meaning Value
Ncpu Number of processors 2, 4
Vi Validity interval of a data object (ms) [2000, 4000]
ECi Mean computation time of a sensor transaction (ms) [10, 20]
DC Standard deviation of computation time 3
Nc Number of correlated sets 8
Nc

k Number of data objects in a correlated set [2, 8]

1

0.8

0.6

0.4

0.2

0
100 120 140 160 180 200

Number of sensor transactions

AD
Q
_I
N
D

IP-QM
P-QM

Figure 2: Average quality of individual data objects comparison (2 processors).

Mobile Information Systems 9

goes up before the number reaches 140 and drops slowly
after that.)is is because in P-QM, when there are a large
number of transactions in the system, to accommodate
them, the preallocated computation times of them are de-
creased.)is leads to more rejected instances which cancel
out the increase in the systemworkload. In IP-QM, however,
many of the instances rejected by P-QM can be accepted and
finished due to the admission and dropping rules.)ese
extra instances contribute to the higher average quality of
individual data objects and correlated sets.

Figures 5 and 6 show the average quality of individual
data objects and correlated sets under different setting of Pth,
respectively.)e number of sensor transactions is fixed at

200. It can be seen that the ADQ_IND and the ADQ_COR of
IP-QM are higher than that of P-QM. For example, when Pth
is 0.3, theADQ_IND and theADQ_COR of IP-QM are about
0.87 and 0.92, while the ADQ_IND and the ADQ_COR of
P-QM are about 0.53 and 0.58.)ere is not much changes in
the ADQ_IND of both methods since the average system
workload under different values of Pth are very close to each
other when the number of transactions is fixed. Meanwhile,
both methods’ ADQ_COR increase as the value of Pth in-
creases.)is is because a larger Pth means fewer data objects
in a correlated set are required to be valid; thus, there are
more chances to access a correlated set that is valid under
both methods.

1

0.8

0.6

0.4

0.2

0
100 120 140 160 180 200

Number of sensor transactions

AD
Q
_C

O
R

IP-QM
P-QM

Figure 3: Average quality of correlated sets comparison (2 processors).

1

0.8

0.6

0.4

0.2

0
100 120 140 160 180 200

Number of sensor transactions

AU
W

P-QM
IP-QM

Figure 4: Average update workload comparison (2 processors).

10 Mobile Information Systems

Experiments were repeated for systems with 4 pro-
cessors. Figures 7 and 8 show partial results.)e number
of transactions varies from 220 to 320. Pth is set to be 0.4.
It can be seen that IP-QM still outperforms P-QM in
terms of ADQ_IND and ADQ_COR. In addition, the

performance degradation of both methods becomes
much slower when more processor resources are
available.

7. Conclusions

)is paper studies the problem of data quality-based
scheduling of sensor transactions on multiprocessor

1

0.8

0.6

0.4

0.2

AD
Q
_I
N
D

0.1 0.3 0.5 0.7
Pth

P-QM
IP-QM

Figure 5: Average quality of individual data objects comparison (2
processors and 200 transactions).

1

0.8

0.6

0.4

0.2

AD
Q
_C

O
R

0.1 0.3 0.5 0.7
Pth

P-QM
IP-QM

Figure 6: Average quality of correlated sets comparison (2 pro-
cessors and 200 transactions).

1

0.8

0.6

0.4

0.2

0

AD
Q
_I
N
D

220 240 260 280 300 320
Number of sensor transactions

IP-QM
P-QM

Figure 7: Average quality of individual data objects comparison (4
processors).

1

0.8

0.6

0.4

0.2

0

AD
Q
_C

O
R

220 240 260 280 300 320
Number of sensor transactions

IP-QM
P-QM

Figure 8: Average quality of correlated sets comparison (4
processors).

Mobile Information Systems 11

platforms. A definition of data quality is given to describe
the validity degree of real-time data objects. Two
methods, P-QM and IP-QM, are proposed. P-QM
maximizes the data quality by judiciously determining
the preallocated computation times of sensor transac-
tions and assigning the transactions to processors. IP-QM
improves the data quality obtained from P-QM by
adaptively executing transaction instances on each pro-
cessor. Experiment results show that IP-QM outperforms
P-QM in terms of the average quality of individual data
objects and the average quality of correlated sets. In this
work, the partitioned approach is adopted for transaction
scheduling. In the future, we will study how to use the
global approach and the hybrid approach to schedule the
transactions so that the real-time data quality can be
effectively maintained.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is research was supported by the Hunan Provincial
Natural Science Foundation of China under Grant no.
2020JJ4032.

References

[1] M. Canizo, A. Conde, S. Charramendieta, R. Minon,
R. G. Cid-Fuentes, and E. Onieva, “Implementation of a large-
scale platform for cyber-physical system real-time monitor-
ing,” IEEE Access, vol. 7, pp. 52455–52466, 2019.

[2] T. Liu, B. Tian, Y. Ai, and F.-Y. Wang, “Parallel reinforcement
learning-based energy efficiency improvement for a cyber-
physical system,” IEEE/CAA Journal of Automatica Sinica,
vol. 7, no. 2, pp. 617–626, 2020.

[3] Y. Guo, X. Hu, B. Hu, J. Cheng, M. Zhou, and R. Y. K. Kwok,
“Mobile cyber physical systems: current challenges and future
networking applications,” IEEE Access, vol. 6, pp. 12360–
12368, 2018.

[4] A. Miloslavov and M. Veeraraghavan, “Sensor data fusion
algorithms for vehicular cyber-physical systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23,
no. 9, pp. 1762–1774, 2012.

[5] T. Bai, S. Li, and Y. Zheng, “Distributed model predictive
control for networked plant-wide systems with neighborhood
cooperation,” IEEE/CAA Journal of Automatica Sinica, vol. 6,
no. 1, pp. 108–117, 2019.

[6] L. Qi, M. Zhou, andW. Luan, “A two-level traffic light control
strategy for preventing incident-based urban traffic conges-
tion,” IEEE Transactions on Intelligent Transportation Systems,
vol. 19, no. 1, pp. 13–24, 2018.

[7] M. Xiong and K. Ramamritham, “Deriving deadlines and
periods for real-time update transactions,” IEEE Transactions
on Computers, vol. 53, no. 5, pp. 567–583, 2004.

[8] M. Xiong, S. Han, K.-Y. Lam, and D. Chen, “Deferrable
scheduling for maintaining real-time data freshness: algo-
rithms, analysis, and results,” IEEE Transactions on Com-
puters, vol. 57, no. 7, pp. 952–964, 2008.

[9] M. Xiong, Q. Wang, and K. Ramamritham, “On earliest
deadline first scheduling for temporal consistency mainte-
nance,” Real-Time Systems, vol. 40, no. 2, pp. 208–237, 2008.

[10] J.-T Wang, K. -Y. Lam, S. Han, S. H. Son, and A. K. Mok, “An
effective fixed priority co-scheduling algorithm for periodic
update and application transactions,” Computing, vol. 95,
no. 10-11, pp. 993–1018, 2013.

[11] S. Han, K.-y. Lam, J. Wang, S. H. Son, and A. K. Mok,
“Adaptive co-scheduling for periodic application and update
transactions in real-time database systems,” Journal of Systems
and Software, vol. 85, no. 8, pp. 1729–1743, 2012.

[12] S. Han, K. -Y. Lam, J. Wang, K. Ramamritham, and
A. K. Mok, “On co-scheduling of update and control trans-
actions in real-time sensing and control systems: algorithms,
analysis and performance,” IEEE Transactions on Knowledge
and Data Engineering, vol. 25, no. 10, pp. 2325–2342, 2012.

[13] M. Xiong, B. Liang, K.-Y. Lam, and Y. Quo, “Quality of service
guarantee for temporal consistency of real-time transactions,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 18, no. 8, pp. 1097–1110, 2006.

[14] A. Labrinidis and N. Roussopoulos, “Update propagation
strategies for improving the quality of data on the web,” in
Proceedings of the International Conference on Very Large
Data Bases, pp. 391–400, Roma, Italy, September 2001.

[15] K.-D. Kang, S. H. Son, and J. A. Stankovic, “Managing
deadline miss ratio and sensor data freshness in real-time
databases,” IEEE Transactions on Knowledge and Data En-
gineering, vol. 16, no. 10, pp. 1200–1216, 2004.

[16] T. Gustafsson and J. Hansson, “Data management in real-time
systems: a case of on demand updates in vehicle control
systems,” in Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 182–191, IEEE,
Toronto, Canada, May 2004.

[17] M. Amirijo, J. Hansson, and S. H. Son, “Specification and
management of QoS in real-time databases supporting im-
precise computations,” IEEE Transactions on Computers,
vol. 55, no. 3, pp. 304–319, 2006.

[18] Y. Zhou and K.-D. Kang, “Deadline assignment and feedback
control for differentiated real-time data services,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27,
no. 12, pp. 3245–3257, 2015.

[19] K. -D. Kang, “Reducing deadline misses and power con-
sumption in real-time databases,” in Proceedings of the IEEE
Real-Time Systems Symposium, pp. 257–268, IEEE, Porto,
Portugal, December 2016.

[20] L. Golab, T. Johnson, and V. Shkapenyuk, “Scalable sched-
uling of updates in streaming data warehouses,” IEEE
Transactions on Knowledge and Data Engineering, vol. 24,
no. 6, pp. 1092–1105, 2012.

[21] M. H. Bateni, L. Golab, M. T. Hajiaghayi, and H. Karloff,
“Scheduling to minimize staleness and stretch in real-time
data warehouses,” in Proceedings of the Symposium on Par-
allelism in Algorithms and Architectures, pp. 29–38, Calgary,
Canada, August 2009.

[22] W. Kang and J. Chung, “QoS management for embedded
databases in multicore-based embedded systems,” Mobile
Information Systems, vol. 2015, Article ID 657252, , 2015.

[23] S. Ho, T. Kuo, and A. K. Mok, “Similarity-based load ad-
justment for real-time dataintensive applications,” in

12 Mobile Information Systems

Proceedings of the 18th IEEE Real-Time Systems Symposium,
pp. 144–154, IEEE, San Francisco, CA, USA, December 1997.

[24] M. Xiong, S. Han, D. Chen, K.-Y. Lam, and S. Feng, “DESH:
overhead reduction algorithms for deferrable scheduling,”
Real-Time Systems, vol. 44, no. 1-3, pp. 1–25, 2010.

[25] S. Han, D. Chen, M. Xiong, K.-Y. Lam, A. K. Mok, and
K. Ramamritham, “Schedulability analysis of deferrable
scheduling algorithms for maintaining real-time data fresh-
ness,” IEEE Transactions on Computers, vol. 63, no. 4,
pp. 979–994, 2014.

[26] J. Li, M. Xiong, V. C. S. Lee, L. Shu, and G. Li, “Workload-
Efficient deadline and period assignment for maintaining
temporal consistency under EDF,” IEEE Transactions on
Computers, vol. 62, no. 6, pp. 1255–1268, 2013.

[27] G. Li, C. Zhou, J. Li, and B. Guo, “Maintaining data freshness
in distributed cyber-physical systems,” IEEE Transactions on
Computers, vol. 68, no. 7, pp. 1077–1090, 2019.

[28] X. Zhu, P.-C. Huang, S. Han, A. K. Mok, and M. Nixon,
“MinMax: a sampling interval control algorithm for process
control systems,” in Proceedings of IEEE 19th International
Conference on Embedded and Real-Time Computing Systems
and Applications, pp. 68–77, IEEE, Seoul, South Korea,
September 2012.

[29] A. Jha, M. Xiong, and K. Ramamritham, “Mutual consistency
in real-time databases,” in Proceedings of 27th IEEE Inter-
national Real-Time Systems Symposium, pp. 335–343, IEEE,
Rio de Janeiro, Brazil, December 2006.

[30] S. Han, K.-Y. Lam, D. Chen et al., “Online mode switch al-
gorithms for maintaining data freshness in dynamic cyber-
physical systems,” IEEE Transactions on Knowledge and Data
Engineering, vol. 28, no. 3, pp. 756–769, 2016.

[31] J. Li, J.-J. Chen, M. Xiong, G. Li, and W. Wei, “Temporal
consistency maintenance upon partitioned multiprocessor
platforms,” IEEE Transactions on Computers, vol. 65, no. 5,
pp. 1632–1645, 2016.

[32] K. D. Kang, “Enhancing timeliness and saving power in real-
time databases,” Real-Time Systems, vol. 54, no. 1, pp. 484–
513, 2018.

[33] C. Zhou, G. Li, J. Li, and B. Guo, “Energy-Aware real-time
data processing for IoT systems,” IEEE Access, vol. 7,
pp. 171776–171789, 2019.

[34] I. D. Rober and B. Ala, “A survey of hard real-time scheduling
for multiprocessor systems,” ACM Computing Surveys,
vol. 43, no. 4, pp. 1–44, 2011.

[35] S. Baruah and N. Fisher, “)e partitioned multiprocessor
scheduling of sporadic task systems,” in Proceedings of the
IEEE Real-Time Systems Symposium, pp. 321–329, IEEE,
Miami, FL, USA, December 2005.

[36] K. Gao, Z. Cao, L. Zhang, Z. Chen, Y. Han, and Q. Pan, “A
review on swarm intelligence and evolutionary algorithms for
solving flexible job shop scheduling problems,” IEEE/CAA
Journal of Automatica Sinica, vol. 6, no. 4, pp. 875–887, 2019.

[37] Q. Wu, M. Zhou, Q. Zhu, Y. Xia, and J. Wen, “MOELS:
multiobjective evolutionary list scheduling for cloud work-
flows,” IEEE Transactions on Automation Science and Engi-
neering, vol. 17, no. 1, pp. 166–176, 2020.

Mobile Information Systems 13

