
Research Article
Falcon: A Blockchain-Based Edge Service Migration
Framework in MEC

Xiangjun Zhang ,1,2,3 Weiguo Wu ,1,2,3 Shiyuan Yang,1 and Xiong Wang1

1School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
2National High Performance Computing Center (Xi’an), Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
3New Computer Research Institute, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China

Correspondence should be addressed to Weiguo Wu; wgwu@mail.xjtu.edu.cn

Received 29 June 2020; Revised 2 September 2020; Accepted 24 September 2020; Published 16 October 2020

Academic Editor: Prosanta Gope

Copyright © 2020 Xiangjun Zhang et al. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Driven by advanced 5G cellular systems, mobile edge computing (MEC) has emerged as a promising technology that can meet the
energy efficiency and latency requirements of IoT applications. Edge service migration in the MEC environment plays an
important role in ensuring user service quality and enhancing terminal computing capabilities. Application services on the edge
side should be migrated from different edge servers to edge nodes closer to users, so that services follow users and ensure high-
quality services. In addition, during the migration process, edge services face security challenges in an edge network environment
without centralized management. To tackle this challenge, this paper innovatively proposes a blockchain-based security edge
service migration framework, Falcon, which uses mobile agents different from VM and container as edge service carriers, making
migration more flexible. Furthermore, we considered the dependencies between agents and designed a service migration al-
gorithm to maximize the migration benefits and obtain better service quality. In order to ensure the migration of edge services in a
safe and reliable environment, Falcon maintains an immutable alliance chain among multiple edge clouds. Finally, the ex-
perimental results show that “Falcon” has lower energy consumption and higher service quality.

1. Introduction

With the rapid development of mobile Internet and Internet
of +ings technologies, various new services have been
continuously emerging, making mobile communication
traffic experience explosive growth in the past few years.
Mobile applications using cloud computing technology are
becoming more and more popular, such as VR, real-time
video, and 3D games [1]. +is kind of emerging application
brings great convenience to people’s lives, but with the
gradual complexity and diversification of services, higher
requirements for network bandwidth and delay have been
put forward [2]. Moreover, according to IDC forecasts, by
2020, the total amount of global data will be greater than 40
zettabytes (ZB), and 45% of the data generated by the In-
ternet of +ings will be processed at the edge of the network
[3, 4]. +e concept of mobile edge computing (MEC) has

recently become a promising technology to solve these
challenges. It pushes mobile computing, network control,
and storage to the edge of the network (such as base
stations and access points) to facilitate mobile applications
with limited resources. Implement compute-intensive and
delay-sensitive applications on the device. Its core idea is to
bring computing closer to users, distribute small servers or
data centers that carry cloud applications across the entire
network, and directly connect to entities at the edge of the
network (such as micro data centers and cloudlet). Due to
its proximity to the terminal equipment, MEC not only
reduces the processing pressure of the cloud center but also
saves the cost of high end-to-cloud bandwidth and reduces
the network response delay of end-to-end edge nodes, so it
can provide a higher quality of service than traditional
cloud platforms [5]. MEC is considered to be an important
part of the future 5G mobile network architecture. Its main

Hindawi
Mobile Information Systems
Volume 2020, Article ID 8820507, 17 pages
https://doi.org/10.1155/2020/8820507

mailto:wgwu@mail.xjtu.edu.cn
https://orcid.org/0000-0002-0283-1786
https://orcid.org/0000-0002-1179-3435
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8820507


purpose is to achieve efficient and seamless integration of
cloud computing functions with mobile networks, and for
all stakeholders (mobile operators, service providers, and
mobile users), provide convenience [6]. MEC is expected
to significantly reduce latency and mobile energy con-
sumption and solve the key challenges of realizing the 5G
vision.

However, one of the key challenges facingMEC is how to
dynamically migrate services. Due to the limited range of a
single edge cloud and the frequent movement of terminal
devices (such as smart cars and personal mobile terminals)
to different geographical areas, the quality of edge cloud
services has declined sharply, and even service is interrupted
which makes it difficult to guarantee service continuity [7].
As shown in Figure 1, the terminal user requests the services
provided by edge cloud A at position 1 (such as augmented
reality and Internet of Vehicles applications). When the
terminal user moves to position 2, because position 2 is far
away from the service radius that edge cloud A can provide,
the service quality drops sharply, and even the service is
interrupted. In order to ensure service quality, services need
to be migrated to an edge cloud near the current user lo-
cation (such as edge cloud D or edge cloud E). On the one
hand, when the terminal user moves, ideally the services on
the edge server should also be migrated to a new nearby
server in real time. +erefore, effective dynamic service
migration is essential for the normal provision of edge
services in edge computing environments [8]. On the other
hand, edge services are located in different edge clouds, and
edge servers may belong to different participants, such as
telecommunications operators, Internet companies, and
home users. +erefore, there is no centralized management
for different heterogeneous hardware [9, 10]. +e dynamic,
open, and collaborative nature of the MEC network envi-
ronment makes network security issues more and more
complex. +erefore, the issue of trust in service migration is
also very important.

To solve this problem, Chen et al. in [11] proposed an
edge cognitive computing (ECC) paradigm that combines
edge computing and cognitive computing. +ey have
established a dynamic migration platform for edge services
based on mobile user behavior cognition, which can predict
user behavior and better guide service migration based on
traffic data and network resource environment. Literature
[12] is dedicated to determining the migration strategy and
communication strategy through the reinforcement learning
model, so as to solve the problem of edge service migration.
However, most of the abovementioned research on edge
computing uses virtual machines (VMs) as the carrier of
migration. +e overlay of VMs can be tens or hundreds of
megabytes. For delay-sensitive applications, the total mi-
gration time is relatively long [13]. Furthermore, the VM
overlay is not easy to maintain which limits the application
in industry and academia. In addition, these studies did not
consider themigration trust of edge services in different edge
clouds. Edge computing environments cause security risks
when data are sent to untrusted edge servers.+e complexity
of the mechanism and the huge amount of calculation make
it difficult to overcome.

In this paper, we innovatively propose an edge service
migration framework based on the blockchain named Fal-
con. Worth noting, Falcon uses a more flexible and portable
mobile agent as the carrier of edge services and uses
blockchain technology to jointly maintain a trusted alliance
chain to solve the trust problem of service migration in
multiple edge clouds. Secondly, seek the migration strategy
with the greatest benefit through the migration decision
algorithm and guarantee higher user service quality. Finally,
we deployed this framework in a computing cluster to
evaluate its performance. +e evaluation results show that
the framework ensures the service quality of end users while
ensuring the security of service migration. +e contribution
of this work is summarized as follows:

(i) We propose a mobile agent-based edge service
migration framework, Falcon, and design a mi-
gration decision algorithm to seek the migration
path with the least migration cost. +is framework
makes the service migration more flexible and
portable, with low migration cost, and ensures
better service quality.

(ii) In multiple heterogeneous edge environments
lacking a trusted third party, we built a consortium
chain network of multiple edge nodes and improved
the PBFTconsensus algorithm of Ethereum.+ere is
no need to perform three stages in the checkpoint
phase. +e submission process significantly reduces
the amount of network communication. +is en-
sures the safety and performance of Falcon during
the service migration process.

(iii) We implemented a blockchain-based mobile agent
dynamic service migration prototype platform and
evaluated it through experiments. +e results show
that the proposed migration framework course
meets the needs of user edge service migration, and
the improved blockchain network throughput is
excellent. Compared with the traditional PBFT al-
gorithm, the performance of Falcon is encouraging.

+e rest of this paper is organized as follows. Section 2
summarizes the related work. In Section 3, we describe in
detail the mobile agent-based edge service migration ar-
chitecture. Section 4 shows the mechanism of using
blockchain technology to solve the trust problem of edge
service migration. Section 5 makes a formal evaluation of the
performance of the framework.+e experimental results and
performance evaluation of the agent-based dynamic service
migration platform are discussed in Section 6. Finally,
Section 7 concludes this paper.

2. Related Work

Edge service migration is an important mechanism to ensure
user experience, and it has received extensive attention from
industry and academia in recent years. It has been widely
used to study how to overcome network latency and reduce
service interruption time in edge networks.+ere are already
some literature studies [14, 15] that have analyzed and
summarized the service migration methods.

2 Mobile Information Systems



Earlier research on edge services migration focused on
the migration of virtual machines (VMs) which improve
QoS by optimizing the migration time to reduce service
downtime. Lu et al. [16] combined remote loading and
redirection to speed up service migration. By tracking
historical access patterns, a load request list is generated to
locate the service application for booting, and then core code
is automatically prefetched and cached. It enables running
VMs to switch data access to merged image files, reducing
edge service migration time. Sun et al. [17] proposed an
improved serial migration strategy and introduced a post-
copy migration scheme into serial migration. +e queuing
model is established to quantify the performance indicators,
and mathematical analysis is used to evaluate the perfor-
mance of the model. It improves the hybrid migration
strategy of serial migration strategy and parallel migration
strategy and improves resource utilization and QoS. +e
method proposed in [18] introduced low-latency access to
data or edge services by introducing a distributed cloud layer
composed of cloudlets (“small clouds” with low computing
power) between users and the cloud. +is method uses VM
to realize the common architecture for service migration.
Nevertheless, the size of the virtual machine overlay can be
tens of megabytes or hundreds of megabytes depending on
the application, which is relatively long for latency-sensitive
applications and it is unacceptable.

Some researchers use docker container migration for
service migration. For example, Ma et al. [19] conducted an
in-depth study on the characteristics of docker container’s
hierarchical storage and proposed a migration method that
uses a hierarchical storage system to reduce data synchro-
nization overhead. But based on the checkpoint CRIU
technology [20], all data in the storage layer and the entire
file system are packaged and transmitted, which may worsen
the condition of the edge network, especially in the case of a
bad network environment, and even cause service

interruption. In addition, considering the security of edge
services, Tian et al. [21] proposed an authentication
framework to solve the security and privacy protection in
Internet of Drones (IoD), by adopting a lightweight online/
offline signature design, and designed a MEC-based pre-
dictive authentication method to minimize potential au-
thentication costs and guarantee privacy protection of the
drone’s identity, location, and flying routes. Gope and Sikdar
[22] considered the physical security of UAVs and proposed
an effective privacy-aware authentication key agreement
scheme for UAV interconnection. +is solution does not
need to store any key in the device to provide the required
security features. +ese studies have solved the privacy and
security of IoD in MEC. However, edge service migration is
unique. Since the edge node that provides the service may be
an unauthorized malicious node, there is a risk that the
service is migrated to an untrusted server or user data are
intercepted. +e current research on the security of service
migration is mostly based on information hiding and en-
cryption technology, but as the business becomes more and
more complex, the problem of the throughput of these
traditional methods gradually appears.

Agent-based edge service migration is a relatively new
field and needs to be studied systematically. Compared with
VMs and containers, mobile agents (MA), as a program that
replaces other programs to perform certain tasks, can choose
when and where to move autonomously from one host to
another in a complex network system [23]. When a move is
triggered, the mobile agent can suspend its running process
as required, then move to another place on the network to
restart or continue its execution, and finally, return the result
and message. Aglets mobile agents can migrate and com-
municate autonomously in any Java environment, so they
occupy less platform resources, while VMs and containers
tend to save most resources in migration services [24]. In the
network, mobile agent is very suitable as the carrier of edge

Position 1

Moving

Position 2

Cloud

Edge cloud D
Edge cloud C

Cloud

Internet

Cloud

Edge cloud A

Cloud

Edge cloud B Edge cloud E

Internet

5G
4G

WiFiInternet

5G

CloudCloud

5G

4G

Figure 1: Service migration scenario in MEC.

Mobile Information Systems 3



service migration because of its characteristics of moving
between different hosts. Moreover, because agent-based
service migration not only provides program runtime en-
vironment but also uses autonomous agent-based applica-
tion partitioning, which reduces the management burden of
edge servers and mobile terminals [25]. On the contrary, in
the process of service migration based on VMs and con-
tainers, these management burdens rely heavily on the
support of the underlying virtualization technology, and the
agent greatly reduces this management burden. Finally, edge
servers have limited bandwidth, unstable network connec-
tions, storage, and processing capabilities, and running
mobile agents that take up few resources on them will be
more conducive to migration services [26].

3. Mobile Agent System Architecture

In this section, we first discuss the internal details of mobile
agents. And take IBM Aglets as an example to analyze the
advantages of mobile agent as an edge service migration
carrier [27]. Second, we introduce the system’s service
collaboration mechanism.

3.1. Migration between Mobile Agents. In a dynamic het-
erogeneous MEC environment (such as VMs, containers, or
even physical machines), using mobile agents for service
migration can achieve better performance and better
adaptability to changing network conditions. For example,
agents can migrate between VMs, containers, and physical
machines as long as the Java runtime environment is
configured [28, 29]. +is software execution environment
has software and hardware support for agent operations.
+ese resources can be a network computer, a grid node, or a
cloud infrastructure in the edge network. Each agent is
executed in a self-contained virtualization container. In
Figure 2, the interaction process between mobile agents is
shown. Each mobile agent system consists of two parts:
mobile agent (MA) and mobile agent environment (MAE).
MA is a software entity running in MAE, which can be
migrated between different MAEs and interact with local
services or resources to complete tasks. In our framework
Falcon, MA is composed of user agent (UA) and service
agent (SA). +e IBM Aglets agent provides different event
handling functions at different points in its life cycle. A
running aglets can call the clone method to clone itself, or
call the deactive method to store it on a binary storage
medium [30]. Similarly, when the agent is successfully
created and the onDispatching method is called, the aglets
agent will be dispatched to another host to continue running
according to the different parameters passed [31]. When
moving, the system serializes the information carried by the
agent into a standard format. Once the agent arrives at
another host, it will call the onArrival method to rerun at the
destination.

3.2. Agent-Based Edge Service Migration Mechanism. In the
Falcon framework, edge services are provided by a group of
cooperative SAs.+emobile agent runs on one platform, but

can be moved to another platform. As shown in Figure 3, the
agent-based service migration diagram, in addition to the
service agent, there are four key service components: event
decision server (EDS), resource management server (RMS),
data management server (DMS), and trust management
server (TMS).

Function of EDS is to collect system-wide events and
functional notifications and pass them to the mobile agent to
decide whether the agent needs to be migrated. +e agent
can register for network monitoring and security events,
such as calculating the network condition by analyzing the
network latency RTT and packet loss rate PacketLoss pa-
rameters of the current edge server. +e agent can also
prevent damage to the platform on which the agent is
currently running through intrusion detection of the se-
curity event system. In addition, it can register to receive new
platforms or announcement services for new platforms,
thereby having better QoS. In these cases, EDS will decide to
migrate to a new platform to avoid further losses if the
current platform has been damaged. We will discuss the
decision migration mechanism in detail in Section 3.3. EDS
is essentially the trigger source for agent migration, enabling
agents to better respond to changes in the edge network
environment and provide users with better QoS.

Data manager server (DMS) and authorization man-
agement server (trust manager server, TMS) can, respec-
tively, persistently store data (including service status data
and user data) and secure mutual trust data between mobile
agents migrated to destination hosts. Mobile agent saves the
necessary service status and data in the database before
migration and restores the status and progress of the job
after migration to a trusted destination host. +e migration
destination edge node will maintain an alliance chain among
multiple edge clouds to establishmutual trust, so as to ensure
the secure migration of edge services among multiple edge
cloud nodes.

Resource management server (RMS) is responsible for
providing the required resources to agents and platforms.
On the one hand, each agent functionally requires a set of
resources (such as software modules, data storage, user
interface, and various other functions), and the agent also
has minimum requirements for each resource. On the other
hand, the platform running the agent needs to have the
ability to provide a certain number of resources, thereby
providing a set of resources to support the function of the
agent operation. Each platform can publish resources based
on the QoS provided by the RMS, and an agent queries the
resources and determines whether a platform can support
the necessary resource conditions necessary for its opera-
tion. If the current platform cannot provide the agent with
the appropriate resources, the agent must query the RMS to
determine a viable platform to which it can migrate.

3.3. Service Migration Decision Algorithm Based on Mobile
Agent. In this section, we will discuss in detail the migration
decision algorithm based on mobile agents. As we discussed
earlier, EDS issues a mobile agent migration notice, which
involves factors such as the overload of the edge server

4 Mobile Information Systems



currently running the agent or the deterioration of the
service quality due to the movement of the end user’s lo-
cation [32]. +e reasons for the migration also include the
following: the current platform is severely damaged or the
required services cannot be provided. EDS must decide
which possible platforms to migrate to. In general, the target
node to which the task chooses to migrate mainly considers
the following factors: network carrying capacity, processing
capacity, memory space, migration experience, and subse-
quent node information of the current node information.
But these factors are complicated, and there is a certain
relationship between each factor.

In our system model, an information collection module
is deployed on each edge server node to collect information

on network dynamic load (α), CPU computing power (β),
memory space (λ), and migration experience (c). +e edge
nodes and links between the nodes form an undirected
connection graph G〈V, E〉, where V represents each edge
node and E is all the set of weighted links between the nodes,
and each link has a migration right Q. +erefore, combining
the above factors, the migration weightQ is expressed by the
following equation:

Q �
α∗ s1 + β∗ s2 + λ∗ s3 + c∗ s4,

s1 + s2 + s3 + s4 � 1(0≤ s1, s2, s3, s4≤ 1).
􏼨 (1)

Q is the migration weight. +e larger the value, the
more likely the task of the current node is to move to the

Network
condition

Detection &
intrusion

Detection &
damage

assessment

System
monitoring Platform Platform Platform

Mobile
agent1

Event decision server

Mobile
agent n

Trust manager server

Persistence manager server

Blockchain network

Agent execution
environment

Agent execution
environment

Resource management server

Allocation

Resource query

Agent migration Update
 ser

vice 
stat

us Update service status

Resources Allocation Resources

... ... ...

... ... ...

Update trusted
network

Quality

authentication

NotificationSubscription

NotificationSubscription

Agent execution environment

Figure 3: Framework diagram of agent-based service migration.

Service
agent

Host A

MAF

MAFMAF

Service
agent

Service
agent

Host B

User agent

Local communications

Remote communication

Agent mobile

Figure 2: Agent interaction diagram.

Mobile Information Systems 5



neighboring node. Among them, s1, s2, s3, and s4 rep-
resent the weight coefficients corresponding to the four
indicators (α, β, λ, c). Due to the complex edge network
environment, unstable network bandwidth and edge node
failures frequently occur. In order to improve the
adaptability of the migration process in the mobile cloud
computing environment, we take the task weights and the
network conditions of the nodes into consideration and
calculate more general migration weight parameters.
distNodei,j represents the distance between nodes, it is
closely related to the network status value netStati,j, and
netStati,j is the communication status value between Physi

and Physj. We use the round-trip time (RTT) and packet
loss rate (PacketLoss) of data packets to reflect the size of
this value, which affects the reliability of data transmis-
sion. +e node distance is expressed by the following
formula:

DistNodei,j �
bandaver

bandi + bandj

∗ netStati,j, (2)

where bandaver is the average bandwidth of the physical
node. We define the migration weight factor as shown in the
following equation:

Input: (1) S, Migration alternative plan (2) R, constraint rule R for agent group operation (including dependency, mutual exclusion,
and atomic relations);
Output: Migration_flag, An indication of whether the migration was successful
(1) HashMap< String, List< String≫ decision BooleanMigration_flag � false
(2) if S.length≤ 0 then
(3) return false;
(4) end if
(5) for each Si in decisionTmp do
(6) Step 1. Perform a protocol check on alternative migration decisions and define a temporary migration plan WP from each

platform of the migration decision Si. Initialize WP� ϕ
(7) Step 2. Agent Ai(1≤ i≤m) sends a migration request to each destination host in the platform set of migration decision Si, do
(8) Step 2.1. Select a platform Pi

′ ∈ Si and add Pi
′ to WP

(9) WP � WP∪ Pi
′􏼈 􏼉

(10) Step 3.
(11) for each Constraint rules r ∈ R do
(12) Step 3.1. If r is a dependency rule, an agent Ag depends on at least one agent in the A′ set, do
(13) Step 3.1.1. If ∀Ag′ ∈ A′, Ag and Ag′ the corresponding platforms are different in WP, do
(14) Reset WP� ϕ;
(15) ; return to step 2 and decide on the next temporary migration plan
(16) Step 3.2. If r is the atomic rule, all agents must be migrated to the same platform, do
(17) Step 3.2.1. If ∀P, P′ ∈WP∧P≠P′, do
(18) Reset WP� ϕ;
(19) ; return to step 2 and decide on the next temporary migration plan
(20) Step 3.3. If r is an exclusivity rule, that is, two or more agents cannot migrate to the same platform, do
(21) Step 3.3.1. If ∀P, P′ ∈WP∧P � P′, do
(22) Reset WP� ϕ;
(23) ; Return to step 2 and decide on the next temporary migration plan
(24) Step 4. If the temporary migration plan WP meets all of the constraints rule R, do
(25) Step 4.1. If ∀P′ ∈WP∧P′ ∈ Si, do
(26) Step 4.1.1. Add platform Pi to agent Ai’s migration destination host
(27) dispatch(Nodei.Ip);
(28) ; Migration_flag� true
(29) Step 5. Else, do
(30) Step 5.1. If there were more resources, do
(31)
(32) if SumStep< StepT then
(33) sumStep++;
(34) Return to step 1, update the weights between nodes, and recalculate the migration factor;
(35) else
(36) Migration_flag� false;
(37) end if
(38) end for
(39) Return Migration_flag
(40) end for

ALGORITHM 1: Constraint protocol checking algorithm.

6 Mobile Information Systems



μi,j �

􏽐
m
k�1wk + w

DistNodei,j

, w≥WT,

􏽐
m
k�1wk − w

DistNodei,j

, w <WT.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

In formula (3), μi,j represents the weight update factor of
the global task node between nodei and nodej and summ

k�1wk

represents the sum of the accumulated task weights from the
initial node to the current node through the migration path.
w represents the task weight of the current node nodei, and
DistNodei,j represents the cloud node distance between
nodei and nodej. +e formula of redefinition of migration
weight after improvement is as follows:

Q �
(α∗ s1 + β∗ s2 + λ∗ s3 + c∗ s4)∗ μ,

s1 + s2 + s3 + s4 � 1(0≤ s1, s2, s3, s4≤ 1).
􏼨 (4)

When multiple mobile agents perform a certain task
collaboratively, there are often cooperation or functional
dependencies. For example, one agent may depend on other
agents in function. Due to the sharing of public information
resources, collaborative processing of information, etc.,
some agents may need to run on the same execution en-
vironment. In other cases, due to the separation of duties
and functions and exclusion, some agents may have mu-
tually exclusive relationships.+erefore, they cannot migrate
to the same information host. Taking these factors into
consideration, we designed a constraint rule checking al-
gorithm (Algorithm 1) to make the migration of a group of
agents under different constraint rules, so as to determine
the migration of each mobile agent to the corresponding
edge node.We set a set of constraint rules R for the groups of
agents that make up the edge service. +ree types of con-
straint rules are specified in R:

(1) Atomic rules: a group of agents must migrate to the
same platform.

(2) Dependency rule: an agent is functionally dependent
on at least one of the other agents. +erefore, it must
be migrated to the platform where the agent it de-
pends on.

(3) Exclusion rule: two or more agents cannot be mi-
grated to the same platform.

In the Falcon migration system, we deploy a perception
module at each node, calculate and update the collected
information to the node task weight, then calculate the
distance between the cloud nodes, and update the weight of
the link edge in G through formula (4). If the current edge
node has a directly connected edge node, namely, there is a
directly connected edge in G, the destination host with the
largest weight of the edge is added to the temporary mi-
gration plan. If there is no direct edge, use the Dijkstra
shortest path algorithm in the undirected graph to obtain the
migration path from the node to the destination node and
put it into the temporary migration plan. In Figure 4, the
edge node 1 has received the migration notification and
migrated to the edge node 4. However, there is currently no

directly connected edge between the two nodes and no
consensus has been established. At this moment, we use the
shortest path algorithm to find the path with the greatest
benefit (the path node1⟶ node5⟶ node4 is the
shortest path). +e nodes on this path are all safe nodes that
have been verified by mutual trust. If the migration weight of
the node exceeds the migration threshold QT, the node will
move to the adjacent maximum weight node. If the mi-
gration weight of a node does not exceed the migration
threshold QT, the leading node of the migrating node is
returned, and the currently visited node is identified, then
the leading node is a valid node. Calculate the migration
weights of all unvisited nodes in G, so continue to iterate
until it migrates to the final destination address. Among the
multiple optional destination hosts in the migration,
according to the three types of constraint rules between a
group of agents, the migration plan that does not meet the
operating rules is removed from the temporary migration
plan. In order to prevent the node from returning to the
front node multiple times, a jump threshold StepT is set in
the algorithm. If the value returned by the same node
exceeds the jump threshold, the migration task ends. +e
service migration decision algorithm is shown in Algo-
rithm 2.

4. Blockchain-Based Edge Service Migration

In this section, we focus on the features of Falcon’s
blockchain-based security service migration. First, Section
4.1 introduces the security issues of mobile agents and edge
services and describes the huge potential of blockchain in
solving the security issues of edge services. In Section 4.2,
we present blockchain technology and compare the char-
acteristics of different types of blockchains. Next, we in-
troduced the problem description of blockchain technology
to solve service migration in Section 4.3 and made a de-
tailed description of the system architecture. In this
chapter, we show how to use the blockchain network to
ensure that edge service migration is complete in the en-
vironment of mutual trust and security and introduce the
role of each layer. Finally, in Section 4.4, we described the
specific details of the blockchain after improving the
consensus algorithm.

4.1. Blockchain-Based Edge Services Security Migration
Practice. In the case of mobile agent security, Falcon
should basically support confidentiality, integrity, identity
verification, access control, and nonrepudiation to protect
the mobile agent from the aforementioned illegal attacks.
Mobile agents are intelligent, autonomous, and adaptive.
Especially, the mobile agent has mobility, and its mobility
is the most significant feature of the mobile agent para-
digm [33, 34]. +erefore, the secure migration of mobile
agents is considered one of the most important security
issues. If an anonymous mobile agent is warned illegally
during the migration process, it will cause many serious
problems. +erefore, in the mobile agent environment,
the integrity of the mobile agent should be guaranteed

Mobile Information Systems 7



first. In addition to the security of mobile agent migration,
the security and credibility between the hosts of the edge
service migration are also critical. Edge services are lo-
cated in different edge clouds. Edge servers may belong to
different participants, such as telecom operators, Internet
companies, and home users. +erefore, there is no cen-
tralized management for different heterogeneous hard-
ware, and it is difficult to solve the trust problem in service
migration. As a result, data are sent to untrusted edge
servers, which pose a security risk.

Blockchain technology is very suitable to solve the trust
problem of service migration in the MEC environment due
to its inherent distribution and immutability. +e block-
chain is an ever-growing list of records, called blocks,
formed by linking these blocks one after another protected
by cryptography. It is inherently resistant to data modifi-
cation [35, 36]. Once the interactive information is recorded,

the data in any given block cannot be retrospectively
modified without changing all subsequent blocks and the
network majority colluding. +erefore, the blockchain can
be used as an open and distributed operating system to
achieve decentralized consensus. In the Falcon framework, it
can effectively record the interactions (for example, trans-
actions) between two individuals or agents in a verifiable and
permanent way.

4.2. Blockchain. Blockchain is essentially a decentralized
database. As the underlying technology of Bitcoin, it is a
series of data blocks associated with cryptographic methods
[37, 38]. Each data block contains a batch of Bitcoin network
transaction information to verify the validity of the infor-
mation (anticounterfeiting) and generate the next block
[39–41]. Blockchain technology is also a new application

Input: G, s1, s2, s3, s4,Requesti, Current system iTH (0< i<m) migration request, m represents the number of mobile agents that
make up the current service.
Output: Sj, Migration decision for each agent Aj to migrate to a platform Pj(1≤ j≤ n), where n represents the number of platforms
available.

(1) A �ReadBlockchainData(i, G), Read the block chain data to obtain the connection relation matrix A between nodes;
(2) ; λ← Request.experience, Boolean checkStata� false;
(3) for j� 1; j≤ n; j++ do
(4) Updating task weight Wi;
(5) netStati,j � getNetworkCondation(RTT,PacketLoss, j)

Get the network condition of node j;
(6) DistNodei,j � (bandaver/(bandi + bandj))∗ netStati,j;
(7) if w≥WT then
(8) μi,j � ((􏽐

m
i�1 Wk + w)/DistNodei,j);

(9) else
(10) μi,j � ((􏽐

m
i�1 Wk − w)/DistNodei,j);

(11) end if
(12) ℵ� getNetworkCondation(RTT,PacketLoss);
(13) β� getCpuLoadRatio();
(14) c � getMemoryLoadRatio();
(15) Qi,j � (α∗ s1 + β∗ s2 + λ∗ s3 + c∗ s4)∗ μi,j;
(16) G � A∗Qi,j;
(17) end for
(18) While j� 1; j≤G.length; j++ do
(19) for j� 1; j≤G.length; j++ do
(20) if Qi,j >Qi,j+1 >QT > · · · >Qi,j+k then
(21) if G[i][j]! � 0∧G[i][j]<QT then
(22) Si.add(Ai, hostname(j));
(23) else
(24) Path�Dijkstra(G, i, j);
(25) Si.add(Ai, Path);
(26) end if
(27) end if
(28) end for
(29) heckStata�CheckAcl(si);
(30) if checkStata is true then
(31) Retun 1;
(32) else
(33) return 0;
(34) end if
(35) end While

ALGORITHM 2: Service migration decision algorithm.

8 Mobile Information Systems



model of computer technologies such as distributed data
storage, point-to-point transmission, consensus mecha-
nisms, and encryption algorithms [42].

4.3. System Overview. We improved the blockchain con-
sensus algorithm and introduced it into Falcon as a security
system verification mechanism. Multiple edge clouds jointly
maintain a consortium chain network and develop a con-
tract algorithm. When an unfamiliar edge network joins the
blockchain network, the verification algorithm will be ex-
ecuted. As shown in Figure 5, the system framework of the
entire trusted network is divided into three layers, namely,
the audit layer, the edge control layer, and the user layer.

4.3.1. Public Audit Service Layer. +e first layer is the public
audit service layer. In this layer, all edge clouds in different
geographic locations jointly maintain a tamper-proof
database to store and share the interactive information of
different edge clouds and mobile user information. Each
edge cloud has equal rights in data management and user
management. In the Falcon framework, we adopted a
consortium blockchain to establish a data sharing scheme.
+e distributed database records public verification in-
formation of different organizations, and each member
can verify the integrity of the data without requiring a
trusted third party. +erefore, the whole system contains
three entities: agents, users, and different edge cloud
providers.

(1) As a separate organization, each edge cloud pro-
vider provides data sharing services for edge
nodes. +ese nodes can store and manage the
interactive data between edge nodes. In our sys-
tem, these institutions can be edge servers, routers,
switches, integrated access devices (IADs), and
other devices close to the terminal. In addition,
each institution is considered to be a blockchain
member in alliance blockchain network. In our

framework, each institution is a semitrusted party.
Nodes in an organization are trusted, in other
words, all nodes in an edge network trust each
other, but devices from other organizations are not
trusted. +is characteristic of the alliance chain is
well in line with the situation where there is no
centralized management of different heteroge-
neous hardware in the edge computing
environment.

(2) +emobile user is the owner of the data.+ey belong
to different agencies and want to share data through
these agencies.

(3) Nodes are controlled by blockchain members. +ey
run several different algorithms to maintain a
common ledger that records all verification
information.

4.3.2. Edge Controller Layer. +e second layer is the edge
control layer. +is layer is composed of multiple edge clouds
and edge nodes, providing end users with diversified edge
services (such as real-time data processing in public safety,
intelligent networked vehicles and autonomous driving, VR,
industrial Internet of things, smart home, and other ap-
plications) and related data storage and management ser-
vices. As shown in Figure 5, five edge clouds Org1, Org2,
Org3, Org4, and Org5 distributed in different geographical
locations have established mutual trust connections with
each other, and each edge cloud provides different edge
services for end users. A more important function is that all
members jointly maintain a blockchain database that pro-
vides public audit services for end users at the user level.
Finally, they manage the migration scheduling on all edge
servers and clusters on theWAN.+e edge service scheduler
at this layer is responsible for scheduling offloading services
across edge servers or clusters. +e scheduling parameters
include but are not limited to the following 4 items: (1) the
physical location of the edge server; (2) performance data
collection of edge servers and service migration decisions;
(3) bandwidth and latency perceived by the terminal user;
and (4) the authentication service is used to verify the
identity of the edge server and the terminal user.

4.3.3. User Layer. +e third layer is the end user. End users
are Linux mobile devices running mobile applications on
Android, iOS, Windows, or other platforms. Users register
at this layer and upload the edge services and data they share
and use. +e migration process of edge services is trans-
parent to end users, and mobile devices can use WiFi or LTE
to access edge nodes or edge controllers.

4.3.4. Security Attributes. +e Falcon framework meets the
following security features:

(1) Confidentiality of data: shared data are not visible to
blockchain nodes. In our solution, the blockchain
node maintains a blockchain database that records
shared data verification information. Nodes should

Node 2
50

Node 5

Node 4Node 3

Node 1

15
60

30

5 2

10

Figure 4: Task migration diagram.

Mobile Information Systems 9



verify the correctness of the shared data, but they
should not get real data.

(2) Anonymity: data owners want to share data without
disclosing their true identities because the data may
contain personal privacy information. To protect
user privacy, data should be shared anonymously.

(3) Traceability: in some cases, when the edge service is
maliciously attacked and tampered with, the man-
ager at the edge control layer can track the true
identity of the malicious user.

(4) Publicly verifiable: all users can verify the integrity of
the shared data without the need for a trusted third
party.

4.4. PBFT Algorithm. In order to prevent malicious nodes
from attacking during the service migration process in the
MEC environment, and to avoid blind trust in the integrity
assurance claimed by cloud operators, the blockchain network
adopted by our proposed Falcon framework is based on the
alliance chain. However, the traditional consortium chain
mostly uses the PBFT algorithm as the basic consensus al-
gorithm [43, 44], which uses a three-stage submission process
to be divided into preprepare, prepare, and commit. As shown
in Figure 6, the consensus process of the PBFTalgorithm [45]
in a view is mainly divided into the following steps:

(1) +e client initiates a consensus request to the master
node of the consensus network

(2) When the master node receives the request from the
client, it broadcasts the request to other replica nodes
through the network

(3) All replica nodes need to perform a Prepare and
Commit process between each other

(4) All replicas need to execute the request and reply
back to the client

(5) Because the maximum number of Byzantine nodes
in the network is f, the client needs to wait for f+ 1
different nodes to return the same result before
confirming that the entire network reaches a
consensus

4.5. Analysis and Improvement of PBFT Algorithm. From a
detailed analysis of the PBFTprocess, it can be seen that the
existing PBFT algorithm has the following deficiencies:

(1) +e client only sends requests to the master node. If
there are too many request messages, the master
node may be overloaded and the availability will be
reduced, which is not suitable for the P2P network
environment of the blockchain.

(2) Although the checkpoint protocol solves the re-
covery of certificate information to reduce memory
overhead. However, the certificate is cleared after
regular negotiation through the network-wide
consistency process. +is process is carried out in a

Public audit service layer Blockchain network

Auditing
request

Org1

Org2
Org5

Org4
Org3

Data flow

Store server
Data share layer

Auditing result:
authentication information

Moving Moving

User layer

Authentication
information

Figure 5: Blockchain-based service migration framework.

10 Mobile Information Systems



three-stage submission process, which will cause a lot
of unnecessary communication waste.

(3) +e PBFT algorithm does not have a relatively
complete data backup and synchronization process.
As time goes by, the data between different nodes are
relatively large.

To sum up the three reasons, the three-phase commit
protocol of PBFT requires a relatively large network
transmission and communication overhead, which needs to
be further optimized. We use the improved PBFT algorithm
(IPBF algorithm). Make the following changes:

(1) Modification of the checkpoint protocol: this paper
clears the certificate based on the timestamp of the
best block in the blockchain. +e improvement we
propose is to clear the block from the timestamp of
the best block in the blockchain. +e blockchain is
connected in the form of a linked list according to the
generation time of the block, so a certificate before a
block timestamp has been verified, and the relevant
status of the node has been broadcast and can be
cleared. We can listen on the block addition event.
When a block is added to the blockchain, the cer-
tificate before the block timestamp in the node is
cleared. +is clearing process does not require nodes
to communicate with each other, and it can also
ensure that the certificates are cleared in time,
thereby reducing communication overhead. Fun-
damentally, it improves block throughput.

(2) Change the client’s single point submission request
to the master node, and broadcast the signed

transaction data to the entire network. +is way is
more suitable for P2P environment.

(3) Add data synchronization and verification process,
and perform data synchronization after the master
node election is completed. During synchronization,
the slave node verifies the synchronization data. If
the verification is passed, the new master node is
officially recognized and the next consensus process
begins.

5. Experiment and Result Analysis

In this section, we introduce experiments and result analysis.
In the designed simulation experiment, an edge service
migration experiment was performed on the Falcon
framework to evaluate the effectiveness of the migration
algorithm and further compare it with the service migration
based on the docker container. Secondly, the improved
blockchain is used to compare throughput by sending batch
transactions and creating accounts and compare the ex-
perimental results with Ethereum, which has not improved
the BPFT consensus algorithm.

5.1. Experimental Settings. +is research is to simulate the
migration framework in part of the server clusters in the
China National High Performance Computing Center
(Xi’an). +e cluster server configuration information is
shown in Table 1. +e cluster includes three types of server
nodes with different computing resource configurations to
simulate devices with different node performance in the edge

Primary node Replica node 1 Replica node 2 Replica node 3

Primary node Replica node 1 Replica node 2 Replica node 3

Primary node Replica node 1 Replica node 2 Replica node 3

Primary node Replica node 1 Replica node 2 Replica node 3

Execute

Preprepare

Prepare

Commit

Figure 6: PBFT three-phase submission process.

Mobile Information Systems 11



network. Among them, the type A server has the highest
CPU and memory resource configuration, the type B server
has the lowest CPU and memory resource configuration,
and the type C server has medium CPU and memory re-
source configuration. We use three A and B servers and two
C servers.

5.2. Experimental Design. We implemented a Falcon pro-
totype system to simulate the migration of edge services
composed of a group of mobile agents from one host to
another. +e framework uses IBM Aglet (Aglet, 2016) as a
mobile agent development platform. Aglet is a mobile agent
program written in pure Java language for building mobile
agent applications. A mobile agent is an executable program
that runs in a specific environment. After creation, it can be
deployed, migrated, executed, and finally destroyed after the
task is completed. Technically, the aglet mobile agent can be
executed on any information host that supports the Java
virtual machine. +e aglets server (called Tahiti) [22] is
installed on the remote host, and it provides the aglet ex-
ecution environment for any mobile agent to reach the local
machine. As mentioned in the model in the previous section,
Falcon built an event decision management program (EDS),
resource management program (RMS), and a data man-
agement service program (DMS), and finally , we have
developed a decentralized blockchain trust management
service, which has a trust authorization mechanism. Aglets
can communicate with other aglets, and different agents use
the message interaction method provided by the agent to
communicate.

In the Falcon framework, the service migration decision
is made by EDS, and a group of services is migrated through
the migration decision algorithm. As shown in Table 2, 8
mobile agents A1, A2, . . ., . . ., A8 are created in a service
group, and each agent belongs to a different type. +ese
agents are assigned to corresponding information hosts that
meet the requirements to provide users with edge services.
We assume that these 8 agents are initially executed on the
same host. +eir constraint rules include the following:

(1) A1, A2, and A3 are cooperative in information
processing and must be migrated to the same in-
formation host

(2) +e function of A4 depends on A5 and A6
(3) A7 and A8 are atomic operations due to security

considerations and run separately (data management
library service, database connection provided)

5.3. Edge Service Migration Time Comparison. In order to
compare the efficiency of agent-based service migration
time, we compare it with the current advanced docker
container migration technology. Docker container migra-
tion is based on the user-level process checkpoint and re-
covery tool CRIU (Checkpoint/Restore In Userspace) [20].
We use CRIU to checkpoint the process, freeze the running
container process, and then transfer the status data to the
destination host for recovery. CRIU also provides a structure
called action script, which allows any script to be executed

before the container is selected and thawed. +erefore, we
design a callback method in the action script to restore the
container state. In the test equipment list in Table 1, we have
8 servers under the Type A server list, and the docker
container running on each server contains video analysis
and face recognition programs. +e video parsing and face
recognition programs were compared through the two
methods of mobile agent and docker container migration,
respectively. By using Wondershaper, different bandwidths
for testing were adjusted to simulate different network
conditions of edge services. +e experimental use case is as
follows:

(1) Face recognition: we designed a face recognition
service as an edge service, using OpenCV [46] to
identify images. +is service can identify the facial
attributes (expressions, ages, genders, etc.) of people
on pictures by calling api. Since end users are mobile
users, dynamic changes in mobile computing re-
sources are one of the factors that affect user QoS. In
addition, when the user moves, the quality of service
and network conditions will change, and the com-
munication process needs to maintain ultra-high
reliability.

(2) Video streaming: considering different user needs,
user mobility, and dynamic network environment,
we have prepared video decoding services. Due to the
different video definitions under different resolu-
tions, the requirements for decoding are also dif-
ferent. We use three different resolution edge
services, namely, high, medium, and low. When the
user moves, the edge device node judges whether to
perform task migration according to the service
quality, and the solution of task migration. For ex-
ample, when the user moves to another edge node
and is not sure of long-term or short-term stay, the
low-resolution video decoding task can be migrated
first. In the case of long-term user stays, high-res-
olution services can be provided to avoid untimely
migration and waste of resources.

Figure 7 shows the comparison of the decoding time of
video files of different sizes in 3 resolutions. It can be seen
that it takes more time to decode video with high resolution
and high quality of service. +is is because we provide video
services with different service qualities for users in different

Table 1: Laboratory equipment list.

Server
type Type A Type B Type C

Number 3 3 2

CPU 2 ∗ Xeon E5430
2.66GHz

2 ∗ Xeon E5310
1.6GHz

2∗ Xeon E5410
2.33GHz

Core 8 8 8
Memory
(GB) 16 8 8

Storage 2 ∗ 146GB SCSI
disk 146GB SCSI disk

Network 1 ∗ 100Mbps, 1 ∗ 1000Mbps ethernet

12 Mobile Information Systems



geographical network environments in edge services. Fig-
ure 8 shows the comparison of migration time between
docker container and agent-based facial recognition in edge
services. Due to its lightweight and its own mobile charac-
teristics, mobile agents are more suitable as carriers for edge
service migration. By comparison, it is found that agent-based
service migration has a shorter migration time than tradi-
tional container migration. And when the bandwidth reaches
a certain limit, the migration time basically stabilizes.

5.4. Energy Consumption Comparison. Figures 9(a) and 9(b)
compares the CPU and memory usage during service mi-
gration based on mobile agent and service migration based
on docker container. It can be seen that mobile agents are
more efficient than docker migration and consume less
computing and memory resources. Figure 10 shows a face
recognition result seen at the target node after migration.
+e results show that the agent-based edge service migration
adopted by Falcon can make decisions based on system
conditions and migrate a group of services to the new edge
server, maintaining a high QoS for users.

5.5. Security Service Migration Simulation. To test Falcon’s
mutual trust establishment and smart contract functions
during the migration of multiple edge cloud services, we
used the Ethereum platform to build a secure service mi-
gration framework. Ethereum is the best development
platform for blockchain. For better performance, this article
uses Truffle to test the Ethereum framework and uses So-
lidity language to write smart contracts to achieve trust
verification of multiple edge clouds. Finally, run smart
contracts on the blockchain. +e process of building a smart
contract in a security framework is shown in Figure 11.

We have introduced a traceability and verification
module for the joining and leaving process of the edge
cloud in the blockchain system of Falcon, which is
compiled and deployed to the blockchain network. +en
use TestRPC to simulate access to the Ethereum envi-
ronment in the Eclipse platform. Finally, the various
functions of the smart contract were debugged under the
truffle framework to ensure the security of service mi-
gration under multiple edge clouds. Next, we create 1000
accounts and count the time spent by sending transaction
requests to test the throughput of the modified block-
chain. Specific steps are as follow:

(1) Ethereum uses the admin.addPeer (enode) method
to connect each edge cloud to form a consortium
chain. After starting Ethereum on each node, create
an account and address.

(2) We use nodejs scripts to send http requests to the
blockchain network for account creation and
transaction operations. +e instructions can contain
parameters such as different transaction quantities
and observe the resource consumption of the system
under different conditions and the TPS performance
of the blockchain. TPS value (transaction per sec-
ond) can be expressed as follows:

Table 2: Agent distribution.

Server type Type A Type B Type C
Number 3 3 2
Agents A1, A2, A3 A4, A5, A6 A7, A8

Ti
m

e (
s)

800

High
Medium
Low

600

400

200

0 200 400 600 800 1000
Size (MB)

1200 1400 1600

0

Figure 7: Video decoding time comparison under different service
qualities.

10 20 30 40 50 60
Bandwidth (Mb/s)

70 80 90 100

Ti
m

e (
s)

100
90
80
70
60
50
40
30
20
10

Docker time
Agent time

Figure 8: Comparison of migration time.

Mobile Information Systems 13



TPS �
TransactionsΔt

Δt

. (5)

TransactionsΔt
is the number of transactions pro-

cessed by the system within the block time and Δt is
the block time. It can be seen from formula (5) that
the throughput increases as the capacity of each

block increases, but as the block capacity increases,
the consensus time and network load will also in-
crease. When it reaches a certain level, the
throughput will decrease. As shown in Figure 12,
when the number of transactions is 7000–8000, the
throughput decreases. However, the overall
throughput of the blockchain with the original

100

CP
U

 u
til

iz
at

io
n 

(%
)

80

60

40

20

0

15
:2

6:
30

15
:2

7:
01

15
:2

7:
34

15
:2

8:
06

15
:2

8:
36

15
:2

9:
06

15
:2

9:
36

15
:3

0:
06

15
:3

0:
37

15
:3

1:
07

Time

Mobile agent
Docker

CPU utilization analysis

(a)

72

15
:2

6:
30

15
:2

7:
01

15
:2

7:
34

15
:2

8:
06

15
:2

8:
36

15
:2

9:
06

15
:2

9:
36

15
:3

0:
06

15
:3

0:
37

15
:3

1:
07

M
em

or
y 

ut
ili

za
tio

n 
(%

) 70

68

66

64

62

Time

Docker
Mobile agent

Memory utilization analysis

(b)

Figure 9: Comparison of energy consumption between CPU and memory. (a) Comparison of CPU usage. (b) Comparison of memory
usage.

Figure 10: Face recognition results.

Invoke the frame of
truffle:

initialization process

Using Solidity language
to write the smart

contact:code:...

Transaction[nonce,
Gasprice,gaslimit,

To = Null,
value = Code,vrs]

Interacts with TestRPC Java TestApplication

Truffle init Truffle
migrate

Truffle
console

Remote
procedure call

Figure 11: Construction of a smart contract.

14 Mobile Information Systems



unimproved consensus algorithm has been greatly
improved, which can satisfy the mutual trust oper-
ation between multiple edge networks.

(3) Due to the performance of the machine, the data
obtained by only one test have a certain degree of
randomness and uncertainty. +erefore, this ex-
periment gradually increases the number of trans-
action requests in the http request in the test script,
performs transaction processing under 1000–10000
cases, and takes the average of the two test results as
the TPS performance in this case to find the average.
Compare the TPS value. +e test process is shown in
Figure 12.

Figures 13(a) and 13(b) compare the throughput and
time consumption of sending transactions and creating
accounts between the EPBFT blockchain system after Fal-
con’s improved consensus algorithm and the unimproved
system. +e comparison results show that the blockchain

system after the improved consensus algorithm has a higher
throughput, which is 23% higher than the average
throughput of the alliance chain without the improved
consensus algorithm. +e main reason is that we have op-
timized the process of clearing certificates and submitting
methods after regular PBFT negotiation. +e EPBFT algo-
rithm clears the certificate based on the timestamp of the
optimal block in the blockchain, which significantly im-
proves throughput. Obviously, Falcon uses blockchain
technology in an edge cloud environment that lacks cen-
tralized management of different heterogeneous hardware,
which can make the migration of edge services in a dynamic,
open, and collaborative MEC network environment more
secure and reliable. +e Falcon framework we proposed is
safer in the absence of a trusted third-party environment and
is more suitable for practical applications. It provides a
feasible solution for other problems such as computing
offloading and edge caching in the future edge computing
environment.

Figure 12: +roughput test.

TP
S

1400

10
0

50
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

1200

1000

800

600

400

200

0

Total transactions

PBFT
IBFT

42
174

326

500
553

755
843

933
1057 1017

1155
1218

50

217

365

610
713

911

1049
1157

1286 1286

1424 1447

(a)

PBFT
IBFT

To
ta

l t
im

e

200

5 10 15 20 25 30 35 40 45 50

175

150

125

100

75

50

25

0

Accounts

15.271
29.344

44.845
45.123

68.809
60.932

84.421
75.54

113.828

92.886

127.315

108.375

149.681

122.614

173.338

140.395

191.848

154.497

213.415

22.778

(b)

Figure 13: Falcon framework performance comparison. (a) Comparison of throughput of sending transactions. (b) Comparison of
throughput of account creation.

Mobile Information Systems 15



6. Conclusion

In this work, we first proposed a blockchain-based edge
service migration framework Falcon, which uses a group of
cooperative mobile agents as the service migration carrier to
make the service edge service migration more flexible, and
designed a service migration decision-making algorithm,
aiming to minimize the cost and better service quality for
user service migration. Secondly, with regard to the security
of service migration, we present that blockchain technology
establishes mutual trust, and multiple edge clouds jointly
maintain a consortium chain network to avoid trust and
security between edge devices without unified management,
providing reliability for edge service migration. Finally,
through theoretical analysis and experimental simulation,
Falcon is more efficient and has higher service quality than
service migration based on docker containers and has great
potential as a method for next-generation service migration.

In future work, we are interested in modeling the re-
lationship between Falcon’s work performance, resource
consumption, and parameter configuration. Furthermore,
Falcon currently does not support any artificial intelligence
technology to control operations in different infrastructures,
thereby improving the flexibility of the system. +e addition
of artificial intelligence technology may be an important
contribution of Falcon.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is work was supported in part by the National Key Re-
search and Development Program of China under Grant no.
2017YFB0203003, the National Natural Science Foundation
of China under Grant nos. 91630206 and 61672423, and the
Science and Technology Programs of Henan Provincial
Department of Transportation no. 2019J-2-5.

References

[1] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-efficient
dynamic computation offloading and cooperative task
scheduling in mobile cloud computing,” IEEE Transactions on
Mobile Computing, vol. 18, no. 2, pp. 319–333, 2019.

[2] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Col-
laborative mobile edge computing in 5G networks: new
paradigms, scenarios, and challenges,” IEEE Communications
Magazine, vol. 55, no. 4, pp. 54–61, 2017.

[3] S. S. Gill, S. Tuli, M. Xu et al., “Transformative effects of IoT,
blockchain and artificial intelligence on cloud computing:
evolution, vision, trends and open challenges,” Internet of
Aings, vol. 8, Article ID 100118, 2019.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
vision and challenges,” IEEE Internet of Aings Journal, vol. 3,
no. 5, pp. 637–646, 2016.

[5] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for
energy-constrained mobile edge computing in small-cell
networks,” IEEE/ACM Transactions on Networking, vol. 26,
no. 4, pp. 1619–1632, 2018.

[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A
survey on mobile edge computing: the communication per-
spective,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 4, pp. 2322–2358, 2017.

[7] M. Chen and Y. Hao, “Task offloading for mobile edge
computing in software defined ultra-dense network,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 3,
pp. 587–597, 2018.

[8] C.-H. Hong and B. Varghese, “Resource management in fog/
edge computing: a survey on architectures, infrastructure, and
algorithms,” ACM Computing Surveys, vol. 52, no. 5, pp. 1–37,
2019.

[9] H. Li, G. Shou, Y. Hu, and Z. Guo, “Mobile edge computing:
progress and challenges,” in Proceedings of the 2016 4th IEEE
International Conference on Mobile Cloud Computing, Ser-
vices, and Engineering (MobileCloud), pp. 83-84, Oxford, UK,
March 2016.

[10] M. Mukherjee, R. Matam, L. Shu et al., “Security and privacy
in fog computing: challenges,” IEEE Access, vol. 5,
pp. 19293–19304, 2017.

[11] M. Chen, W. Li, G. Fortino, Y. Hao, L. Hu, and I. Humar, “A
dynamic service migration mechanism in edge cognitive
computing,” ACM Transactions on Internet Technology,
vol. 19, no. 2, pp. 30:1–30:15, 2019.

[12] Z. Gao, Q. Jiao, K. Xiao, Q. Wang, Z. Mo, and Y. Yang, “Deep
reinforcement learning based service migration strategy for
edge computing,” in Proceedings of the 2019 IEEE Interna-
tional Conference on Service-Oriented System Engineering
(SOSE), pp. 116–1165, San Francisco, CA, USA, April 2019.

[13] V. De Nitto Personè and V. Grassi, “Architectural issues for
self-adaptive service migration management in mobile edge
computing scenarios,” in Proceedings of the 2019 IEEE In-
ternational Conference on Edge Computing (EDGE), pp. 27–
29, Milan, Italy, July 2019.

[14] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: a survey,” IEEE Internet of Aings Journal, vol. 5,
no. 1, pp. 450–465, 2018.

[15] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis,
“Live service migration in mobile edge clouds,” IEEE Wireless
Communications, vol. 25, no. 1, pp. 140–147, 2018.

[16] W. Lu, X. Meng, and G. Guo, “Fast service migration method
based on virtual machine technology for MEC,” IEEE Internet
of Aings Journal, vol. 6, no. 3, pp. 4344–4354, 2019.

[17] G. Sun, D. Liao, V. Anand, D. Zhao, and H. Yu, “A new
technique for efficient live migration of multiple virtual
machines,” Future Generation Computer Systems, vol. 55,
pp. 74–86, 2016.

[18] L. F. Bittencourt, M. M. Lopes, I. Petri, and O. F. Rana,
“Towards virtual machine migration in fog computing,” in
Proceedings of the 2015 10th International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing (3PGCIC),
pp. 1–8, Krakow, Poland, November 2015.

[19] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient live migration of
edge services leveraging container layered storage,” IEEE
Transactions on Mobile Computing, vol. 18, no. 9, pp. 2020–
2033, 2019.

[20] Criu, 2017, https://criu.org/Maintext{_}Page.

16 Mobile Information Systems

https://criu.org/Maintext{_}Page


[21] Y. Tian, J. Yuan, and H. Song, “Efficient privacy-preserving
authentication framework for edge-assisted internet of
drones,” Journal of Information Security and Applications,
vol. 48, Article ID 102354, 2019.

[22] P. Gope and B. Sikdar, “An efficient privacy-preserving au-
thenticated key agreement scheme for edge-assisted internet
of drones,” IEEE Transactions on Vehicular Technology, p. 1,
2020.

[23] S. Alami-Kamouri, G. Orhanou, and S. Elhajji, “Overview of
mobile agents and security,” in Proceedings of the 2016 In-
ternational Conference on Engineering MIS (ICEMIS), pp. 1–5,
Agadir, Morocco, September 2016.

[24] R. J. C. D. F. S. Iqbal, Aglets User Manual, http://aglets.
sourceforge.net.Akuma, 2016.

[25] Y. Zuo and J. Liu, “A reputation-basedmodel for mobile agent
migration for information search and retrieval,” International
Journal of Information Management, vol. 37, no. 5, pp. 357–
366, 2017.

[26] M. G. R. Alam, Y. K. Tun, and C. S. Hong, “Multi-agent and
reinforcement learning based code offloading in mobile fog,”
in Proceedings of the 2016 International Conference on In-
formation Networking (ICOIN), pp. 285–290, Kota Kinabalu,
Malaysia, January 2016.

[27] S. Alami-Kamouri, G. Orhanou, and S. Elhajji, “Mobile agent
service model for smart ambulance,” in Cloud Infrastructures,
Services, and IoT Systems for Smart Cities, A. Longo,
M. Zappatore, M. Villari et al., Eds., pp. 105–111, Springer
International Publishing, Cham, Switzerland, 2018.

[28] Y. Zuo and J. Liu, “Mobile agent-based service migration,” in
Proceedings of the 2015 12th International Conference on
Information Technology—New Generations (ITNG), pp. 8–13,
IEEE Computer Society, Las Vegas, NV, USA, April 2015.

[29] W. Jiang, Y. Wang, Y. Jiang, J. Chen, Y. Xu, and L. Tan,
“Research on mobile internet mobile agent system dynamic
trust model for cloud computing,” China Communications,
vol. 16, no. 7, pp. 174–194, 2019.

[30] P. Desai and N. Jayakumar, “A survey on mobile agents,”
International Journal for Research in Applied Science and
Engineering Technology, vol. 5, pp. 2915–2919, 2017.

[31] H. Niu and Y. Liu, “A mobile agent-based task seamless
migration model for mobile cloud computing,” in Proceedings
of the 2014 IEEE Workshop on Advanced Research and
Technology in Industry Applications (WARTIA), pp. 241–246,
Ottawa, Canada, September 2014.

[32] A. Belghiat, E. Kerkouche, A. Chaoui, and M. Beldjehem,
“Mobile agent-based software systems modeling approaches:
a comparative study,” Journal of Computing and Information
Technology, vol. 24, no. 2, pp. 149–163, 2016.

[33] R. Wang, Y. Cao, A. Noor, T. A. Alamoudi, and R. Nour,
“Agent-enabled task offloading in UAV-aided mobile edge
computing,” Computer Communications, vol. 149, pp. 324–
331, 2020.

[34] C. Yang, X. Chen, and Y. Xiang, “Blockchain-based publicly
verifiable data deletion scheme for cloud storage,” Journal of
Network and Computer Applications, vol. 103, pp. 185–193,
2018.

[35] H. Huang, X. Chen, and J. Wang, “Blockchain-based multiple
groups data sharing with anonymity and traceability,” Science
China Information Sciences, vol. 63, no. 3, Article ID 130101,
2019.

[36] R. Zhang, R. Xue, and L. Liu, “Security and privacy on
blockchain,” ACM Computing Surveys, vol. 52, no. 3, pp. 51:
1–51:34, 2019.

[37] H. Huang, K.-C. Li, and X. Chen, “Blockchain-based fair
three-party contract signing protocol for fog computing,”
Concurrency and Computation: Practice and Experience,
vol. 31, no. 10, Article ID e4469, 2018.

[38] E. Gaetani, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri,
and V. Sassone, “Blockchain-based database to ensure data
integrity in cloud computing environments,” in Proceedings of
the ITASEC, Venice, Italy, January 2017.

[39] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne,
“Integration of blockchain and cloud of things: architecture,
applications and challenges,” IEEE Communications Surveys
and Tutorials, 2019.

[40] S. Huh, S. Cho, and S. Kim, “Managing IoT devices using
blockchain platform,” in Proceedings of the 2017 19th Inter-
national Conference on Advanced Communication Technology
(ICACT), pp. 464–467, Bongpyeong, South Korea, February
2017.

[41] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab,
L. Maglaras, and H. Janicke, “Blockchain technologies for the
internet of things: research issues and challenges,” IEEE In-
ternet of Aings Journal, vol. 6, no. 2, pp. 2188–2204, 2019.

[42] A. Singh, R. M. Parizi, Q. Zhang, K. R. Choo, and
A. Dehghantanha, “Blockchain smart contracts formalization:
approaches and challenges to address vulnerabilities,” Com-
puters & Security, vol. 88, Article ID 101654, 2020.

[43] K. Zheng, Y. Liu, C. Dai, Y. Duan, and X. Huang, “Model
checking PBFT consensus mechanism in healthcare block-
chain network,” in Proceedings of the 2018 9th International
Conference on Information Technology in Medicine and Ed-
ucation (ITME), pp. 877–881, Hangzhou, China, October
2018.

[44] H. Sukhwani, J. M. Mart́ınez, X. Chang, K. S. Trivedi, and
A. Rindos, “Performance modeling of PBFT consensus pro-
cess for permissioned blockchain network (hyperledger fab-
ric),” in 2017 IEEE 36th Symposium on Reliable Distributed
Systems (SRDS), pp. 253–255, Hong Kong, China, September
2017.

[45] S. Sasirekha and S. Swamynathan, “Cluster-chain mobile
agent routing algorithm for efficient data aggregation in
wireless sensor network,” Journal of Communications and
Networks, vol. 19, no. 4, pp. 392–401, 2017.

[46] Opencv User Manual, 2018 https://docs.opencv.org/4.2.0/d9/
df8/tutorialtext{_}root.html.

Mobile Information Systems 17

http://aglets.sourceforge.net.Akuma
http://aglets.sourceforge.net.Akuma
https://docs.opencv.org/4.2.0/d9/df8/tutorialtext{_}root.html
https://docs.opencv.org/4.2.0/d9/df8/tutorialtext{_}root.html

