Hindawi

Mobile Information Systems

Volume 2020, Article ID 8830294, 22 pages
https://doi.org/10.1155/2020/8830294

Hindawi

Research Article

A Novel Genetic Service Function Deployment Management
Platform for Edge Computing

David Chunhu Li ®,' Bo-Hun Chen,> Chia-Wei Tseng,2 and Li-Der Chou ©®?

'Information Technology Management Program, Ming Chuan University, Taoyuan 333, Taiwan
Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan

Correspondence should be addressed to Li-Der Chou; cld@csie.ncu.edu.tw
Received 29 May 2020; Revised 27 August 2020; Accepted 21 September 2020; Published 9 October 2020
Academic Editor: Konglin Zhu

Copyright © 2020 David Chunhu Li et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The various applications of the Internet of Things and the Internet of Vehicles impose high requirements on the network
environment, such as bandwidth and delay. To meet low-latency requirements, the concept of mobile edge computing has been
introduced. Through virtualisation technology, service providers can rent computation resources from the infrastructure of the
network operator, whereas network operators can deploy all kinds of service functions (SFs) to the edge network to reduce
network latency. However, how to appropriately deploy SFs to the edge of the network presents a problem. Apart from improving
the network efficiency of edge computing service deployment, how to effectively reduce the cost of service deployment is also
important to achieve a performance-cost balance. In this paper, we present a novel SF deployment management platform that
allows users to dynamically deploy edge computing service applications with the lowest network latency and service deployment
costs in edge computing network environments. We describe the platform design and system implementation in detail. The core
platform component is an SF deployment simulator that allows users to compare various SF deployment strategies. We also design
and implement a genetic algorithm-based service deployment algorithm for edge computing (GSDAE) in network environments.
This method can reduce the average network latency for a client who accesses a certain service for multiple tenants that rent
computing resources and subsequently reduce the associated SF deployment costs. We evaluate the proposed platform by
conducting extensive experiments, and experiment results show that our platform has a practical use for the management and
deployment of edge computing applications given its low latency and deployment costs not only in pure edge computing
environments but also in mixed edge and cloud computing scenarios.

1. Introduction

People have now entered the era of 5G, Internet of Things
(IoT), and big data. As a typical application of IoT in the
transportation field, the Internet of Vehicles (IoV) can in-
tegrate sensing technologies, 5G telecommunication net-
works, vehicle big data, artificial intelligence technologies,
and other advanced technologies. Edge computing [1] is a
key technology of 5G networks that support IoV applica-
tions, such as autonomous driving [2], vehicle safety [3],
intelligent traffic management [4, 5], and in-vehicle info-
tainment [6, 7]. With edge computing, various application
services can be deployed on mobile devices located close to
vehicles, such as base stations and roadside units. Through

local data processing and encrypting, real-time and highly
reliable IoV services can be realised. The European Tele-
communication Union has formulated standards for the
establishment of a multiaccess edge computing (MEC)
working group and accelerates the establishment of a MEC
ecosystem. Through these standards, 5G emerging (e.g.,
augmented/virtual reality) and vehicle services (e.g., IoV)
can be widely deployed at the edge of the network [8-10].

Processing IoT/IoV big data are inseparable from cloud
computing. Despite its power, cloud computing also has its
limitations [11, 12]. For instance, the timeliness of its
computing power can lead to delayed data feedback. Such a
problem has been mainly ascribed to mass data transmis-
sion. Specifically, a limited network bandwidth will block

mailto:cld@csie.ncu.edu.tw
https://orcid.org/0000-0001-5250-310X
https://orcid.org/0000-0003-2044-3119
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8830294

data transmission and subsequently extend the response
time. Another limitation lies in the effectiveness of com-
puting power. When all data are transmitted to the cloud
data centre and when some of these data lack any use or
value (due to lack of preprocessing), these data will lead to a
waste of cloud computing power. Edge computing has been
proposed to improve the timeliness and effectiveness of data
processing [13]. Table 1 shows the differences between edge
cloud computing and traditional cloud computing in terms
of their architecture, computing resources, and network
latency. The synergy between cloud computing and edge
computing forms the future IoT architecture.

Edge computing is a complex ecosystem. By deploying
services in different locations between the access and core
networks, edge computing can reduce the intermediate
levels of the network to varying degrees, simplify the net-
work architecture, and meet low-latency business require-
ments [14]. When the data are only locally valuable, edge
computing can process and store the original data, thereby
avoiding network processing latency. When massive
amounts of data need to be processed, edge computing
reduces the amount of data sent to the cloud data centre via
local filtering and preprocessing, which not only reduces
networking costs but also reserves the limited network
bandwidth for processing more important data packets.

The deployment of edge computing is application-ori-
ented and is affected by various factors, such as delay,
bandwidth, data security, and edge infrastructure. On the
one hand, edge computing involves a balanced consideration
of meeting business indicators and considers both invest-
ment benefits and operation and maintenance requirements.
The deployment of edge computing should not blindly meet
network performance indicators but also need to achieve a
balance between network performance and usage costs [15].
Effectively reducing user network usage costs is also an
important factor that needs to be considered in the de-
ployment of edge computing. This issue has received much
attention in light of the recent industry discussions on how
to widely apply edge computing.

On the other hand, service function (SF) deployment or
service placement in cloud computing is a mature technology
that is realised through different applications, such as
OpenStack [16] and Kubernetes (K8s) [17]. Deploying ser-
vices in the MEC platform allows low-latency services to meet
the network needs of service providers and compensate for
the shortcomings of cloud computing. However, in edge
computing environments, SF deployment is still in a stand-
ardisation process. Given the decentralised architecture of
these environments, the geographical location of users should
be considered, which would increase the complexity of
function deployment. In edge computing, many microdata
centres (MDCs) are deployed in the edge network to provide
localised services with limited computing resources, thereby
reducing network latency in the cloud. However, given its
limited computing resources, this architecture may be unable
to address the sudden demand for services when such de-
mand reaches its peak [18, 19]. In this case, the data volume
should be transferred to nearby MDCs or remote cloud
computing should be utilised for further processing. Each

Mobile Information Systems

data volume transfer increases the network delay and affects
the service quality for users [20, 21]. Deploying SFs also incurs
costs, and choosing between efficiency and cost presents a
problem. Service providers must also decide which MEC
platforms they should deploy and how many services should
be deployed on these platforms. Therefore, service providers
should examine how services can be reasonably and effectively
deployed in the edge network [22, 23].

Previous studies [23, 24] have mostly focused on im-
proving network performance and resource utilisation when
deploying services in edge computing. However, only a few
of these studies have examined how to improve service
deployment efficiency and reduce service placement costs to
achieve a performance-cost balance. Considering both the
network performance and usage costs of service placement,
this paper proposes a new genetic algorithm-based service
deployment algorithm for edge computing (GSDAE) and
designs a novel edge computing service deployment man-
agement platform that comprises an SF deployment man-
agement system. The core of this platform uses the highly
efficient GSDAE algorithm for SF deployment, reduces the
average network latency for a client who accesses a service
for multiple tenants that rent computing resources, and
consequently lowers the cost of SF deployment. GSDAE can
also be used not only in pure edge computing environments
but also in mixed edge and cloud computing scenarios.

The major contributions of this article are as follows:

(i) We propose GSDAE to efficiently achieve a balance
between service applications performance and
networking costs when offloading services between
cloud computing and the edge computing network.
GSDAE considers both user experience in service
offloading and network operational costs in de-
veloping a dynamic and flexible service deployment
management scheme.

(ii) We develop a genetic algorithm-based service de-
ployment management testbed platform to achieve
a dynamic service deployment in an edge com-
puting network. The design issues involved in in-
tegrating various service placement management
components to implement the system are also
explained in detail.

(iii) To verify the effectiveness and performance of the
proposed platform and algorithm, we perform ex-
tensive experiments in seven scenarios. Experi-
mental results show that our proposed approach
improves the network applications offloading effi-
ciency in terms of cost and end-to-end latency.

The rest of this paper is organised as follows. Section 2
discusses the related work. Section 3 presents the system
model, defines the research problem, and proposes GSDAE.
Section 4 presents the system architecture, the service de-
ployment management platform, and the system imple-
mentation in detail. Section 5 evaluates the proposed
platform and algorithm through extensive experiments.
Section 6 concludes the paper and proposes some sugges-
tions for future work.

Mobile Information Systems

TaBLE 1: Comparison between cloud and edge computing.

Attributes Cloud computing Edge computing
Latency Relatively high (50 ms ~ 55 ms) Relatively low (1 ms~6 ms)
Security control Nonlocally controllable Locally controllable
Access type Wide area network (WAN) Local area network (LAN)
Servers locations Mainly in the data centres Mainly in the microdata centre
Architecture Centralized Decentralized

Suitable applications
Services management
Computing resources

High computing capacity
Cloud service providers
Relatively high (>100 origin servers)

Lower latency
Edge applications managers
Relatively low (1~10 edge servers)

2. Related Works

With the advent of the 5G era and the optimisation
management of resources related to edge computing, the
application of efficient service deployment methods has
received much attention. Many studies have then begun to
examine the service deployment of edge computing, in-
cluding its network resource efficiency and latency. For
instance, Xu et al. [24] proposed a novel uncoupled model
for edge computing that separates service providers from
edge computing infrastructure providers. In the coupled
state, service providers only offer services within their re-
spective infrastructures. Under this premise, the sharing of
resources is restricted, and the overall performance, in-
cluding service response time, resource usage, and success
rate, is reduced. A weighted Voronoi diagram is then
designed to make decisions related to the deployment of
SFs. In this diagram, a data processing centre with a higher
workload has a smaller scope of responsibility. Whilst
showing some value, the proposed resource allocation
method ignores the upper limit on the computing pro-
cessing capacity of the MDC in the edge computing network
environment. When the deployed service exceeds the load
of the MDC, this service is forced to be offloaded to other
MDCs, thereby increasing latency. Fan and Ansari [25]
proposed a methodology for deploying a cloudlet in a
wireless metro network. Specifically, they designed two
deployment strategies, namely, the heaviest access point
(AP) first placement (HAF) and the density-based clus-
tering placement (DBC), to reduce the overall service
deploying network delay. In HAF, the MDC is deployed
next to the AP, and the greedy algorithm (GRE) collects the
request rates of all APs before conducting power-down
sorting according to the level of the request rate. Meanwhile,
DBC is a high-density deployment approach that assumes
that when k SFs need to be deployed, the deployment de-
cision takes k rounds. An SF is deployed at each round, and
the following steps are repeated each time: (1) select the
cloudlet with the highest density to deploy an SF, (2) remove
the user served by this cloudlet, and (3) repeat this pro-
cedure until the deployment is completed. Both HBF and
DBC offer impressive contributions in reducing service
deployment costs and delays. However, whether these
methods can determine which MDC should be used to
deploy services and how many services should be deployed
based on user demand remains unclear. When a service is
deployed to an MDC with a high load, this service will be

forced to be reoffloaded to other MDCs, thereby increasing
latency. Sun and Ansari [26] proposed an architecture that
utilises cloudlets and software-defined network technolo-
gies to deploy computing resources at the edge of the
network. They also designed a LEAD mechanism to reduce
the network transmission delays and to allocate the ap-
plication workload of mobile users (MUs) to a suitable
cloudlet. In the GRE-based LEAD mechanism, the request
rates of all MUs are initially sorted, and then, those MUs
with high request rates are prioritised when processing the
distributed workload to minimise the overall network la-
tency. Whilst LEAD, which uses the ancient GRE to solve
the new problem of edge computing service deployment, is
commendable, this mechanism ignores the limited com-
puting resources of MDCs, and how the service deployment
methods are dynamically adjusted remains unknown. Mao
et al. [27] found that areas with high computing resource
requirements (e.g., commercial and financial areas) usually
have a high number of requests, local rents, and deployment
costs. Therefore, these factors should be considered when
deploying SFs. Wang et al. [28] proposed ITEM, an iterative
algorithm, to address the problem of deploying social virtual
reality (VR) applications in edge computing. They con-
structed a graph to illustrate the costs related to VR ap-
plication deployment and converted the cost optimisation
problem into a graph-cut problem. They also evaluated the
performance of ITEM by using real-world data and dem-
onstrated that this algorithm has a fast convergence and
outperforms the baseline approaches. Whilst the funda-
mentals of their theory are strong and solid, they do not
discuss their system implementation in detail probably
because of space limitations in their paper. Marjanovic et al.
[29] designed an edge computing architecture to facilitate
massive-scale mobile crowd deployments. Their proposed
architecture introduces essential service overhead and
service reconfiguration to reduce privacy threats and to
allow users to control their contributed flow of sensor data.
Whilst their idea of using the designed architecture as an
edge computing network environment for trading sensing
data and for aggregating or processing data is very forward
looking, they neither explain how their designed system
architecture is implemented nor evaluate its performance by
using important evaluation metrics related to service de-
ployment in edge computing, such as cost and latency.
Wbker et al. [30] proposed Fogernetes, a fog computing
platform for managing and deploying fog applications with
specific requirements. This platform comprises a labeling

system to match the requirements of deployed service ap-
plications with edge computing device capabilities. They
described their platform implementation in detail based on
K8s and published their source codes and scripts on GitHub
[31]. They added that their proposed platform can serve
Fodeo (FogVideo), a surveillance application deployed for
fog computing. Whilst these authors can open source their
system implementation method, their article is only a short
conference paper and therefore does not provide systems
performance evaluations to prove the practicality of their
approach. Martin-Pérez et al. [23] designed a hard-core
repulsion Poisson model to help network operators flexibly
deploy a MEC infrastructure and provide their users with
low-latency multimedia services. Through this model, op-
erators can determine how many MEC points of presence
(PoPs) and base stations are needed and identify the lo-
cations of those MEC PoPs to which the base stations are
assigned. They not only illustrated their rigorous modeling
derivation process but also described how their designed
model can be applied in real-life scenarios. Nevertheless,
their simulation only focuses on a reasonable planning of
the spatial location of MEC PoPs to improve signal re-
ception strength whilst indirectly reducing the latency of
multimedia services. Poularakis et al. [32] argued that many
studies have recently addressed the problem of executing
service tasks and routing service requests to corresponding
edge servers by improving the utilisation efficiency of edge
computing resources. However, their solutions may in-
troduce asymmetric bandwidth requirements for many
emerging services, such as augmented reality, network
gaming, and autonomous driving. To address these prob-
lems, they applied joint service placement and requests
routing and designed a randomised rounding algorithm to
achieve a close-to-optimal performance. They also thor-
oughly analysed the complexity of three special cases and
two general cases and then compared their algorithms with
linear-relaxation and GREs to examine its storage, com-
putation capacity, and bandwidth capacity performance.
However, they did not evaluate the performance of their
proposed algorithm in terms of its cost and latency of
service deployment in edge computing networks. Chen et al.
[33] proposed an edge cognitive computing (ECC) archi-
tecture that applies cognitive computing at the edge of the
network. The ECC architecture employs a dynamic service
migration mechanism to achieve an elastic, energy-efficient,
and high-quality cognitive computing service deployment.
They also designed a practical platform to evaluate their
proposed mechanism, and experiment results show that
such a mechanism demonstrates low latency and excellent
user experience. Whilst integrating communication, com-
putation, storage, and applications on the edge network into
cognitive computing to achieve data and resource cognition
is deemed valuable and promising, the above article does
not provide any experimental results for service deployment
costs at edge computing networks. Salaht et al. [34] com-
prehensively examined various service deployment prob-
lems in fog and edge computing networks and summarised
the related works on resource management, fog and edge
computing system architectures, and the main

Mobile Information Systems

characteristics of each system. They also provided a tax-
onomy of service placement problems, discussed the most
common strategies and approaches, major design objec-
tives, and evaluation tools reported in the literature, and
highlighted some open challenges and future research di-
rections. Service deploying control plan design is one of the
most important topics described in their service placement
taxonomy. Two control plane models, namely, centralised
and distributed coordination, are widely adopted to make
decisions related to the deployment of IoT applications over
fog and edge computing infrastructures. Moreover, two
control manners, namely, offline and online placements, are
designed to address the service deployment problems in fog
and edge computing. The authors suggested that studying
dynamic and online service deployment control methods is
a valuable research area. Zhai et al. [35] argued that properly
deploying services amongst resource-constrained edge
servers has the potential in reducing latency for edge
computing. They applied reinforcement learning, a deep
learning technology, to predict user request patterns and the
resource constraints of users, and then achieved an optimal
service deployment for the 5G mobile edge computing
infrastructure. They also depicted the system models as a
Markov decision process and solved the problem by using
the Dueling-Deep Q-network algorithm, which can learn
service deployment from user requests. They compared this
algorithm with other common service deployment algo-
rithms to evaluate its performance in terms of response
quantity on edge servers and total response time during the
training and testing phases. Whilst using the artificial in-
telligence deep learning technology to solve the problem of
edge computing network service deployment is novel, they
did not disclose the performance of their designed algo-
rithm deployed in a real production environment. Zhou
et al. [36] argued that complex IoT applications may be
implemented as a set of lightweight microservices and
distributed amongst containers over a mobile edge com-
puting network. They also proposed an approximation la-
tency-aware microservice mashup approach (LMM) to
achieve an optimal collocation of suitable microservices for
an application. They depicted service access latency by using
the M/M/1 queuing model and formulated an equation for
calculating latency and network resource consumption. To
evaluate its performance, they implemented LMM by using
Java and conducted extensive experiments. Although the
queue model is considered an ancient technology, the au-
thors have used such technology in a valuable way to solve
modern problems.

Most previous studies have designed new network ar-
chitectures or algorithms to improve the network perfor-
mance of edge computing service deployment. However,
unlike these studies, this paper attempts to balance the ef-
ficiency and cost of SF deployment in an edge computing
network. To the best of our knowledge, this paper is the first
to examine the management efficiency and SF deployment
cost for edge computing and to implement a practice
management platform. An SF deployment management
platform is designed and implemented to help users choose
an optimal SF deployment strategy.

Mobile Information Systems

3. System Model

We describe a serviced deployment edge computing network
N that comprises a set of connected MDCs and deployed SFs.
We formulate N as N= (S, V, E), where S denotes the set of
deployed SFs, V denotes the set of MDCs in the edge net-
work, and E denotes all direct links between two MDCs.
Meanwhile, |V| denotes the number of MDCs, whereas |E|
denotes the number of links. Each MDC has its own
computation capacity, SFs have K types of services to be
deployed, and each MDC is associated with the service
deployment delay and cost for deployed service i.

3.1. Service Deployment Cost Model. When a service function
is deployed from the cloud computing network to the edge
computing network, we define the cost of service deploy-
ment Cj; as follows as a summation of data transmission and
computational costs:

Ci=Y pdi+y Yety; (1)

iel i€l jeJ

where p; is the data transmission charge of deployed SF i. d; is
the data transmission capacity of SF i. ¢; is the computational
charge of the j type of deployed SF i. ti; is the i type of
deployed SF i, respectively.

3.2. Service Deployment Latency Model. When a service
deployment request is issued, the service placement packets
pass through the base stations and SDN-based cellular core
networks and are sent to the edge computing layer.
Therefore, service deployment latency involves the pro-
cessing day of edge computing nodes, propagation, and
transmission delay of service placement requests. Processing
delay refers to the average amount of time that the edge
server spends in processing user requests. Meanwhile,
propagation and transmission delay refers to the average
time that service deployment requests are propagated and
transmitted via network links, respectively. If D,; denotes the
service latency of deployed SF i, then D; can be formulated

as
Di=Y Y A+Y Y X+ Y2V (g

i€l jeJ i€l jeJ i€l jeJ

where A;; is the average processing time of edge computing
node i that processes SF j and X;j and Y; ; are the propagation
and transmission delays of the network from cloud server i
to edge server j, respectively.

3.3. Problem Definitions. An edge computing service plat-
form should assign service deployment requests to the edge
server on an MDC that can minimise the service latency and
service placement costs. Although service operators can add
edge computing servers to increase computing capacity and
consequently reduce latency, doing so will also increase the
service costs of operators. Moreover, edge servers are facing
resource constraints given their limited hardware computing
capacities. Therefore, we need to design an optimal edge

computing service deployment method to optimise the
trade-off between service placement cost and service latency.
To meet this requirement, we propose GSDAE, which aims
to minimise the service placement cost and latency in
deploying SFs. GSDAE can be formulated as

me<Zg¢+ZZ@%+ZZAw

i€l i€l jeJ i€l jeJ
(3)
DPRIEDWRANE
iel jeJ i€l jeJ

The MDCs in the edge computing network are located in
different areas, which may be urban, suburban, or rural
areas. When a service is deployed, the time for transmitting
and processing the data and the cost of transferring data
from the cloud data centres to the edge computing MDCs
differs across each region. As shown in Figure 1, the edge
computing network contains 10 MDCs that are distributed
in the urban, suburban, and rural areas. When the data
centre node A in the cloud needs to deploy a certain service
to an MDC in the edge computing network, GSDAE per-
forms calculations and analyses the cost and latency of
deploying such service from node A to each MDC. GSDAE
also calculates which MDC incurs the least service de-
ployment delay and cost for deploying this service (e.g.,
deploying x to MDC M4, y to MDC M7, and z to MDC M8).

3.4. GSDAE. GSDAE uses the network topology as its input.
As shown in Figure 2, the network topology comprises five
MDCs and eight network connection links. The red letter
indicates the ID of an MDC, whereas the number on the link
indicates the corresponding network delay. The proposed SF
management platform is assumed to provide infrastructure-
as-a-service (IaaS) rental services to service providers that
require low latency. We assume that the edge computing
network platform has the available network performance
monitoring tools for tracking network performance pa-
rameters in real time, such as the network latency amongst
MDCs. The SFs have low latency and high bandwidth
network requirements, and the MDC in the edge network is
assumed to have limited computing resources and deployed
services. Each MDC can also collect a certain number of user
requests. Given their time-consuming nature, SFs should not
be deployed frequently. The deployment result will be
maintained for a certain period before being redeployed
according to the next service demand.

Based on the minimum network delay amongst MDCs,
GSDAE is processed continuously in the form of a genetic
algorithm. The genetic algorithm-based GSDAE initially
carries out the population initialisation step, which corre-
sponds to a service deployment scenario that involves
making decisions regarding which type of service and how
many services should be deployed to the edge network. This
step initialises a Population. matrix. The population of
GSDAE is denoted by Population., which is a 2D array.
Table 2 presents an example of the GSDAE population. Two
types of SFs (SF1 and SF2) are deployed in this example.

Mobile Information Systems

Cloud data center

S C

computing Tt AR .
\ ------------- l]\E f---"
Microdata
center (MDC)
Multiaccess o""““‘“‘%“ 4 'l....~,
; . 2 o
edge computing %, ..] el
(MEC) platform ~ ,e=* % - E%a Mg s
e, == FIEA E%iM __ M, Sl
n.--............-'........]\/[5 7 _.----------
Rural s, -----........:.------------------'
Suburban
Urban
FIGURE 1: Problem of the service deployment strategy.
MDC2 MDCI MDC2 MDC3 MDC4 MDC5
L MDCI1 0 50 30 40 40
50 ms o 15ms
MDC2 50 0 25 10 15
MDCI MDC5

- MDC3 30 25 0 15 10
MDC4 40 10 15 0 10

MDC5 40 15 10 10 0

30ms
Microdata center
(MDC)
() (b)

FIGURE 2: Network topology in edge computing as the input of GSDAE: (a) network topology; (b) minimum network delay amongst MDCs.

Population, is computed by using (4), where I is the number
of MDCs, K is the number of functional service categories
that need to be deployed, Genej, is the number of k-type

functional services that need to be deployed on the i MDC,
and Vis the set of MDCs in the topology. i ranges from 1 to I,
whereas k ranges from 1 to K:

Gene;, --- Generg
Population_ = ,
Gene;, --- Genepg
{ I={v], (4)
K =|SF|,
Gene;, =0, vihasno K™ type SE,
VGene;, € Population,

Geney, >0, vihas K™ type deployed SF, and the amount is Gene;,.

Mobile Information Systems

TaBLE 2: GSDAE population example.

Location MDC1 MDC2 MDC3 MDC4 MDC5
SF1 5 8 12 0 0
SF2 0 0 0 2 3

Given that the genetic algorithm randomly generates
populations, these populations have a low survival rate.
GSDAE undergoes seven special matrix transformations and
calculations to increase such survival rate and to improve its
efficiency and convergence speed. The seven matrix trans-
formations are described as follows:

(1) GSDAE creates SFMatrix, which stores important
information related to the deployed SFs, including the
required computing resources, the maximum number
of user requests that can be handled by an SF, and the
number of required SFs. Table 3 shows a sample
SFMatrix format where two SFs are deployed.

(2) GSDAE decomposes the SFMatrix and generates the
SFapacity Submatrix. SFcapacity is transposed to store

the computing capacity required for the deployed SF.
Figure 3 presents a matrix transposition example for
SFcapacity'

(3) To avoid generating an initial population that is
unable to meet the resource requirements for the
deployed SF, the population matrix needs to be
normalised. As shown in Figure 4(a), although the
tenant wants to deploy 20 type-1 services (SF1) to the
edge network, the initial population matrix of
GSDAE (Population,jimit_region) in Figure 4) ran-
domly generates 35 SF1 to be deployed to the MDCs
of the edge network, hence not fulfilling the re-
quirements to deploy type-1 services. In this case, the
population matrix is normalised by using equation
(5) to meet the SF deployment requirements.
Figure 4(b) presents an example of population
normalisation Population ormalizea)- Through the
matrix transformation indicated in equation (5), the
survival rate of the progeny in GSDAE is improved:

Gene (normalized);;, --- Gene(normalized)x
Poplﬂationc(normalized) = >
Gene (normalized);;, --- Gene(normalized)x
' Gene, 5
Gene (normalized);;, = round Ie& X amount; |, %)
.., Geney

Vk € K -
1

| i=1

(4) GSDAE uses the information from the MDC to
generate CapMatrix, which records the computing
resources owned by each MDC. Figure 5 shows an
example of CapMatrix, where the first row stores the
computing resources information for each MDCin a
heterogeneous network.

(5) GSDAE continually uses Population, and (SFcaPmty)T
to generate the Consumption, matrix, which records
the number of computing resources consumed by
using the Population, deployment strategy in each
MDC. Consumption, is calculated by using equation
(6), and Figure 6 shows an example of Consumption,:
Consumption,_ = (SF)T x Population,. (6)

capacity

Vmy; € (CapMatrix — Consumptionc){

Z Gene (normalized);;, = amount;.

(6) Although the Population,,marizea Matrix generated
in step 3 meets the required number of SFs deployed
for tenants, we have no guarantee that the MDC has
sufficient computing resources for all SFs. Figure 7
presents an example of the required computing re-
sources that exceed the limitations of the MDC. The
deployed SF1 and SF2 require 40 units of computing
resources, which exceed the limits of MDC 3. To
address this problem, GSDAE verifies each SF to be
deployed by using equation (7). Through this
equation, GSDAE checks whether the MDC has
sufficient computing resources for the deployment of
SFs:

m;; >0, suitable deployment,
!)
m;; <0, unsuitable deployment.

8 Mobile Information Systems
TaBLE 3: SFMatrix format.
Computing capacity required Maximum requests Numbers of service functions required
SF1 2 500 20
SF2 8 500 5
(SFcapacitv) (SFcapacity)T
Capacity Transpose ‘ SF1 SF2
Tl . Capacity e
SF2 8

FIGURE 3: Matrix transposition of SFcapacity-

Populationc (limited_region)

No equal

Populationc (normalized)

MDC, | MDC, | MDG, | MDC, | MDC;

SF1

SE2.

Equal

(®)

FIGURE 4: Matrix normalisation in the proposed GSDAE: (a) not fulfilling the SF deployment requirement; (b) population normalisation

example.
MDC1 MDC2 MDC3 MDC4 MDC5
20 30 32 23 31

FIGURE 5: Example of CapMatrix.

(7) GSDAE uses GRE to address the overload in an
MDC, which is redirected to a neighbouring MDC
for processing. GSDAE wuses network resource
monitoring tools installed in the edge computing
network platform to obtain the network connection
delay and load information of each MDC in the edge
network. GSDAE then greedily analyses all MDCs
and decides which services are suitable for deploy-
ment. The fitness value of Population, is calculated

according to the average network delay score
Delayscore and overall deployment costs score
Costycore> which are calculated by using equations (8)
and (9), respectively. DeploymentDelay, represents
the delay generated after deploying the service,
Delayienant represents the highest delay tolerated by
the tenant when deploying a service, Deploy-
mentCost. represents the cost incurred when
deploying a service, Total.,pacity represents the
number of computing resources required to deploy a
service, and Pricen,x and Pricey;, represent the
maximum and minimum costs incurred by the IaaS
resources rented by the services deployed by the
tenant. The delay score ranges from 0 (longest) to 1
(shortest), whereas the cost score ranges from 0

Mobile Information Systems

Population,
i
(SF capacity) MDC, | MDC, | MDC; | MDC, | MDCs
SF1 SE2
X 5 8 12 0 0
Capacity 2 8
SF2 0 0 0 2 3
Consumption,
o MDC, MDC, MDC;, MDC, MDC;
=
Consumption 10 16 24 16 24

Ficure 6: Consumption. matrix generation.

(highest) to 1 (lowest). ¢; and ¢, in equation (10)
represent the coeflicients of these two scores. These
parameters are adjustable and can reflect the degree
to which lower network latency and deployment
costs are valued when deploying SFs. ¢; and ¢, have a
sum of 1, as shown in equation (10):

DeploymentDelay
DelaYscore =1- Del 5 (8)
€ aYtenant
DeploymentCost,

COStscore =1- P y S . >

Total ity X ((Price ,y, + Price,,,)/2)
)
Fitness,, . = ¢; x Delay,..,. + ¢, X Cost,., Wherec, +¢, = 1.

(10)

GSDAE is summarised in Algorithm 1. We first initialise
matrix Population, (i.e., step 1) to store the information of
SFs to be deployed and MDCs. The Population. matrix
contains the expected number of specific types of services to
be deployed in each MDC, and K represents the total
number of service types. When an iteration takes place, the
algorithm generates SFMatrix to store the information of
each type of deployed SF, including its required computing
capacity, maximum user requests, and number of services
required (Step 4). GSDAE then sequentially performs matrix
transformation, decomposition, and submatrix generation
and then determines whether a specific type of service is
suitable for deployment in an MDC (steps 5 to 16). Af-
terwards, GSDAE calculates the fitness value of Population,
in each iteration (steps 17 to 21) and eventually determines
which type of service is deployed to which MDC with the
smallest deployment latency and cost.

After completing the above calculation, GSDAE uses
three adjacency matrices to express the key attribute in-
formation of the topological structure of the edge

computing network for service deployment. Take Figure 8
as an example, where (a) presents an edge computing
network with 10 nodes, (b) is the adjacency matrix of
network connectivity corresponding to the edge com-
puting network topology (where 1 indicates the presence
of a network connection between nodes and 0 indicates the
absence of such connection), (c) is the adjacency matrix of
service deployment delay corresponding to the edge
computing network topology (where the number repre-
sents the minimum service deployment delay between
nodes, and Inf represents the lack of any network con-
nection between nodes; that is, the service deployment
delay time is infinite), and (d) is the adjacency matrix of
the service deployment cost corresponding to the edge
computing network topology (where the number repre-
sents the lowest service deployment cost between nodes,
and Inf indicates the lack of any network connection
between nodes; that is, the service deployment cost is
infinite). Take nodes 5 and 9 as example. Given the
presence of a network connection between these nodes, the
corresponding value of the network connection adjacency
matrix (b) is 1. The value of the service deployment delay
adjacency matrix (c) between nodes 5 and 9 is 0.8 s, which
is the minimum delay time for deploying service x. The
value of service deployment cost adjacency matrix (d)
between nodes 5 and 9 is 73 units, which represents the
lowest cost of deploying service x.

4. System Architecture and Implementation

This article designs a novel SF deployment management
platform for edge computing. This platform comprises an SF
deployment management system, which provides tenants
with the most suitable SF deployment strategy whilst con-
sidering the number of user service requests and the limited
edge computing resources of MDCs. We describe the ar-
chitecture and implementation of this system in the fol-
lowing sections.

10 Mobile Information Systems
Population,
(SFcapacity)T
SF1 SF2
Capacity
Consumption,
== MDC, MDC, MDC; MDC, MDCs
Consumption
Each MDC capacity: 32 units
FIGURE 7: An example where the required computing resources exceed the limitations of an MDC.
Cloud data Connectivity attribute
Nodes 1 2 3 4 56 7 8 910
wg::gﬂg 1 0110010000
S 2 1000100000
3 1001100010
4 0010000O0O0OO0O0
5 0110011010
6 1000101110
7 0000110100
8 000O0O0OT1T1O0TQ0T1
e 9 0010110000
© Edge 10 0000000100
computing
networks
(®)
Service deployment delay attribute Service deployment cost attribute
Nodes1 2 3 4 5 6 7 8 9 10 Nodes 1 2 3 4 5 6 7 8 9 10
1 Inf 0.050.03 Inf Inf 0.7 Inf Inf Inf Inf 1 Inf 112 65 Inf Inf 43 Inf Inf Inf Inf
2 0.05Inf Inf Inf 1.4 Inf Inf Inf Inf Inf 2 112 Inf Inf Inf 29 Inf Inf Inf Inf Inf
3 0.03 Inf Inf 0.07 0.9 Inf Inf Inf 1.2 Inf 3 65 Inf Inf 42 27 Inf Inf Inf 126 Inf
4 Inf Inf 0.07 Inf Inf Inf Inf Inf Inf Inf 4 Inf Inf 42 Inf Inf Inf Inf Inf Inf Inf
5 Inf 1.4 0.9 Inf Inf 2.1 0.03 Inf 0.8 Inf 5 Inf 29 27 Inf Inf 244 301 Inf 73 Inf
6 0.7 Inf Inf Inf 2.1 Inf 1.1 0.7 0.04 Inf 6 43 Inf Inf Inf 244 Inf 439 256 72 Inf
7 Inf Inf Inf Inf 0.03 1.1 Inf 0.05 Inf Inf 7 Inf Inf Inf Inf 301 439 Inf 99 Inf Inf
8 Inf Inf Inf Inf Inf 0.7 0.05 Inf Inf 0.08 8 Inf Inf Inf Inf Inf 256 99 Inf Inf 118
9 Inf Inf 1.2 Inf 0.8 0.04 Inf Inf Inf Inf 9 Inf Inf 126 Inf 73 72 Inf Inf Inf Inf
10 Inf Inf Inf Inf Inf Inf Inf 0.08 Inf Inf 10 Inf Inf Inf Inf Inf Inf Inf 118 Inf Inf

(c)

(d)

FIGURE 8: Adjacency matrices of the edge computing network produced by GSDAE: (a) network topology of the edge computing network;
(b) network connectivity adjacency matrix; (c) service deployment delay adjacency matrix; (d) service deployment cost adjacency matrix.

4.1. System Architecture. Our system comprises a proxy
server, computing server, and edge orchestrator, which are
considered the main components in service deployment
management. This system, whose architecture is illustrated
in Figure 9, can simultaneously reduce the network trans-
mission delay resulting from service deployment and the

costs of such deployment. The network infrastructure of the
proposed SF deployment management system is based on
OpenFlow vSwitch (OVS) [37], which is used as a data plane
to control the data flow. Various off-shelf network and
application monitoring toolsets are also broadly used in
cloud computing and services provider platforms, including

Mobile Information Systems

11

[“ Proxy server
bl 2 ™

\

Edge orchestrator

N

Configuration module Feen, - Edge configuration
. Health check module ’ Proxy configuration module
(Tunnel module
Requests redirect module il -control
7 ~ i configuration module
o - ~
SF instances - ! & b <
- B -
= ~ & SFs placement
Computing Computing Computing = simulator
server 1 i SSLVELE GSDAE SF deployment
Japronto Japronto Japronto strategy decision
HTTP server HTTP server |*** HTTP server
Computation Computation Computation
\ task server task server task server
Openflow \
control plane
[NEVI (edge)) Flow rule - -
NFVI controller Teak e :
XenServer hypervisor Flow rule .
: 1
Physical infrastructure production "
1
1
OVS 1
data plane 1
_____ ol
Flow table <
OVS traffic
control agent ¢
module

==> Users' services requests

—=> Health status of each server
- -» Requests redirection

----» Proxy redirection parameters

—p SFs deployment results
—1> Traffic control parameters
- -[> OpenFlow flow rules

FIGURE 9: Architecture of the proposed SF deployment management platform.

software, tools, and utilities that continuously track and
measure the computing resources for different services and
monitor the system performance. In our proposed service
deployment management platform for edge computing, we
install some open source tools for Linux to obtain various
metrics. The major toolsets are mtr, top, atop, htop, and
glances, which allow our platform to collect important
data, including the computing resources required by
various services, average, minimum, and maximum net-
work latency, memory, and CPU usage and edge com-
puting server loading information (e.g., local volume and
I/O activities).

4.2. System Implementation. To verify the effectiveness of
our proposed edge computing SF deployment management
system, the designed SF management platform was imple-
mented on XEN servers. Tables 4 and 5 show the hardware
and software specifications of the proposed genetic SF de-
ployment management platform.

Due to limited experimental resources, we implemented
our designed platform on two XEN servers, whose hardware

specifications are shown in Table 4. Specifically, our platform
uses two DELL R415 servers with an AMD Opteron Pro-
cessor 4386, 32 GB memory, and 2 TB HDD storage space.
We used the hypervisor solution of Citrix XEN Server [38] to
build a virtual machine (VM) platform and to provide
various services to the upper layer. Each hypervisor has its
virtual network provided to the VM via the upper layer as a
network connection, and all VMs are bridged to the physical
network through the L2 bridge and are uniformly allocated
virtual (private) and public IP addresses by the internal
dynamic host configuration protocol/network address
translation server to allow public IP forwarding to internal
VMs and to access Internet services.

We implement OVS as the tenant IaaS server in both
hypervisors and VMs to build the network topology envi-
ronment in edge computing, as shown in Figure 10. Due to
the limited hypervisor memory and CPU resources, our
platform system environment consists of 5 OVS, 5 proxy
servers, and 13 VMs, representing the Iaa$ servers of tenants.
We also implemented the computation task server module
on the tenant Iaa$ server to simulate the edge computing
environment and to provide SFs that consume system

12

Mobile Information Systems

Input:
(1) Information of edge computing network topology
(2) Information of all MDCs.
(3) Information of all application SFs.

(5) The number of required SFs.

(1) The population of GSDAE:
Geney, -+ Geneyg

,and{I:W|

Population, = [K = |SF|

Gene;, --- Generg

P th
VGene, € Popula tionc{ Geney, = 0, vihasno k™ type SF

(2) k=1;
(3) While k<K + 1 do:

(7) Normalise the Population, matrix:

Population, nrmalized) = [

vk e K4 | =

Z Gene (normalized);. = Amount;.
i=1

strategy in each MDC;

Consumption, = (SFcaPacit},)T x Population,_
M;;= CapMatrix - Consumption,

(11) if Ml] >= (then

(12) Geniy is suitable to be deployed on MDCj;

(13) End

(14) else

(15) Geniy is unsuitable to be deployed on MDCj;

(16) End

(17) for each Geniy, of MDC in the graph do

and are not yet overloaded are initially chosen;
(19) Delay,.,,. = 1 — (DeploymentDelay./Delay,.pn.)
(20) Costyore = 1 — (DeploymentCost./Total x ((Price
(21) Fitness
(22)

capacity

value

Number of user requests. (2) K represents the number of functional service categories that need to be deployed. (3) Genejy denotes
the number of k-type functional services that need to be deployed on the i MDC. (4) The computing capacity required for SF i.

Output: the SF deployment of assignment matrices for all services

Geney >0, vihas K" type deployed SF, and the amount is Geney,

(4) Create SFMatrix to store information related to the deployed SFs;
(5) Decompose SFMatrix and generate the SFypacity Submatrix;
(6) Transpose the SF ypacity Matrix to generate SFcaPacin, which stores the computing capacity required for the deployed SF;

Gene (normalized); --- Gene(normalized);x

Gene (nor.rnalized)ik . I Gene (nor.rnalized)IK

Gene (normalized);, = round ((Geney/ Z Gene;,) X Amounty),

(8) Generate CapMatrix to record the computing resources owned by each MDC;
(9) Calculate Consumption, matrix to record the number of computing resources consumed by using the Population, deployment

(10) Check whether the deployment of SFs complies with the computing resources of the MDC;

(18) Use a greedy algorithm to calculate the overload of each MDC. Those MDCs with the lowest latency in the neighbouring networks

max T Pricemin)/z))
= ¢, x Delay,,,. + ¢, X Costy.,., Wherec; +¢, =1

22) Return MDC; with the minimal latency and cost that is suitable for the deployment of SF;.

ALGORITHM 1: Genetic algorithm-based service deployment algorithm for edge computing (GSDAE).

TaBLE 4: Hardware specifications of the implemented genetic SF
deployment management platform for edge computing.

Hardware Specification
Server manufacturer/model DELL INC. PowerEdge R145
CPU AMD Opteron(tm) processor 4386

DDR-3 1600 32G
WD20EARX 2.0TB
Citrix ®XenServer 7.1.0

Memory
Disk storage
Server operating system

computing resources. The computation task server simulates
the access of users to system resources and then executes
various services for these users. We simulated this com-
putation task as a typical HTTP get request. The imple-
mentation of the computation task server was based on the
Japronto HTTP server [39] developed by squeaky-pl. We
used the Japronto server for our platform because of its
multiprocess pipelines and better performance compared
with other HTTP servers.

Mobile Information Systems

13

XENSERVER (hypervisor)

Xen

(s e]

—
[TaaS server

|| &

MDC

9

@B

',':7' I’OpenFlow control
module

L)
b
.

/" Crmep)
>

\laas server

laa$ server

MDC

n

FIGURE 10: System architecture of the proposed genetic SF deployment management platform implemented on the XEN server for edge

computing.

The OVS traffic control agent module was implemented
on all OVSs of the platform system. This module directly
communicates with the OVS kernel for traffic control to
manage the network bandwidth and packet queuing rules.
Meanwhile, the OpenFlow control module implemented in
the OpenFlow control plane is responsible for the connec-
tivity of the underlying network infrastructure. This module
has two subfunctions, namely, the flow rules production and
flow modification functions, both of which were implemented
based on the Ryu SDN framework [40] developed and
maintained by the Nippon Telegraph and Telephone Cor-
poration in Japan. This framework is developed in the Python
programming language to allow SDN network control. In the
experiment, the OpenFlow rules generated by the flow rule
production function were converted into the OpenFlow
protocol, a packet-out command was issued to the underlying
OVS, and this command was written by the OpenFlow
control module to each corresponding OVS switch that
supports OpenFlow in the network environment. In this way,
the OpenFlow control module manages all networking
packets, including ARP and IP packets.

Implemented in the proxy server, the tunnel module is
mainly used as the processing interface of MDCs and is
responsible for redirecting traffic flow. When the user service
demand exceeds the load of an MDC, an overloading takes
place. Accordingly, a tunnel was immediately established
with GRE [41] or VXLAN [42] according to multimedia and
nonmultimedia service applications in order to manage the
SF offloading issued by the request redirect module. This
tunnel can specify the network interface card and IP address
used by an MDC for tunnel communication.

The health check module was also implemented in the
proxy server to detect the service status in computation
task servers every second. This server has UP and DOWN

states, where the former indicates that the server is op-
erating normally and the latter indicates that the server is
not working. The request redirect module was also
implemented in the proxy server for redirecting SF de-
ployments. This module offloads the SFs according to the
server load status detected by the health care module and
the deployment strategy made by using GSDAE. When the
MDC is about to overload, the request redirect module
redirects those SFs that cannot be processed to other
nearby MDCs.

Edge orchestrator was implemented to manage the core
functions related to SF deployment. This orchestrator
comprises a proxy configuration module, a traffic control
configuration module, and an SF placement simulator that
implements GSDAE. The SF placement simulator is the core
component of the edge orchestrator and is developed by
using C++. This simulator can adapt to different network
topologies and makes deployment decisions related to the
allocation of computing resources in different MDCs and the
computing resource requirements of different SFs. When
making a deployment decision, one must choose which SF
should be deployed in which MDC and determine the
number of SFs that need to be deployed in this MDC. Each
MDC can then perform SF building and SF-oriented set-
tings. The network topology of edge computing was con-
verted into an undirected graph where the nodes represent
the MDCs and the edges represent the network delay of
physical lines amongst these MDCs. This undirected graph
loads various information related to the number of com-
puting resources of each MDC and the SF configuration that
needs to be deployed. In the SFs placement simulator,
various SF deployment strategies, such as GRE, DBC, and
GSDAE, were implemented, and their performances across
different scenarios were compared.

14

5. System Evaluation and Results

Seven experiments were conducted based on the imple-
mented system management platform, and the performance
of GSDAE was compared with that of two state-of-the-art SF
deployment management algorithms in small- and large-
scale edge computing networks with moderate and high
loadings, respectively.

5.1. Experiment 1: SF Stress Test by Using Live Streaming
Applications. By taking a real-time video streaming service as
an example, experiment 1 aims to verify that each SF has its
request processing limit. As shown in Figure 11, the main
source of real-time audio and video streaming services is live
streaming applications, such as digital TV, live videos, and
webcasts. The audio and video contents are transmitted to a
live stream broadcaster via network transmission. The net-
work file system protocol, which allows different machines
and operating systems to share individual files through a
network, was adopted for the experiment. Through this
protocol, the audio and video content in the video resource
server was transmitted to the live stream broadcaster. Both the
live stream broadcaster and video resource server have the
same video and audio contents after the video transmission.
After the audio and video content was received by the live
stream broadcaster, such content was cut into several frames
in time and sent to the live stream server via the real-time
message protocol (RTMP) for users to watch. The users can
then connect to the real-time streaming service website on the
live stream server to access the real-time audio and video
streaming content through any type of connecting network.
Figure 12 shows that users can log in to the streaming website
to watch streaming media content in real time during the
experiment and that our service deployment management
platform can simultaneously monitor the maximum number
of service users in the background.

In this streaming service deployment stress test exper-
iment, we used the Nginx RTMP module version 1.1.4 to set
up a real-time streaming service web server. This module has
three adjustable video playback bit rates corresponding to
low (200 kbps—400kbps), standard (401 kbps-1000 kbps),
and high resolutions (1001 kbps-2200kbps). To test the
maximum number of users served by our service deploy-
ment management platform under the conditions of ac-
ceptable video playback quality, we set the video playback bit
rate to 202kbps (low resolution) and 937 kbps (standard
resolution) when testing the deployment of 4K and 2K video
streaming services, respectively. These parameters were set
to test the maximum number of users of the platform
without affecting the video playback quality.

The stress test software Flazr [43] was used to simulate a
scenario where general users access the 3840 x 2160 (4K)
high-quality and 1080P real-time audio and video streams
on a single live stream server. As shown in Figure 13, this
service deployment management platform can accommo-
date up to 1013 users watching the 1080P live stream at the
same time. Given that a 4K image quality requires high
encoding operations and transmission capacities, the

Mobile Information Systems

maximum number of users watching the 4K live stream is
744, as shown in Figure 14.

5.2. Experiment 2: Response Time for SF Deployment.
Experiment 2 aims to verify the practicality and feasibility of
the proposed platform in terms of its deployment. The re-
sponse time of GSDAE was compared with that of two other
state-of-the-art service deployment methods, namely, GRE
and DBC. Figure 15 presents the network topology, which
comprises five MDCs. Underneath each MDC is an OVS-
implemented router that is responsible for the transmission
of network packets. The green line in Figure 15 represents
the physical line in the topology, whereas the number on
each line indicates the network delay set by the physical line.
A large number of users access the service on each MDC and
make service requests to the MDC through OVS.

In the experiment, we simulated a massive user access to
the system by using the Sniper HTTP load generator [44] and
by sending HTTP requests to MDCs through OVS. A total of
6,500 HTTP requests were received and randomly distributed
on 5 MDCs, as shown in Figure 16. The performance of
GSDAE was then compared with that of GRE and DBC in
terms of the average response time of the deployed SF. GRE is
a greedy algorithm where the service with the highest requests
is chosen for deployment, whereas DBC performs multiround
iterations according to the number of requests to be deployed.
Given that 13 requests are to be deployed in the experiment, a
total of 13 iterations were performed. Figure 17 presents the
results of the three deployment strategies.

In the experiment, service requests were transmitted to
the MDC through OVS based on the number of requests
specified in Figure 16. A large number of service accesses
were then sent to the system. The performance comparison
results are shown in Figure 18, where the horizontal axis
indicates the different deployment strategies, and the vertical
axis indicates the average response time required for 6,500
requests. GSDAE outperforms the two other algorithms in
terms of response time given that this algorithm considers
not only the number of requests but also the network delay
caused by the redirection of service. The average response
time of GSDAE is about 12.77% shorter than that of GRE.

5.3. Experiment 3: SF Deploying Network Delay in a Small-
Scale Network. Edge computing is a multitenant environ-
ment where many service providers want to deploy SFs on
the edge network. In experiment 3, we simulated the
multitenant situation and deployed various SFs in a small-
scale edge computing environment. Three types of SFs were
deployed, with each function requiring different computing
resources. For instance, SF1 requires one unit of computing
resources for a microservice, SF2 is an audio and video
streaming service that requires two units of computing
resources, and SF3 requires eight units of computing re-
sources. The configuration of computing resources in this
experiment was based on Amazon EC2 instance-type rec-
ommendations [45]. Amazon gives different instance-type
recommendations for various services. For example,
microservices use the T2 series of instances and require at

Mobile Information Systems

TV Movies Webcams

. Live

Video .
ream

resource SHed

server

Live RTMP

stream
server

(10.10.10.95)

broadcaster

FIGURE 11: Real-time streaming SF deployment stress test workflow.

Video content that the

IP address of live stream server
users watch in real time

o A suam /Network
&

D ux® O *W0) ¥ @
) Network protocol

Website

IP address of
e ot e live stream

website

FIGURE 12: A user browsing the live streaming website and watching the video content in real time during the experiment.

< X | @ 10.10.10.95:0080 /44t

Accepted: 14345

Generated by peinx-cimp-module 1.1.4, pginx 1.12.2, pid 14324, built Mar 26 2018 20:20:06 gcc

FIGURE 13: Service limits of the 1920 x 1080 video service application deployment.

EENETN

mysteam 744 H264 High 5.2 202 Kbis [3840x2160J60 MP3 25 Kbls 44100 1

FIGURE 14: Service limits of the 3840 x 2160 (4K) video service application deployment.

15

16

h O

10ms
n5

n4-{g/_ﬁﬁ_—/";;’

.. _ 40ms
e

15ms

MDC (edge node)

FiGure 15: Network topology in experiment 2.

nl n2 n3 n4 n5
HTTP 1092 1358 3090 125 835

FIGURE 16: Number of service requests amongst various MDCs in
experiment 2.

MDC1 MDC2 MDC3 MDC4 MDC5

GSDAE 2 3 5 0 3
GRE 3 3 5 0 2
DBC 2 3 5 1 2

FiGure 17: SFs deployed in experiment 2.

least 1 vCPU computing resource, video streaming and
games use C5 series of instances and require at least 2 vCPU
computing resources, and machine learning uses P3 series of
instances and requires 8 vCPU computing resources.

The network topology in this experiment comprises 8
MDCs and 14 physical network connection lines that
constitute a small-scale network topology. Each MDC in this
topology has 32 units of computing resources, and the
network delay of the connection line ranges from 10 ms to
90 ms. Table 6 shows the configurations of the small-scale
edge computing network in this experiment.

Moderate and high loading scenarios were separately
examined in the experiment. In equation (11), the load level
is defined as the total computing resources required for the
deployed SF. If the load level is 50% (i.e., at least 50% of the
total computing resources are required), then moderate
loading is observed. Meanwhile, if the load level is 75% (i.e.,
at least 75% of the total computing resources are required),
then a high loading is observed. This SF deploying network
delays for the three deployment strategies were compared
under these two situations. Table 7 shows the moderate and
high loadings of various types of SF deployment on a small-
scale edge computing network:

_ total computing capacity of deployed SFs

loading = x 100%.

(11)

Figure 19 presents the performance comparison results.
The vertical axis shows the additional network delay re-
quired for SF deployment. Compared with the other two

total computing capacity of MDCs

Mobile Information Systems

strategies, GSDAE can significantly reduce the network
delays caused by the deployment of SFs. Under moderate
network loading conditions, GSDAE experiences the
shortest SF deploying network latency and outperforms the
other deployment strategies. GSDAE can also reduce the
network delay by approximately 38.20% compared with
GRE. In the case of high network loading, GSDAE out-
performs both GRE and DBC in terms of SF deploying
network delay by approximately 43.99% and 22.01%,
respectively.

5.4. Experiment 4: SF Deployment Cost in a Small-Scale
Network. Urban areas, commercial areas, and financial
districts often have a high number of requests and tend to
have high local rent and deployment costs according to
Porambage et al. [15]. Therefore, these factors should be
taken into account when deploying SFs. In this experiment,
the deployment cost per unit of computing resources was set
between 20 and 50 units. A higher number of requests
correspond to a higher deployment cost at the MDC,
whereas a lower number of requests corresponds to a lower
deployment cost.

Figure 20 presents the performance comparison results.
The vertical axis shows the additional deployment cost re-
quired for deploying SFs. A lower value on this axis cor-
responds to a greater reduction in SF deployment costs.
High and moderate network loadings were examined in this
experiment. In a small-scale network environment, whether
under high or moderate load, the deployment cost of
GSDAE is equal to that of the other strategies and does not
show any significant improvement.

5.5. Experiment 5: SF Deploying Network Delay in a Large-
Scale Network. The performance of the aforementioned
strategies in a large-scale edge computing network was
compared in experiment 5. The large-scale network topology
comprises 20 MDCs and 40 physical network connection
lines. The large-scale edge computing network also has more
nodes and more complex physical lines compared with the
small-scale network. The SF deploying network delays of the
three deployment strategies were compared under high and
moderate network loading conditions. Table 8 shows the
high and moderate loading configurations of various SF
deployments in a large-scale network.

Figure 21 presents the performance comparison results.
The vertical axis shows the additional network delay re-
quired for SF deployment. The lower the number of network
delays, the better the performance of the corresponding
service deployment management method, and the less the
service deployment latency caused by this method. The
network delay of large-scale networks is much longer than
that of small-scale networks due to the topology of the
former and the fact that the number of requests for SFs and
deployed services are much higher in the former than in the
latter regardless of the loading conditions. The network
delay in the large-scale network is also much higher than that
in the small-scale network. Even though the number of
MDCs in a large-scale network environment has increased

Mobile Information Systems

64.003

N
S

(o))
S

w
o)}

Average response time (ms)
w wu
> o

vl
)

w
(=}

GRE

17

60.470

55.829

DBC CSDAE

Service function deployment methods

Figure 18: Comparison of the average response times of SF deployments.

TaBLE 5: Software specifications of the implemented genetic SF
deployment management platform for edge computing.

Software Specification

HTTP server Japronto

Operating system Ubuntu Linux 16.04 64 bits

OpenFlow controller Ryu 4.25

Open vSwitch Support OpenFloW. 1.4 switching
capability

HTTP packet generator Sniper

Audio and video converter fimpeg 2.8.3

TaBLE 6: Configurations of the small-scale edge computing network
in experiment 3.

Attributes Values
Number of MDCs 8
Number of links 14
Link delay (ms) [10, 90]
Computing capacity of each MDC 32 units

Maximum request handled by an SF 5
Deployment cost per computing unit [20, 50] $/unit

to 20, the number of three types of services deployed in a
large-scale network has also increased by 450 (SF1:
200 > 500, SF2: 150 > 250, and SF3: 25 > 75). However, in a
real network environment, various service deployment
management algorithms combined with high-specification
hardware and resources management can significantly re-
duce the delay time of service deployment.

Under a high-network loading condition, GSDAE achieves
the lowest SF deploying delay amongst all compared strategies.
The deploying latency caused by GSDAE is approximately
10.75% shorter than that caused by GRE. GSDAE also out-
performs all the other strategies under moderate loading.
Specifically, the SF deploying delays of GSDAE are 25.62% and
9.26% shorter than those of GRE and DBC, respectively.

In sum, in both small-and large-scale edge computing
networks, GSDAE has a lower SF deploying network latency
compared with the other two deployment strategies re-
gardless of the loading conditions.

5.6. Experiment 6: SF Deployment Cost in a Large-Scale
Network. In experiment 6, we compared the deployment
costs of different SF deployment strategies in a large-scale
network. The deployment cost per unit of computing re-
sources in this experiment ranged from 20 to 50 units. A
higher number of requests corresponds to a higher de-
ployment cost of MDCs, and vice versa.

Figure 22 presents the experimental results. The vertical
axis shows the additional cost for SF deployment. A lower
additional deployment cost indicates a larger reduction in
the deployment cost achieved by GSDAE. The experiment
was conducted in high- and moderate-network loading
conditions. Amongst the compared strategies, GSDAE in-
curs the lowest deployment costs for deploying SFs in both
loading conditions.

5.7. Experiment 7: SF Deploying Delay and Cost in Mixed
Cloud and Edge Computing. In experiment 7, we compared
the SF deployment performance of GSDAE in a mixed edge
and cloud computing environment. Table 9 presents the
network environment configurations. The network nodes in
this experiment were categorised into data centre (DC) and
MDC. DC represents the cloud computing network infra-
structure and, despite having a large number of computing
resources, has a small number of nodes. Meanwhile, MDC
represents the network infrastructure for edge computing
and, despite having few computing resources, has a large
number of nodes. Three types of SFs were deployed in this
experiment, with each SF requiring different computing
resources and several requests. Table 10 shows the config-
uration of the deployed SFs in the experiment.

The performance of GSDAE was compared with that of
other deployment strategies in terms of network latency and
deployment cost. Figure 23 presents the performance
comparison results. The vertical axis of Figure 23(a) indi-
cates the additional network delay required for SF deploy-
ment. In the mixed and edge computing networking
environments, GSDAE outperforms the other two strategies
and achieves the lowest network latency. Specifically, the SF
deploying network delays of GSDAE are approximately
26.11% and 22.76% shorter than those of GRE and DBC,

18

Mobile Information Systems

1600 B
1455
1400
w1200
g
5% 1045
2 £ 1000 . .
< = 890
= 815
£8 800
s %
E 8 620
3 £ 600 550 - -
2 g
o)
» 400
200
0
GRE DBC CSDAE

Service function deployment methods

B Moderate loading
High loading

FIGURE 19: Comparison of SF deploying network delay in a small-scale edge computing network.

8000 -
7280
7000
6000

5000

4000

Service function
deployment costs (units)

3000

2000

1000

GRE

7200

DBC CSDAE

Service function deployment methods

B Moderate loading
B High loading

FiGure 20: Comparison of SF deployment cost in a small-scale edge computing network.

TaBLE 7: Moderate and high loadings of various types of SF de-
ployments in a small-scale network.

Request amounts

Moderate loading High loading

SF1 200 250
SF2 150 150
SF3 25 50

respectively. Meanwhile, the vertical axis of Figure 23(b)
shows the cost required for SF deployment. GSDAE also
outperforms the other two deployment strategies in terms of

deployment costs and saves approximately 10% greater costs
compared with GRE.

The performance of the deployment strategies under the
same number of requests for deployed SFs in a mixed cloud
and edge computing network environment was then com-
pared. Table 11 shows the configuration of the deployed SFs
in the experiment, where each type of required SFs has the
same number.

Figure 24 presents the performance comparison results.
The vertical axis of Figure 24(a) shows the additional network
delays required for SF deployment. GSDAE outperforms the
other two strategies and can reduce the SF deploying network

Mobile Information Systems

10000 S
9165

9000

8000

7000 .. 6850

6000

5000

4000

network delay (ms)

3000

Service function deploying

2000

1000

5615

19

8545))
8180

5095

GRE

DBC CSDAE

Service function deployment methods

B Moderate loading
High loading

F1Gure 21: Comparison of SF deploying network delays in a large-scale edge computing network.

180000

163400

160000
140000
122200
120000
100000
80000

60000

Service function deployment
costs (units)

40000

20000

GRE

121800

160000 158200

117000

DBC CSDAE

Service function deployment methods

B Moderate loading
W High loading

FIGURE 22: Comparison of SF deployment costs in a large-scale network.

TaBLE 8: Moderate and high network loadings of various SF de-
ployments in a large-scale network.

Request amounts

Moderate loading High loading

SF1 500 500
SF2 250 450
SF3 75 125

delay by approximately 48.97% and 17.90% compared with
GRE and DBC, respectively. Meanwhile, the vertical axis of
Figure 24(b) shows the additional cost required for SF de-
ployment. GSDAE can save approximately 18.68% and 15.55%
greater SF deployment costs compared with GRE and DBC,
respectively. In sum, GSDAE demonstrates an outstanding
performance in reducing SF deploying network delays and
costs when each type of SF has the same number of requests.

20 Mobile Information Systems

TaBLE 9: Configurations of mixed cloud and edge computing networks in experiment 7.

Attributes Values
Number of data centres (DCs) 4
Number of MDCs 20
Number of links 40
Link delay (ms) [10, 90]
Computing capacity of each DC 1000 units
Computing capacity of each MDC 32 units
Maximum request handled by an SF 5
Deployment cost per computing unit [20, 50] $/unit
30000 20500
% R 25590 g e
.g@ 25000 § é 20000
2 \ 19765 g 19500
52 20000 > 53
=g o 2 19000 18760
S 8 15000 g2
2% \ / g 7 18500
B 9 S 18060
5 2 0% \ / <7 18000
2% 5000 \ / 2 s
w L
0 A\ Z 17000
GRE DBC CSDAE GRE DBC CSDAE
Service function deployment methods Service function deployment methods

(a) (b)

FiGure 23: Comparison in a mixed cloud and edge computing environment under different numbers of requests for deployed SFs: (a)
comparison of SF deploying network delay; (b) comparison of SF deploying costs.

TasLE 10: Configurations of the deployed SFs in experiment 7, with each computing capacity having a different number of required SFs.

Computing capacity required Number of service functions required
SF1 1 600
SF2 2 200
SF3 8 100

TaBLE 11: Configurations of deployed SFs in experiment 7, with each SF having the same number of required SFs.

Computing capacity required Number of service functions required
SF1 1 200
SF2 2 200
SF3 8 200
14000 25000
0 12580 2 22700 21860
g 12000 E
2 g 20000 18460
2 £ 10000 3
< % 7820 £Z 15000
= 8000 S ‘g
e N\ 6420 EE
S 2 6000 % S Z 10000
&g 5 S
52 400 \ / 2
83 2 5000
5 2000 \ / E
wv
0 A\ Z ? 0
GRE DBC CSDAE GRE DBC CSDAE
Service function deployment methods Service function deployment methods

(@) (b)

FIGURE 24: Comparison results in a mixed cloud and edge computing environment where each deployed SF has the same number of
requests: (a) comparison of SF deploying network delays; (b) comparison of SF deploying costs.

Mobile Information Systems

6. Conclusion and Future Works

This paper designs and implements an SF deployment man-
agement platform based on a software-defined networking and
network function virtualisation. This platform can simulate SF
deployment under an edge computing network, and its kernel
module can simulate the network delays amongst different
OpenFlow switches and the service usage of users who access
MDCs. The proposed platform can also establish various SF
deployment scenarios in an edge computing environment.

This paper proposes a genetic algorithm-based GSDAE
deployment strategy that expresses the SF deployment process
via the evolution population of the genetic algorithm, im-
plements a request-oriented SF, and continuously imple-
ments the evolutionary process of natural selection for the
population of the genetic algorithm. GSDAE can improve the
SF deployment efficiency along with an increasing number of
evolution iterations. Extensive experiments are conducted to
validate the performance of GSDAE, and the results show that
whether in pure or mixed edge computing and cloud com-
puting networks, GSDAE significantly reduces the network
delay and service deployment costs and outperforms two
other state-of-the-art SF deployment strategies. In sum,
GSDAE can be applied in a real edge computing environment.
The proposed genetic SF deployment management platform
can also reduce the overall service deployment response time
and enhance user experience. With the advent of the 5G era,
new forms of network services will be designed and deployed
in IoT, and service providers are bracing themselves for a
complex and dynamic IoT era. Accordingly, these providers
should design highly flexible and diversified service deploy-
ment charging methods. We hope that the edge network
service deployment management strategy proposed in this
work can offer these service providers with a reference tool for
evaluating service deployment costs and guiding them in
designing service deployment charging models for cloud and
edge computing networks.

In a future study, the proposed SF deployment man-
agement platform will be implemented on other virtuali-
sation architectures, such as OpenStack. Issues related to
backup, high availability, dynamic automatic control
mechanisms, and maintenance management will also be
examined. Whilst the proposed platform provides services to
tenants in consideration of the limited computing resources
of MDCs, the bandwidth requirements of these MDCs are
not taken into account. How to isolate and protect different
SFs by using virtual network slicing techniques to provide
customised 5G network services when providing service
deployment presents another challenge.

Data Availability

Access to data is restricted due to commercial

confidentiality.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

21

Acknowledgments

This work was supported by the Ministry of Science and
Technology of Taiwan, R.O.C., under Contract MOST 108-
2221-E-008-033-MY3 and 105-2221-E-008-071-MY3.

References

[1] M. Satyanarayanan, “The emergence of edge computing,”
Computer, vol. 50, no. 1, pp. 30-39, 2017.

[2] D. C. Li, L.-D. Chou, L.-M. Tseng, Y.-M. Chen, and
K.-W. Kuo, “A bipolar traffic density awareness routing

protocol for vehicular ad hoc networks,” Mobile Infor-
mation Systems, vol. 2015, Article ID 401518, 12 pages,
2015.

[3] D. C. Li, L.-D. Chou, L.-M. Tseng, and Y.-M. Chen, “Energy

efficient min delay-based geocast routing protocol for the

internet of vehicles,” Journal of Information Science and

Engineering, vol. 31, no. 6, pp. 1903-1918, 2015.

K. Zhu, Z. Chen, Y. Peng, and L. Zhang, “Mobile edge assisted

literal multi-dimensional anomaly detection of in-vehicle

network using LSTM,” IEEE Transactions on Vehicular

Technology, vol. 68, no. 5, pp. 4275-4284, 2019.

[5] D. Wang, X. Pei, L. Li, and D. Yao, “Risky driver recognition
based on vehicle speed time series,” IEEE Transactions on
Human-Machine Systems, vol. 48, no. 1, pp. 63-71, 2017.

[6] K. Zhu, Z. Yao, N. He, D. Li, and L. Zhang, “Toward full
virtualization of the network topology,” IEEE Systems Journal,
vol. 13, no. 2, pp. 1640-1649, 2018.

[7] Y. Guo, H. Xu, Y. Zhang, and D. Yao, “Integrated variable
speed limits and lane-changing control for freeway lane-drop
bottlenecks,” IEEE Access, vol. 8, pp. 54710-54721, 2020.

[8] H.-C. Hsieh, J.-L. Chen, and A. Benslimane, “5G virtualized
multi-access edge computing platform for IoT applications,”
Journal of Network and Computer Applications, vol. 115,
pp. 94-102, 2018.

[9] L.-D. Chou, T. C. Li, D. C. Li, C.-M. Lin, and Y.-C. Lin,
“Development of a lilliput multimedia system to enhance
students’ learning motivation,” Journal of Information Science
and Engineering, vol. 31, no. 4, pp. 1357-1372, 2015.

[10] L.-D. Chou, D. C. Li, W.-S. Chen, and Y.-J. Chang, “Design
and implementation of a novel location-aware wearable
mobile advertising system,” Journal of Internet Technology,
vol. 18, no. 5, 2016.

[11] S. Singh and I. Chana, “A survey on resource scheduling in
cloud computing: issues and challenges,” Journal of Grid
Computing, vol. 14, no. 2, pp. 217-264, 2016.

[12] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies
for Internet of Things: a primer,” Digital Communications and
Networks, vol. 4, no. 2, pp. 77-86, 2018.

[13] S. Chen, L. Jiao, L. Wang, and F. Liu, “An online market
mechanism for edge emergency demand response via cloudlet
control,” in Proceedings of the IEEE INFOCOM 2019-IEEE
Conference on Computer Communications, pp. 2566-2574,
IEEE, Paris, France, May 2019.

[14] W. Shi and S. Dustdar, “The promise of edge computing,”
Computer, vol. 49, no. 5, pp. 78-81, 2016.

[15] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and
T. Taleb, “Survey on multi-access edge computing for internet
of things realization,” IEEE Communications Surveys & Tu-
torials, vol. 20, no. 4, pp. 2961-2991, 2018.

[16] OpenStack, https://www.openstack.org/.

[17] Kubernetes (K8s), https://kubernetes.io/.

[4

https://www.openstack.org/
https://kubernetes.io/

22

[18] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge com-
puting for the Internet of Things: a case study,” IEEE Internet
of Things Journal, vol. 5, no. 2, pp. 1275-1284, 2018.

[19] F.-H. Tseng, Y.-M. Jheng, L.-D. Chou, H.-C. Chao, and
V. C. M. Leung, “Link-aware virtual machine placement for
cloud services based on service-oriented architecture,” IEEE
Transactions on Cloud Computing, p. 1, 2017.

[20] S. Han, J. Li, Q. Dong, Y. Ma, and L. Song, “Service-aware
based virtual network functions deployment scheme in edge
computing,” in Proceedings of the 2020 22nd International
Conference on Advanced Communication Technology
(ICACT), pp. 562-565, IEEE, PyeongChang, Republic of
Korea, February 2020.

[21] A. Aral, I. Brandic, R. B. Uriarte, R. De Nicola, and V. Scoca,
“Addressing application latency requirements through edge
scheduling,” Journal of Grid Computing, vol. 17, no. 4,
pp. 677-698, 2019.

[22] Z.Zhou, Q. Wu, and X. Chen, “Online orchestration of cross-
edge service function chaining for cost-efficient edge com-
puting,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 8, pp. 1866-1880, 2019.

[23] J. Martin-Pérez, L. Cominardi, C. J. Bernardos, A. De la Oliva,
and A. Azcorra, “Modeling mobile edge computing deploy-
ments for low latency multimedia services,” IEEE Transactions
on Broadcasting, vol. 65, no. 2, pp. 464-474, 2019.

[24] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, “Zenith:
utility-aware resource allocation for edge computing,” in
Proceedings of the 2017 IEEE International Conference on Edge
Computing (EDGE), pp. 47-54, IEEE, Honolulu, HI, USA,
June 2017.

[25] Q. Fan and N. Ansari, “Cost aware cloudlet placement for big
data processing at the edge,” in Proceedings of the 2017 IEEE
International Conference on Communications (ICC), pp. 1-6,
IEEE, Paris, France, May 2017.

[26] X. Sun and N. Ansari, “Latency aware workload offloading in
the cloudlet network,” IEEE Communications Letters, vol. 21,
no. 7, pp. 1481-1484, 2017.

[27] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A
survey on mobile edge computing: the communication per-
spective,” IEEE Communications Surveys ¢ Tutorials, vol. 19,
no. 4, pp. 2322-2358, 2017.

[28] L. Wang, L. Jiao, T. He, J. Li, and M. Miihlhduser, “Service
entity placement for social virtual reality applications in edge
computing,” in Proceedings of the IEEE INFOCOM 2018-IEEE
Conference on Computer Communications, pp. 468-476,
IEEE, Honolulu, HI, USA, April 2018.

[29] M. Marjanovic, A. Antonic, and L. P. Zarko, “Edge computing
architecture for mobile crowdsensing,” IEEE Access, vol. 6,
pp. 10662-10674, 2018.

[30] C. Wabker, A. Seitz, H. Mueller, and B. Bruegge, “Fogernetes:
deployment and management of fog computing applications,”
in Proceedings of the NOMS 2018-2018 IEEE/IFIP Network
Operations and Management Symposium, pp. 1-7, IEEE,
Taipei, Taiwan, April 2018.

[31] GitHub, https://github.com/.

[32] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and
L. Tassiulas, “Joint service placement and request routing in
multi-cell mobile edge computing networks,” in Proceedings
of the IEEE INFOCOM 2019-1EEE Conference on Computer
Communications, pp. 10-18, IEEE, Paris, France, May 2019.

[33] M. Chen, W. Li, G. Fortino, Y. Hao, L. Hu, and I. Humar, “A
dynamic service migration mechanism in edge cognitive
computing,” ACM Transactions on Internet Technology,
vol. 19, no. 2, pp. 1-15, 2019.

Mobile Information Systems

[34] F. A. Salaht, F. Desprez, and A. Lebre, “An overview of service
placement problem in fog and edge computing,” ACM
Computing Surveys (CSUR), vol. 53, no. 3, 2020.

[35] Y. Zhai, T. Bao, L. Zhu, M. Shen, X. Du, and M. Guizani,
“Toward reinforcement-learning-based service deployment of
5G mobile edge computing with request-aware scheduling,”
IEEE Wireless Communications, vol. 27, no. 1, pp. 84-91, 2020.

[36] A. Zhou, S. Wang, S. Wan, and L. Qi, “LMM: latency-aware

micro-service mashup in mobile edge computing environ-

ment,” Neural Computing and Applications, vol. 32,

pp. 15411-15425, 2020.

Open vSwitch, http://www.openvswitch.org/.

XenServer, https://xenserver.org/.

Japronto, https://github.com/squeaky-pl/japronto.

Ryu SDN Framework, https://osrg.github.io/ryu/.

Generic Routing Encapsulation (GRE), “RFC1701 Internet

Engineering Task Force (IETF),” March 2000, https://tools.

ietf.org/html/rfc1701.

Virtual eXtensible Local Area Network (VXLAN): A frame-

work for overlaying virtualized layer 2 networks over layer 3

networks, RFC7348 internet engineering task force (IETF),

https://tools.ietf.org/html/rfc7348.

Flazr, https://sourceforge.net/projects/flazr/.

Sniper, https://github.com/btfak/sniper.

Amazon EC2 instance types, https://www.amazonaws.cn/en/

ec2/instance-types/.

[37
(38
(39
(40
(41

[42

[43
[44
(45

https://github.com/
http://www.openvswitch.org/
https://xenserver.org/
https://github.com/squeaky-pl/japronto
https://osrg.github.io/ryu/
https://tools.ietf.org/html/rfc1701
https://tools.ietf.org/html/rfc1701
https://tools.ietf.org/html/rfc7348
https://sourceforge.net/projects/flazr/
https://github.com/btfak/sniper
https://www.amazonaws.cn/en/ec2/instance-types/
https://www.amazonaws.cn/en/ec2/instance-types/

