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,e pervasive presence of smartphones has emerged as one of the key elements for sensing people contextual information. ,eir
sensors and communication capabilities can be used to gather a huge amount of data. Such capabilities have made it possible to
compose profiles of people by relating different parameters such as time and location. ,is paper contributes in this sense by
providing the basis for the composition of temporal proximity patterns—when and whom people share their time with each other.
For this purpose, the Bluetooth Low Energy (BLE) advertisement protocol was used. ,e contribution of this work departs from
that of those who use BLE technology focused on measuring the intensity of the signals to, for example, determine distances. In
this field, a huge amount of work has been already done with very interesting results. Instead, in this work, BLE is used to emit and
sense the presence of people. A set of algorithms are then used inside the smartphones to analyse the data gathered and to detect
proximity patterns between people. ,is scenario avoids the difficulties that appear in other works—like those focused on people
positioning—derived from the lack of precision of the sensors and the differences between BLE chipsets. Tests to evaluate the
consumption, precision, and reliability of using this technology, together with the proposed algorithms, confirmed the feasibility
of the approach. In addition, the proposal has proved very useful for the automatic construction of social networks based on
physical closeness of people.

1. Introduction

,e pervasive presence of smartphones, which include a
wide range of sensors, has enabled the massive gathering of
information from people. ,is information has been proved
useful in many situations, as demonstrated by the interest of
large corporations such as Google, Facebook, and Amazon
in gathering as much information as possible from their
users.

Similarly, the work presented in this paper is part of a
research initiative of the authors about sensing contextual
information from people. In previous works, the authors
presented a model with which to build virtual profiles of
people including their routines of movement and outdoor

positioning [1], as well as fine-grained indoor positioning
[2].

,e goal of the present work is to estimate whom users
share their time with. ,is information is still missing in
most approaches considering the development of virtual
profiles of people, although it is of interest for social net-
works and other companies [3]. To do that, we propose an
approach to detect proximity and accompaniment patterns
between people based on the use of the Bluetooth Low
Energy (BLE) protocol [4]. ,is proposal follows the People
as a Service (PeaaS) paradigm [5], in which the increasing
capabilities of smartphones are used to collect information,
with the aim of using it to provide rich contextual services
about their owners.
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Dozens of datasets about people’s geopositioning and
mobility are publicly available. ,ey gather very different
kinds of data, ranging from places of birth vs. places of
residence or long-distance travelling to urban mobility,
traffic events, cabs, running, or biking traces. Focusing on
those more fine-grained, most of them contain information
coming from GPS sensors (for instance, Geolife (Geolife.
https://www.microsoft.com/en-us/download/details.aspx?
id�52367) or Cabspotting (Cabspotting. http://crawdad.org/
∼crawdad/epfl/mobility/20090224/cab/)). ,ere are only a
few exceptions, such as the dataset from the roadway net-
work of the city of Austin (TX) (Austin’s Bluetooth Travel
Sensors–Individual Address Files (IAFs)), that contain in-
formation coming from BLE devices.We have not found any
dataset specifically related to the proximity between indi-
viduals, although this information could be inferred to a
certain extent from some of the sources considered. For
instance, MDC (Mobility Data Challenge (MDC). https://
www.idiap.ch/dataset/mdc) is a dataset collected in the
Geneva Lake area between 2009 and 2011 containing GPS
positions from the smartphones of a group of volunteers.
,ese, and other private datasets, have been used for ana-
lysing different aspects of human mobility and interaction
between people in different scenarios [6–9] (see [10] for a
broad review in the field), including repeated patterns of
movement [11].

In the literature, we can also find several approaches for
detecting when two or more people are together [12–14].
,ey differ on how information about the proximity of users
is collected. ,e pervasive presence of smartphones means
that solutions based entirely on their capabilities have several
advantages. One is the minimal cost of their deployment and
maintenance, since users already have their own smart-
phones, and they take care of keeping them always in
working condition. Other advantages are that they require
no specific infrastructure, and the fact that they can work
similarly both indoors and outdoors so that they are usable
in almost any environment without previous
instrumentation.

Although some previous studies have used Bluetooth
detection for inferring connections or relationships between
people [15–18], these works involve the use of a greater
number of sensors, signals, or, even, ad hoc devices. ,is
paper presents the results of an implementation of such an
approach using only smartphones’ BLE sensing capabilities.
It is important to notice that our goal is not to use BLE in
order to obtain accurate measurements of the distance
between people or to improve the positioning information of
the users, but to determine when they are close enough to
infer that they are together, and how long this accompa-
niment lasts. Hence, we consider proximity more as a
boolean condition, than as a precise measurement of dis-
tance. Having a simple and efficient way of obtaining these
patterns would allowmobile application developers to create
new context-aware applications with a profound impact in
several domains like social networking or eldercare.

Nevertheless, in order to assess the feasibility of the
proposed system, we have analysed its most relevant fea-
tures. In particular, in this paper, we have evaluated the

precision with which the proposed system assesses the
proximity of other people, its reliability under different
circumstances, and its consumption of the smartphone’s
resources, especially the battery. Results show that the BLE
capabilities of smartphones can be successfully used to
gather information about the proximity between people.

Most of the previous related work was applied to the
elderly care context [19], gathering information about in-
door and outdoor positioning of the elderly person. ,e
work proposed here can be used in a similar context. Indeed,
knowing whom the elderly share their time with is useful in a
wide range of situations. For instance, an alarm can be raised
when they are alone or not close to their caregivers. On the
contrary, the alarm can be avoided when they are accom-
panied by a known caregiver even if they are outside their
safe area. Nevertheless, our proposal represents a more
general solution for detecting temporal patterns of prox-
imity between people, applicable to scenarios different from
caregiving, such as social networks that have a similar
setting. ,e knowledge obtained from these patterns can be
enriched by combining them with GPS positioning. ,is
would enable the determination of routine patterns of when,
where, and with whom someone shares their time and use
this information to forecast their future behaviour.

,e rest of this paper is organized as follows. After this
introduction, Section 2 presents the motivation of this work
and describes the most relevant related works. ,en, Section
3 presents the proposed system to use BLE to gather in-
formation about the temporal proximity between users.
Section 4 describes the experimental validation of the ap-
proach. ,is involves monitoring its precision, consump-
tion, and reliability. Finally, Section 5 discusses the results
and draws some conclusions from the study.

2. Background

,e main goal of gathering contextual information about a
system’s users is for the system to take this context into
account, to learn from it, and to proactively meet the users’
needs with as little intervention on their part as possible.
,ese contextual data are used to infer more complex in-
formation and to create virtual profiles of the users [20, 21].
,ese profiles may then be used to control the system
without direct human interaction [22, 23].

Currently, there are different approaches to create these
virtual profiles (see, for instance, [24–26]). As mentioned
above, the present authors have proposed the PeaaS com-
puting model which relies on smartphones as the key ele-
ment for gathering all the information needed to construct a
virtual profile of their owners [5].

For the goal of adapting systems to the preferences of
their users, the closer to complete these profiles are the better
[27]. Having access to richer virtual profiles allows systems
to react to more complex situations. Hence, virtual profiles
must include a varied set of information. One of the core
elements of most of the proposals for representing user
context that can be found in the literature is location. Lo-
cation coordinates can be used to infer more complex as-
pects of the virtual profiles such as where users are, which are
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their favourite places, which are their movement patterns, or
with whom they spend their time [28, 29]. ,is information
is more relevant every day, especially for social networks and
other social-related areas [3, 30]. ,en, this information can
be combined with other data provided by the smartphone
and other external sensors to infer even more complex
knowledge about the user.

Currently, the location of a smartphone can be estimated
using its GPS sensor. However, GPS precision drastically
decreases when the user is inside a building. Although other
techniques, such as WiFi or 4G networks, could be used
indoors, neither they have great precision so that they would
have only limited use when a person should be located with
accuracy [31], nor they are easily deployed in the wild as
their better results are obtained by fingerprints [32]. As a
consequence, they cannot be used to determine the prox-
imity between users.

Techniques for determining indoor positioning have
improved greatly over the last few years [33]. ,ere are
studies using RFID, which provides face-to-face interaction
detection within 1-2 meters [13, 14], or beacons [34], which
are BLE devices that broadcast information to determine
fine-grained indoor positioning.

However, while this approach is useful in controlled,
instrumented environments, it cannot be used with any
guarantee in more general situations in which beacons are
unavailable or not properly maintained. Additionally, they
only provide information about the individual position of
users and not about who are they with.

To address this issue, in this paper, we present an ex-
tension to our BeaconManagement System [2].,e approach
is to exploit users’ smartphones as both emitting and receiving
BLE beacons. ,ese virtual beacons are therefore able to
detect each other and estimate their relative distances. ,is
information is then used to infer proximity between people.

,is is not the first time, however, that BLE devices have
been used to gather contextual information.,e next section
will summarize the most relevant works.

2.1. BLE for Context Awareness. Gathering user positioning
information in different scenarios has been a topic of interest
for researchers for a long time [35]. In particular, beacon
technology has been specifically designed to improve indoor
positioning. ,e use of this kind of device is therefore of
great benefit for systems that require more precise posi-
tioning information. In [36], the use of beacons to improve
previously existing location-based methods is advocated.
,e authors propose transforming the mobile devices of
users into virtual beacons so that other users might be able to
benefit from improved location information. ,is use of
beacon technology improved previous results without any
relevant detriment to the users whose devices act as beacons.
A similar approach was followed in [37] where personal
devices such as laptops or phones were converted into
beacons to provide proximity location. In this work, the
authors focused on the privacy aspect of having a personal
device acting as a positioning beacon. However, they also

analysed the social interactions between coworkers thanks to
the proximity information.

Performance analyses comparing different protocols
have been made before. In [38], after comparing the per-
formance of BLEwith two other similar protocols, the authors
concluded that BLE provides an inexpensive and power-ef-
ficient solution for small coverage areas. In fact, the authors in
[12, 39, 40] derive mathematical models to study the per-
formance of BLE’s device discovery process, concluding that it
can be drastically improved by implementing different
strategies. However, none of them performed experiments
using smartphones, although from their conclusions we de-
rived and applied some good practices in the presented system
to increase the battery life and to improve its performance.

,e suitability of BLE for these types of scenarios is of
course supported by many research works. In [41], the
authors propose the use of contextual information, in-
cluding indoor positioning mechanisms, to create a system
that fosters social interactions among strangers. ,is pro-
posal makes use of indoor location to improve the quality of
the contextual information gathered. Moreover, in [42], the
authors propose the use of BLE wearable tags in combi-
nation with an application running on commercial mobile
devices to detect social interactions between users.

Similarly, in [43], the authors present four mobile apps
that use BLE to provide contextual relevance and person-
alized experiences for the user. Again, this work’s results
highlight the importance of indoor positioning and how it
can be improved by using beacons. As mentioned above, the
focus of this work is not indoor positioning but an alter-
native use of the BLE technology to determine with whom
the users expend time.

Another example of BLE usage can be found in [44]. Its
authors propose the use of BLE devices to improve the
recognition of the daily activities performed by users of
ambient-assisted living systems. A combination of the user’s
smartphone and other wearable devices together with the
information emitted from a set of physical beacons allowed
the researchers to identify more daily activities than the ones
obtained by the research community in previous works.

Similarly, in [45], the authors propose the use of tra-
ditional Bluetooth communications to estimate proximity
networks between people. ,e main goal was to determine
the social context of a given user based on the state of the
proximity network around him at a given time.

Finally, the present authors previously proposed a
Beacon Management System [2] designed to enrich user
virtual profiles with indoor information in places where
physical BLE beacons are deployed. ,e approach reported
in this work is an extension of such proposal which converts
each smartphone into a virtual beacon and uses the resulting
information to acquire proximity patterns between users.

As can be seen, there is a wide range of related studies in
the field, with some of them even using mobile devices as
virtual beacons for indoor positioning and to measure the
proximity between users. While similarly, in the present
work, our focus is on two main issues that, as far as, the
authors know, they are not covered in previous works. On
the one hand, as will be shown in Section 3, our aim is to be
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able to detect temporal patterns of proximity between users
that are repeated on a (more or less) regular basis using
Bluetooth technologies, so we can determine with whom and
when the users spend time. On the other hand, in Section 4,
we shall describe experiments that we conducted in order to
investigate the limitations of the current state of the tech-
nology. ,e aim is to try to assess whether current smart-
phones acting as virtual BLE beacons can actually be used for
our purposes, and how such use affects their consumption, a
highly relevant question for resource-constrained devices
such as smartphones.

3. Temporal Proximity Patterns

,e work presented in this paper was initially developed to
be part of an elderly care system [1]. ,e system comprises
two mobile apps, one for monitoring cognitively impaired
users/elders who still have some degree of autonomy and the
other for their caregivers. ,e aim of this system is to detect
the user’s everyday routines of location and movement and
to alert their caregiver if a significant deviation is detected.
More recently, we extended our system in order to improve
the contextual information that the user’s app gathers by
adding temporal proximity patterns obtained using BLE.
,is richer information would later be used to better
evaluate the need to send an alarm to a caregiver.

Although originally designed for the elders and their
caregivers, our proposal can be applied to gather temporal
proximity patterns of any kind of user, since such patterns
can be of interest in many other context-awareness sce-
narios. ,erefore, the BLE system to compute the proximity
patterns is presented here independently of the system in
which such information will be used.

,e following sections describe the detailed architecture
of the system, how the proximity data are gathered and
stored, the data model used to describe proximity patterns,
and the algorithms that actually identify those patterns.

3.1. Architecture. Figure 1 details the architecture of the
system. It consists of two kinds of components: a Proximity
Patterns smartphone application and a nimBees server. ,e
nimBees (http://nimbees.com/) platform is a commercial
implementation of the PeaaS paradigm. For our purposes, it
is mainly used for user registration, but it can also serve for
indirect communication between users or for matching the
received BLE packets with the registered users. It has a fixed,
well-defined service entry point—the nimBees API—into
which every mobile device involved in a given application
must register in order to authenticate and provide infor-
mation about itself and to retrieve information about the rest
of the devices connected to that application.

Our proximity pattern application takes advantage of the
existing nimBees implementation. However, it could be
replaced by an alternative implementation.

,emain component of the architecture is the Proximity
Patterns smartphone application. ,is app converts users’
smartphones into both advertising and scanning devices as
defined in the BLE protocol. Each smartphone will

periodically emit an advertising packet, while it also listens
for and scans packets from other BLE advertising devices.
,us, all the smartphones behave symmetrically and ex-
change information cooperating in a P2P architecture.

,e Contextual Information component is responsible
for capturing and recording the advertising packets received.
It comprises two modules: the Accumulator and the
Timeline. ,e Accumulator module scans the raw infor-
mation included in the advertising packets, in particular, the
identifier of the user sending the packet and an estimation of
the distance to that user, derived from the strength of the
received signal. ,e information gathered is stored in the
Timeline component, which sequentially organizes the ac-
quired information.

Figure 2 shows a plot of the information stored in the
Timeline component corresponding to the different ad-
vertising packets that a smartphone received during a period
of time. By combining these packets in the Timeline, the
system is able to track the temporal course of the proximity
of different users. ,e green line in the figure represents the
proximity of a family member going for a walk with the
elder. A similar proximity line would be stored in the
Timeline of the family member’s smartphone. ,e dark blue
line represents the proximity of a caregiver, and the light
blue one refers to the proximity of another elder, both of
whom spent some time close to the elder in a daycare facility.

,e Virtual Profile component is divided into two
modules: the Analyser and the Proximity Patterns store. ,e
Analyser is responsible for periodically analysing the in-
formation stored in the Timeline in order to identify tem-
poral proximity patterns. It implements an algorithm which
evaluates the BLE packets of information stored in the
Timeline in order to identify sequences of packets corre-
sponding to a given user’s smartphone. ,is is indicative of
its proximity to the detecting smartphone. When these
sequences are repeated at different times, they will eventually
lead to the definition of a temporal proximity pattern. All the
patterns identified in this way are stored in the Proximity
Patterns module, following a data model that will be de-
scribed in Section 3.2. Locally storing the detected
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Figure 1: Architecture of the BLE proximity pattern system.
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information improves its privacy, since different policies
could be implemented allowing users to control their own
data. At the same time, the BLE Advertising component is
responsible for emitting BLE packets with the user identifier.

With this architecture, each smartphone is able to
compute the temporal proximity patterns of its owner.,ese
patterns can be therefore provided as a service to third
parties. For example, an elder’s smartphone composes and
stores her proximity patterns, and her caregiver’s smart-
phone could request to be alerted when any of these patterns
change. ,ese operations are handled by the nimBees
Message Manager component of the architecture.

3.2. Data Model for Temporal Proximity Patterns. ,e ar-
chitecture detailed above gathers information from any BLE
advertising device. ,is allows the detection of temporal
proximity patterns, regardless of the time shared between
users or, even, if the detections involve devices that have no
relation with the user. ,ese nonrelated devices can be
filtered using the nimBees platform. In addition, in order to
handle small and sporadic interactions, we define a flexible
conceptual data model that facilitates the definition of
proximity patterns but that can accommodate small con-
textual changes. Figure 3 details part of the conceptual model
defined to satisfy these requirements.

A proximity pattern is defined as a time window in
which a user shares her time with some specific companions.
Its representation therefore consists of the start and end time
of the pattern, the frequency with which the pattern is re-
peated (e.g., daily, on weekends, and sporadically), its weight
(which indicates the expected probability that the pattern
actually takes place at the times indicated by its frequency),
and a number of companions corresponding to the set of
people who are with the user when the pattern takes place.
Each companion has their own weight, indicating the
probability of that person participating in the pattern.

A proximity pattern is connected to other patterns by a
set of transitions. ,is allows information to be stored about
sequences in which the different patterns occur, composing a
picture of the sequencing of all the people the user spends
time with throughout the day. Moreover, it allows one to

know with whom a person should be at a specific time and
also to forecast which proximity patterns would occur.

Figure 4 shows an excerpt of an example of proximity
pattern. ,e figure gives details of the following patterns:

(i) P1. Every morning, the user spends some time
doing light physical activity. She is usually ac-
companied by the physical trainer and a close
friend. ,e devices of these companions emit BLE
advertising packets that include their ids, so they are
recognized by the user’s smartphone. While other
friends sometimes join her in the morning activity,
their weight is not high enough for them to be
represented in the pattern. ,e same would be the
case for other BLE emitting devices that are spo-
radically detected during the time of the pattern. If a
user is detected often enough during the pattern, her
weight would increase to the point where it would
be included.

(ii) P2. ,is pattern captures the user’s lunchtime after
the physical activity. On weekdays, due to the fact
that she usually has lunch alone, the pattern in-
cludes no companions. Again, if a companion is
detected often enough during this period, it would
be added to the pattern.

(iii) P3. At weekends, however, her daughters join her
for lunch. Although the time period and location are
similar to the previous pattern, the different com-
panions lead the system to recognize them as two
different patterns with different frequencies. ,e
system consequently includes two possible transi-
tions from P1 to each of these two (new) patterns
that may occur after it.

As indicated before, this pattern structure is managed by
means of different data processing algorithms which will be
briefly described in the next section.

3.3. Identification of Temporal Proximity Patterns. ,e
Analyser module of the smartphone application is respon-
sible for identifying the phone owner’s temporal proximity
patterns and their storage. A fine-grained description of the
algorithms involved would require too much space. In [1],
the authors present a process for the identification of
movement patterns. Some of the algorithms for identifying
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repetitions and variability are the same, so they are not
repeated here. However, for the sake of completeness, we
shall present the main features of the algorithm used to
detect proximity patterns.

,is algorithm is executed once a day at a predetermined
time, usually at night when the phone is plugged in for
charging. It processes all the contextual information stored
in the Timeline component of the architecture since the last
time it was executed.

Let ct � (ct
1, . . . , ct

i , . . . , ct
nc

) be a tuple with the values of
contextual information gathered by the virtual or physical
sensors in the smartphone at a certain moment, t. ,is
information will include the location of the user, informa-
tion from the accelerometer, and the distance to other users.
It is dated with a timestamp (ts) and stored in a timeline
T � 〈(cts1 , ts1), . . . , (ctsi , tsi), . . . , (ctsn , tsn)〉, with tsi being
the timestamp at which the data ctsi was gathered.

In order to reduce the smartphone’s resource con-
sumption, the distance between pairs of devices is measured
by means of BLE technology. For this purpose, equation (1)
is used generically [46]:

d � exp[a ∗ (RSSI  −  txPower)], (1)

where d is the estimated distance between the phone and the
transmitter and a is a precalibrated exponential decay term.
,erefore, the distance is estimated from the received signal
strength denoted by RSSI (received signal strength indicator)
and the calibrated signal strength at 1 meter of distance
(denoted for simplicity by txPower(Transmitted Power)).

Let U � u1, . . . , ui, . . . , unu
􏽮 􏽯 be the set of nu users with

whom the smartphone’s owner interacts. ,e detected
distance d

tsx
ui

would therefore be the distance between the
owner’s device and the device of user ui at time tsx.

Let us assume that the day being analysed corresponds to
the time interval [tsx, tsy] between timestamps tsx and tsy.
,en, the algorithm identifying the user’s proximity patterns
computes all the information gathered during that interval
in an incremental process consisting of three steps that are
explained as follows.

In the first step, the algorithm analyses all the BLE ad-
vertising packets stored in the Timeline component. During

this process, all the packets received from the same device are
extracted and used to compute the proximity of that device to
the user during the day being analysed. ,e result of this first
step is a set of devices Utsx

tsy
� u1, . . . , uj, . . . , unu

􏽮 􏽯 that have
been close to the user, each of them with the information
about their distance to the user over time, i.e.,
uj � 〈(d

tsx
uj

, tsx), . . . , (d
tsy

uj
, tsy)〉. ,is situation can be rep-

resented graphically as in the example shown in Figure 2.
,e second step takes as input this information and splits

it into fragments k1, . . . , kn, each of which captures a period
of time during which the companions remained stable, i.e.,
periods during which the user was close to the same people.
In order to discard the largest measurement errors, the
distance to each companion is estimated using the trimmed
mean of all the distances covered by that fragment (see
equation (2)). ,is step of the algorithm includes different
types of allowed standard deviations, σx, to let through
changes in companions which may have been caused by
measurement errors or which are irrelevant for the user’s
context, for example, if a companion is undetected for a
couple of minutes because he left to make a phone call. In
addition, when the difference between two consecutive
distances is greater than the allowed deviation, σd, or when
the difference between their timestamps is greater than the
allowed value, σts, a movement is identified and then a new
fragment has to be computed (see equations (3) and (4)):

dkn
ui

�
1

n − 2k
􏽘

n−k

i�k+1
d

tsi

ui
, (2)

subject to

dtsx
− dtsx+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌> σd, where each di ∈ D, σd ∈ R, (3)

tsx − tsx+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> σts, where each ts ∈ TS, σts ∈ R. (4)

Finally, the third step takes the fragments obtained in the
previous step and compares them with all the proximity
patternsP stored in the application for the same time of day.

Let P � p1, . . . , pj, . . . , pnp
􏼚 􏼛 be the set of the np temporal

proximity patterns, where each pattern comprises a time-
stamp interval [tsx, tsy], its frequency fr and weight ω, and
a tuple of contextual information, as shown in Figure 4:

pj � tsxj
, tsyj

􏼔 􏼕, frj,ωj, c1j, . . . , cij, . . . , cncj
􏼒 􏼓􏼒 􏼓. (5)

Again, in the comparison between proximity patterns, a
given standard deviation is allowed to account for possible
measurement errors. If a pattern p is found to be equal to a
fragment k within the allowed deviation, then this means
that the phone owner is repeating an already established
proximity pattern. To reflect this, the weight ω of the pattern
is increased as also will be the weights of all the companions
that are present in such pattern:

if ∃ p ∈ P, p.d − dk
ui

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< σd, then p.ω⟵p.ω + 1.

(6)
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Weight: 9

Id: daughter 1 Id
Weight: 8

Id: daughter 2 Id
Weight: 7Id: trainer device Id

Weight: 10

Start: 10:00
End: 12:00

Frequency: daily
Weight: 9

Start: 12:30
End: 13:30

Frequency: weekdays
Weight: 7

Start: 12:30
End: 14:00
Frequency: 

weekend
Weight: 6

P1 P2 P3

Proximity pattern
Temporal line
Transition

Figure 4: Excerpt of a proximity pattern timeline example.
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For a specific occurrence, if there is a difference for some
companions but it is within the allowed deviation, the weight
of those companions would be updated accordingly. ,e
weight of an absent companion would be reduced to the
point at which that companion would be removed from the
pattern if their weights were below some threshold. Simi-
larly, the weight of a companion not included in the pattern
would be increased to the point where they would be added
to the pattern when their weight rose above that threshold.

If no equal pattern is found for a timeline fragment, then
a new pattern will be created in the application with its
weight and the weight of all the involved companions set to
zero. If this pattern is found again in the future, its weight
would be updated.

,e weights of patterns that are stored in the application
but not performed by the user will be reduced in accordance
with their frequency. If a detected pattern is no longer
followed by the user, then it will be removed over time.

Preliminary results of the extended elderly care system
show that temporal proximity patterns help to enrich the
contextual information that the application gathers from its
users, providing a new source of information about their
habits. ,is information can be combined with that coming
from the analysis of patterns of location and movement
already inferred by the application. All this knowledge is
applied to better assess whether the elder is in a safe situation
or, contrarily, an alarm should be raised. Nevertheless, there
should be additional validation of these results, with in-
formation on proximity patterns collected from a number of
real users.

4. Experiments and Results

In the previous section, we described the proposed system
for determining the user’s proximity patterns and how the
data are registered and processed. None of this has any value,
however, unless one can guarantee that the proximity data
acquired are correct. In this section, we shall consider the
feasibility of the system by evaluating the following aspects
of the proposed solution:

(i) Proximity precision. ,e determination of temporal
proximity patterns depends on the reliability of the
information about the distance between users. To
ensure that the distances detected have enough
precision to identify the proximity between people,
we measured the real distances between smart-
phones acting as both emitting and receiving BLE
devices and compared them with the detected
distances.

(ii) Communications reliability. ,e reliability of the
communications is also important. In this sense, the
system must take communication failures into ac-
count. To evaluate the system’s reliability, we
measured the ratio between the received and missed
communications in different scenarios.

(iii) Battery consumption. ,e proposed system is
designed to run on the users’ smartphones, and it is

well known that resource consumption, in partic-
ular battery use [47, 48], is a determining factor for
the application success. We therefore evaluated the
battery consumptionwith the smartphone functioning
as both a virtual beacon emitting BLE advertising
patterns and a sensing device registering the signals.

(iv) Feasibility of the algorithms. ,e defined algorithms
identify temporal proximity patterns, but we have to
validate that those patterns are correct. To that end,
we evaluated the detected patterns along with false-
positive and false-negative rates.

4.1.Methodology. To perform the experiments, we developed
an application that transforms the smartphone on which it is
run into a BLE advertising device at the same time as reg-
istering the reception of BLE advertising packets broadcasted
by other devices. ,is application was designed in a similar
way to the one used in our previous work to measure the
resource consumption of a GPS sensor [49]. In the present
case, in order to implement the reception and transmission of
advertising packets, the application makes use of the Android
Beacon Library [50]. ,is library was selected because it is
widely used [51] and provides support for both broadcasting
and listening for BLE advertising packets.

For the transmission of advertising packets, the most
important parameters that can be configured with this li-
brary are Transmit Power (controlling the distance to which
the packets are broadcasted) and Advertising Interval (fre-
quency at which the packets are sent). In order to increase
packet visibility while also considering power consumption,
the Transmission Power was configured to achieve the
maximum distance since, as indicated by Montanari et al.
[12], its impact on battery lifetime is minimal and it does
not affect the accuracy. Likewise, the Advertising Interval
was configured to send packets at a frequency of 10Hz for
two reasons. ,e first was that this or lower frequencies
have least impact on packet collision (and hence on
communication reliability) when the number of packet-
transmitting devices increases [12], and the second was that
the transmission of advertising packets at this frequency
does not involve any major battery consumption (as will be
detailed below).

In the case of listening for BLE advertising packets, the
most important parameters to configure are the Scan
Window (the time that the application spends listening for
new advertising packets) and the Scan Interval (the time the
application waits before starting a new scan). Scanning for
new packets has a major impact on battery life, but, at the
same time, it has to be configured to last long enough to
ensure that at least one advertisement is captured at the
desired frequency. ,erefore, a balance has to be found
between minimizing battery consumption and increasing
the number of packets captured. To this end, we again
followed the recommendations of Montanari et al. [12], by
defining a Scan Interval of 100ms and a Scan Window of
20ms.
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In order to be able to evaluate the above aspects, in-
formation on the advertisements sent and received and on
the battery consumption during the execution of these
operations is stored in a log file. Among other data, this file
contains the number of packets received and their UUIDs,
the distance detected to the transmitting device, and the
battery consumption in microampere-hours (μAh). ,e
functionalities provided by the Android Beacon Library are
used to get the information related to the advertisements,
and the BatteryManager class provided by the Android OS is
exploited to obtain the information related to the battery.
Knowing in advance the distance between the two devices
(transmitter and receiver) allows processing these logs to
give each operation’s average consumption, the precision of
the distance detected, and the communication reliability in
different scenarios.

For the sake of the validity of the experiment, it is also
necessary to ensure that the smartphones involved are not
subject to interference from external agents or OS routines.
For this reason, all the operations are executed with the
device at rest, with no other applications running at the same
time, and they are encapsulated in an Android Service with
an associated WakeLock [52] so that the OS neither stops
nor relegates to the background execution of each operation.

Additionally, measuring the consumption pattern of an
operation from a single execution does not always provide
real data since there may be contamination from the con-
sumption of the screen, the app’s interface, or other sensors
of the smartphone. In order to get more accurate average
measurements of the consumption, the test application was
developed to execute each operation in a loop. In this way,
we were able to launch an execution, put the device to rest,
acquire a large set of measurements, and then halt the ex-
ecution. In particular, each test was run for more than 20
minutes so that each emitting device transmitted, at least, 12
000 advertisements and each sensing device executed 10 000
packet scans.

All the experiments were carried out on a set of
Motorola Moto E2 devices (Android OS 5.0.2). In addition,
in order to evaluate the performance of BLE using different
devices, the most important experiments were also repli-
cated on the following smartphones: Honor 8, Honor 9,
Moto G, Huawei P9, and LG G5. ,e experiments were
performed with the screen off, no other application run-
ning, and the mobile at rest except for the outdoor ex-
periment which was done with the device in motion. To
allow the reproducibility of the experiments detailed here,
the source code of the described application and the results
obtained in each experiment are included as additional
material to this paper.

Once all the experiments were carried out, a multivariate
analysis was performed to statistically validate the obtained
results.

Finally, the feasibility of the proposed algorithms was
validated using students. A set of students carried a mobile
device with the proposed application running and per-
formed different routines accompanied by others. ,ese
experiments allowed us to first define the standard deviation
thresholds to be used in the detection of proximity patterns

and second evaluate the correctness of the algorithms in a
more realistic environment.

,e following sections describe in detail the experiments
run and their results.

4.2. ProximityPrecision. In order to determine the feasibility
of using smartphones to estimate the proximity of other
smartphones emitting BLE packets, we performed a set of
experiments.

First, we measured the precision of the readings of
distance with the devices separated by 1 meter. ,e objective
was to analyse the results so as to be able to detect situations
in which two people are next to each other.

Figure 5(a) shows the results obtained when the devices
in the experiment were the only ones present so as to avoid
external interferences. ,is plot shows when the devices
were placed in direct line of sight, and when they were in the
same flat but separated by a brick and mortar wall. As can be
seen, when there was a direct line of sight, the results were
muchmore consistent, with less dispersion, than when a wall
separated the two devices.

,e experiment also measured how the precision might
be affected by interference from other emitting devices.
Figure 5(b) shows the results of the experiment when
performed in the presence of more BLE emitting devices
(three and five).,is allowed us to assess the feasibility of the
proposed system in a more social environment in which
multiple users might be present, each of them emitting their
own BLE advertising packets. It is clear from the figure that
the presence of additional transmitting devices has a far
smaller effect on the accuracy of the measurements than the
presence of an obstacle like a wall between the devices.

Table 1 summarizes the results of these experiments. It
can be observed that the proximity accuracy is reasonable
when there are no obstacles between devices and also that
the standard deviation in the sensed values is small even
when there are more transmitting devices. Results are worse,
however, when there is a wall between the devices.

Similar experiments were performed with the devices 3
meters apart in order to analyse this technology’s ability to
detect situations in which two people are in close proximity.
Table 2 summarizes the results of these experiments. Note
that because of page restrictions, and in order to improve the
readability of the document, the charts with the detected
distances are not shown. As can be seen, when there were no
obstacles between the devices, the precision and deviation of
the measurements are sufficient for the detection of prox-
imity patterns even in the presence of other transmitting
devices. However, the precision falls when a wall or a floor
was separating the two devices.

In order to evaluate situations in which two people are
not in close proximity, similar experiments were performed
with the devices distanced by 5 meters. ,ese results are
summarized in Table 3. As can be seen, when there is a wall
between the devices or they are at different floors, results are
much more disperse. Again, the presence of additional
transmitting devices affects the precision of the measure-
ments far less than the presence of obstacles.
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,e different experiments have been analysed to obtain
information useful to detect proximity patterns. Figure 6
shows a summary of the obtained results. ,is graph details
the mean and the standard deviation of the detected mea-
surements for each distance for which tests have been
performed. It can be clearly seen that the mean of the
measurements is greater than the real distance whenever
there is an obstacle between the devices and that, usually, the
deviation is also greater. ,erefore, the combination of both
parameters can be used to identify proximity patterns in
which there are no obstacles between users.

Finally, a completely different experiment was per-
formed to complete the analysis.,e proposed application is
meant to detect the proximity patterns of users both when
they are still and when they are moving. All the previously
detailed experiments were performed with the devices still,
so in this last, experiment our aim was to analyse the be-
haviour when the devices are being carried by users walking
by the side of each other. In some environments, such as
elder care, these accompaniments may be required for
performing outdoor activities.,is experiment also lasted 20
minutes and while the distance between devices was not
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Figure 5: BLE devices separated by 1m. (a) With one transmitter. (b) With several transmitters.

Table 1: Average detected distance between BLE devices situated at 1m.

Situation Average detected distance (m) Deviation (σ)
Without obstacles and one transmitter 1.14 0.55
With a wall and one transmitter 6.28 5.33
Without obstacles with three transmitters 1.95 0.69
Without obstacles with five transmitters 1.80 0.91

Table 2: Average detected distance between BLE devices situated at 3m.

Situation Average detected distance (m) Deviation (σ)
Without obstacles and one transmitter 2.73 0.99
With a wall and one transmitter 10.27 2.95
Different floor and one transmitter 12.37 4.52
Without obstacles with three transmitters 5.12 2.09
Without obstacles with five transmitters 3.57 1.96

Table 3: Average detected distance between BLE devices situated at 5m.

Situation Average detected distance (m) Deviation (σ)
Without obstacles and one transmitter 6.44 2.96
With a wall and one transmitter 31.73 9.36
Different floor and one transmitter 21.81 6.23
Without obstacles with three transmitters 5.26 1.50
Without obstacles with five transmitters 16.13 8.53

Mobile Information Systems 9



fixed since it would change as the users walked together, at
no point in the experiment was it greater than 3 meters.

In Figure 7, the blue dots represent the distance between
the devices as sensed from Device A and the pink triangles
represent the same distance as sensed from Device B. As can
be seen in the figure, the dispersion of the obtained mea-
surements is greater than the ones obtained with the devices
stationary. Table 4 summarizes these results.

However, it is interesting to note that most of the greatest
deviations in the measured distances between devices are
replicated in the two devices at the same time. Examples of
this situation are clearly seen in Figure 7, especially around
minutes 09:30 and 15:00 of the experiment. Since these
deviations were measured by the two devices at the same
time, one can assume that they have an external cause, either
from an interference of some type or from some property of
the place the devices were at that moment.

As a conclusion of the experiments conducted, the re-
sults confirm the feasibility of using smartphones to detect
proximity patterns. Although the results indicate that one
cannot trust the precision of the measured distances when

there are obstacles between the two devices, it still allows to
determine the closest group of people in ordinary condi-
tions. Moreover, the results show that it is possible to reduce
the number of false-positive proximity patterns that are
detected when a person is close to another but not really
sharing their space because they are on different floors or
have a wall between them.

4.3. CommunicationReliability. Tomeasure the reliability of
using smartphones’ BLE capacities in order to communicate
the device’s presence, we took into account all the com-
munications that took place during the experiments pre-
viously described. Figure 8 shows the average number of
BLE advertising packets detected in each of the experiments.

Combining this information with the values of the
Advertising Interval, Scan Window, and Scan Interval that
were used in the experiments detailed above, one can obtain
a clear image of the reliability of the communications in the
different scenarios.

As can be seen in the figure, the reliability of the
communications is unaffected by the presence of obstacles
between the devices. However, the number of packets de-
tected is seriously affected by the presence of other BLE
transmitting devices. ,is must be taken into account to
prevent false negatives when detecting proximity patterns in
the presence of multiple emitting devices. ,is problem can
be mitigated by choosing the appropriate values for the
Advertising Interval, Scan Window, and Scan Interval.

From the experiments carried out in this work, and also
taking into account the recommendations highlighted by
other researchers (such as Montanari et al. [12] and Julien
et al. [53]), some guidelines can be identified to reduce the
false negatives:

(i) ,e Transmission Power controls the distance to
which the packets are broadcasted. Initially, this
parameter can be configured to its maximum
power, since its impacts on battery life are not
critical. Nevertheless, if one only wants to detect the
patterns of people that are in close proximity, it can
be reduced in order to also decrease the number of
collisions and of false negatives.

(ii) ,e Advertising Time is dependent on the size of the
data to be transmitted. ,erefore, in order to reduce
collisions and false negatives, this size should be as
small as possible, decreasing the Advertising Time
to the minimum.

(iii) ,e Advertising Interval, which is the frequency at
which the advertisement is sent, should be config-
ured to 10Hz or lower in order to decrease the
number of collisions. ,e lower the frequency, the
lower the number of packages sent and of collisions
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Figure 6: Average detected distance and deviation per test.
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Figure 7: BLE devices in movement.

Table 4: Average detected distance between devices in movement.

Situation Average detected distance (m) Deviation (σ)
Device A 9.80 12.89
Device B 11.45 11.36
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but also more difficult is for the receiver device to
capture the advertisement.

(iv) ,e ScanWindow should be long enough to capture
the advertisements. If the frequency of the Adver-
tising Interval is low, then a longer Scan Windows
may be required in order to detect the proximity
among devices. Also, longer Scanning Windows
provide better accuracy and higher reliability.
Nevertheless, the scanning is a battery consuming
operation, so it should be as short as possible in
order to reduce the battery consumption.

(v) ,e frequency of the Scan Interval should be low in
order to decrease the battery consumption. Nev-
ertheless, this value depends on the Advertising
Interval. Usually, it is recommended to have a Scan
Window that assures the reception of the adver-
tisements (because it is a little bit longer than one
Advertising Interval) and Scan Interval with a low
frequency in order to reduce the battery
consumption.

For detecting temporal proximity patterns, the granu-
larity of the detection does not have to be high, since it is not
important to detect the exact second in which two people are
no longer together. ,erefore, the frequency of the Scan
Interval can be even lower. Seamlessly, it is not crucial if
some advertisements are lost, since the temporal proximity
pattern can be detected. Although the defined configuration
reduces the detections per second when there is a higher
number of devices, that configuration is good enough to
detect the temporal proximity patterns.

4.4. Battery Consumption. Table 5 lists the average battery
consumption per second of the different operations used
during the experiments.

,e first row of the table presents the average con-
sumption of the operating system with the mobile device at
rest. We calculated this value in order to eliminate the

background consumption of the operating system from the
consumption of the rest of the operations. For the devices
used in the experiments, the average battery consumption
was 2.45 μAh per second, with a standard deviation of 2.02.

,e second row presents the average battery con-
sumption of the devices when transmitting BLE advertising
packets ten times per second. In this value, the consumption
of the operating system has already been subtracted. As can
be seen, this consumption is even lower than the OS idle
consumption. ,is result was to be expected since one of the
main benefits of BLE is precisely the low battery con-
sumption, as demonstrated by most of the physical beacons
available on the market which present battery lives of up to
several years. Additionally, most of the consumption de-
viation in this operation is attributable to variations in the
OS consumption.

Finally, the third row presents the average battery
consumption of the devices when listening for BLE adver-
tising packets at the frequency detailed in the description of
the experiments. ,is consumption is an order of magnitude
higher than the transmission case. ,is result was also ex-
pected since it coincides with previous studies in the liter-
ature [12]. ,e deviation is also greater for this operation,
but not markedly.

To summarize, the battery consumption obtained in the
experiments performed, both transmitting and receiving
BLE advertising packets, is comparable with the results of
similar studies [12, 38, 40]. Moreover, the results confirm the
feasibility in resource consumption terms of using smart-
phones in the dual role of emitting beacons and scanning
devices to detect the proximity of companions. ,e accu-
mulated consumption of performing these operations over
time is below the average consumption of social apps as
reported by M2AppInsight [54].

As mentioned above, battery consumption is considered
a determining factor for an application success. However,
there are other resources whose excessive consumption
could have a negative impact on the solution. According to
[49], battery and network traffic are the most constrained
resources in modern mobile devices. ,e battery con-
sumption of the proposed solutions has already been
deemed feasible. Additionally, there is no network traffic
generated by the proposed solution since BLE communi-
cations are not considered network traffic and all the
computations regarding proximity patterns are performed
in the device itself. Excessive consumption of other resources
like CPU has a direct impact on the battery consumption of
the solution. ,erefore, as battery consumption is consid-
ered appropriate, we can argue that the proposed solution
has not an excessive impact on such resources.

4.5. Statistical Analysis. In order to validate statistically the
performance analysis described in the previous sections, a
multivariate analysis was carried out using the following set
of independent variables: the real distance between BLE
devices (RealDistance) and the number of transmitting
devices (NumTransmitters) as continuous variables and
three categorical variables designed to compare the influence
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Figure 8: Detections per second in the different tests.
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of potential obstacles between devices—the existence of an
unobstructed line of sight between devices (NoObstacles), of
obstacles such as a wall (Wall), and when the devices are
located on different floors of a building (Floor). For these last
three, NoObstacles was taken as the reference variable.

Two dependent variables were considered: the relative
root mean square error (RRMSE) and the battery con-
sumption (BatteryConsumption). ,e former is one of the
commonest metrics used to measure the accuracy of con-
tinuous variables. In our case, the aim was to evaluate the
accuracy of the measurements by comparing the real dis-
tances with the distances obtained by the BLE devices. It is
defined as follows:

RRMSE �
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2
􏽶
􏽴

, (7)

where the terms xi and 􏽢xi are the real and the estimated
values of the distance between BLE devices, respectively.
With the second dependent variable, BatteryConsumption,
the goal was to determine the impact of each independent
variable on the battery consumption of BLE devices when
they are receiving beacons. In sum therefore, two multi-
variate analyses were performed, one for each dependent
variable.

Table 6 presents the ordinary least squares (OLS) re-
gression results for RRMSE, with the coefficient of deter-
mination being R2 � 0.987. Statistical significance was found
for all the variables considered in the analysis (< 0.05 in all
cases). ,e unstandardized coefficients given in column B of
the table show that there exist directly proportional rela-
tionships between the value of RRMSE and both of the
continuous variables (RealDistance and NumTransmitters).
In particular, an increase of one unit in the (real) distance
between BLE devices during a test is statistically significantly
associated with an increase of 0.729 in the value of RRMSE
(0.092 in the case of adding one more transmitter). ,is
means that the error between the real and the detected values
increases both with distance and with the addition of new
transmitters to the test. ,e case is similar when the cate-
gorical variables Wall and Floor are compared with the
reference situation in which there is a clear line of sight
between devices (NoObstacles). A wall located between the
two devices (Wall) is associated with an increase of more
than 7 in the RRMSE compared with the case where there is
no obstacle. ,e fact of the devices being located on different

floors (Floor) has somewhat less impact on the potential
error, but is still the cause of a significant increase in the
value of RRMSE compared with the case of no obstacles.

,e independent variables hardly affect the Batter-
yConsumption, however, confirming the expected behav-
iour. Since the number of transmitted advertising packets
and the Scan Intervals are independent of the environmental
conditions, the battery consumption is always the same
(within possible normal deviations). ,e detailed results of
the multivariate analysis for the dependent variable
BatteryConsumption are included as part of the additional
material of this paper as Supplementary Table 10.

,is statistical analysis not only validates the perfor-
mance study of the system’s precision and battery con-
sumption, but can also be used to improve the algorithm for
the identification of temporal proximity patterns. ,e first
step of the algorithm, in which the BLE advertising packets
are analysed, can be updated to take into account the results
of this statistical analysis. In particular, the algorithm can use
this information to enrich the data model it generates by
taking into account the statistical probability of the different
situations in which a companion may be detected, e.g.,
without obstacles, on the other side of a wall, and on a
different floor. We are also working on using the detected
situation to modify at run-time the different beacon
transmission and reception parameters in order to increase
the accuracy. ,is enriched data model can then be used to
better assess a user’s temporal proximity patterns and thus
provide a more detailed virtual profile.

4.6. Feasibility of the Algorithms. Once checked that BLE
technology is reliable enough for the identification of
temporal proximity patterns, we evaluated the feasibility of
the algorithms defined in Section 3. ,e goals of this vali-
dation were as follows:

(i) To evaluate the adequacy of the data model
(ii) To establish the standard deviation thresholds to use

in the algorithms
(iii) To evaluate their correctness by determining the

ratio of correct detection of temporal proximity
patterns, their false-positive (FP) ratio, and their
false-negative (FN) ratio

4.6.1. Experimental Setup. In the first phase of testing the
algorithms, we decided to evaluate them with students
simulating different accompaniment patterns. ,is first

Table 6: OLS regression results with RRMSE as dependent variable.

Model Variable
type B Std.

error Beta t Sig.

1 (constant) 0.669 0.206 3.247 0.001
RealDistance Continuous 0.729 0.065 0.165 11.148 0.000
NumTransmitters Continuous 0.092 0.043 0.054 2.121 0.003
Wall Categorical 7.536 0.154 0.594 49.068 0.000
Floor Categorical 3.508 0.204 0.341 13.480 0.000

Table 5: Consumption per second of the operations for the re-
ception and transmission of BLE packets.

Name Frequency
(Hz)

Battery
(μAh)

Deviation
(σ)

Operating system — 2.45 2.02
Transmitting a
packet 10 1.32 2.47

Listening for a
packet 8.33 14.23 4.38
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phase allowed us to establish and validate the thresholds
used in the algorithms, in particular for the standard de-
viation in the measurements. ,e values selected were as
follows:

(i) ,e maximum average distance (dkn
ui
) of a com-

panion is 8 meters with an average deviation of 3
meters. We selected these values to identify situa-
tions in which companions are 5 meters away
(Table 3), which is usually the maximum distance
when they are in the same room. In addition, these
values allow us to discard those situations in which
companions are located in another room or floor
(see Tables 1–3).

(ii) ,e maximum difference between two consecutive
distances (σd) is twice the first detected distance.
,is value allows us to cover variations in the
measurements due to interference.

(iii) ,e maximum difference between the timestamps
of two distances (σts) is 5 minutes, preventing us to
detect a new pattern when companions are missing
for a short interval.

(iv) ,e minimum timestamp interval for considering a
pattern (tsy − tsx) is 15 minutes in order to not
detect accompaniment patterns when, for instance,
a user has a small talk with other users.

To perform the experiment, twelve students were se-
lected. ,ese students were organized into two groups of six
people. In each group, one student was selected as user. ,e
device of this user would be the one detecting the temporal
proximity patterns to be analysed in the experiment. ,e
other users were companions.

Before beginning the experiment, a workshop was
conducted to explain the situations they had to reproduce.
,ese situations were similar to the ones in the test previ-
ously shown (i.e., one user and one companion, one user and
three companions, and one user and five companions). For
evaluating each situation, different characteristics were
reproduced:

(i) A distance between users and companions of 1, 3,
and 5 meters

(ii) Interruption between detections of 4 and 20
minutes

(iii) Companions in the same room or in different rooms

Every test lasted 60 minutes. ,roughout the experi-
ment, students had to record on paper all the actions they
performed. Special attention was paid to the times at which
users and companions were together so that the identified
patterns could be compared with the real life. ,e com-
parison of the information gathered by the system with the
information manually recorded by the students was used to
determine the correct detection of patterns and its FP and
FN rates.

4.6.2. Results of the Experiments. Tables 7–9 detail, for each
group, the number of patterns identified, and FP and FN

values. Note that for every distance and number of com-
panions, three different patterns should be identified (one
pattern showing the user and companions together for a
period of time that includes the interruption of four minutes
and the other two patterns showing the user and com-
panions together before and after the interruption of
20minutes (which are considered different patterns) and
none when the companions were in a different room).

In order to quantitatively validate the approach, we
began by evaluating the pattern detection algorithms (FP
and FN rates). As can be seen in Tables 7–9, when com-
panions were one meter away, on average, the algorithms
correctly identified the accompaniment patterns. We got 6%
of false-negative and 0% of false-positive patterns (i.e., the
algorithms correctly identified 17 out of the 18 possible
patterns). When the distance increases to three meters, the
accuracy is slightly reduced. Concretely, 17 patterns were
detected, among which 12% were false positives (2 patterns).
,erefore, 83% of the possible patterns were correctly
identified. In addition, we obtained 17% of false-negative
patterns. With a distance of five meters between student-
users and student-companions, the accuracy is reduced but
the results are still promising, identifying nine patterns with
11% of false positives and 56% of false negatives.

In the analysis of these results, we identified that the
main reason for detecting FP and FN was the identification
of outlier values. ,at is, some measurements wrongly de-
tected because of interference, problems during the trans-
mission, etc. Most of the outliers were removed with the
trimmed mean applied in equation (2), but not all of them.
,is caused that, in some cases, some patterns were not
correctly identified because the outlier values were prevented
to obtain the minimum interval of 15 minutes, leading to the
false negatives. In other tests, the outlier values led to detect
two patterns, instead of one, obtaining the false positives. To
reduce the number of outliers and to increase the algorithm

Table 7: Patterns identified with one user and one companion.

Group
1 meter 3 meters 5 meters

Id FP FN Id FP FN Id FP FN
1 3 0 0 2 0 1 2 0 1
2 3 0 0 3 0 0 2 0 1

Table 8: Patterns identified with one user and three companions.

Group
1 meter 3 meters 5 meters

Id FP FN Id FP FN Id FP FN
1 3 0 0 2 0 1 2 0 1
2 3 0 0 3 0 0 3 1 1

Table 9: Patterns identified with one user and five companions.

Group
1 meter 3 meters 5 meters

Id FP FN Id FP FN Id FP FN
1 3 0 0 3 1 1 0 0 3
2 2 0 1 4 1 0 0 0 3
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accuracy, we are currently evaluating different data cleaning
techniques. Nevertheless, the constant monitoring of the
user, together with the weight associated with every pattern,
could reduce the number of FP and FN.

No patterns were identified when the companions were
in a different (but adjacent) room. ,e algorithms correctly
discarded the received measurements because of the increase
in the estimated distance and its standard deviation.

Each group also performed a test in motion. However,
the smartphones of the student-users did not identify these
patterns due to the high deviation of the obtained distances
and the increase in the measurements. We are currently
working on how to improve the contextual information used
to detect these patterns.

Finally, the completeness of the data model was evalu-
ated. To that end, we checked whether the patterns were
correctly identified and described and whether any FP or FN
was due to the data model. ,e result was a confirmation of
its feasibility and of its expressiveness for defining proximity
patterns. Nevertheless, as previously mentioned, in order to
identify certain patterns (in particular when users are
moving), some additional contextual information (e.g., GPS
geopositioning) may be required.

5. Discussion and Conclusions

Many software applications can benefit from having a
specific behaviour depending on the preferences and the
context of their users. ,is adaptation is achieved by using
the contextual information that can be gathered from the
users. ,e rise of BLE technology has provided a way to
detect proximity between devices, information of which can
be used to enrich users’ contextual information.

In this paper, we have proposed a system that uses BLE to
determine temporal proximity patterns. ,e proposed so-
lution takes advantage of the BLE capabilities of modern
smartphones and transforms these devices into virtual
beacons that constantly emit advertising packets. ,ese
packets are received by other smartphones and processed to
compute the user’s proximity patterns. To assess the feasi-
bility of the proposal, we performed a set of experiments
with the system to measure its precision, its battery con-
sumption, the reliability of the communications, and the
accuracy of the algorithms for the identification of proximity
patterns. As far as the authors know, there is no other work
in the literature that detects this kind of proximity patterns
between users without requiring additional infrastructure.
As discussed in Section 2, several works use the BLE ca-
pabilities of mobile devices to improve the user positioning
or to detect proximity between users. However, no prior
work systematically extracts the proximity patterns of the
users, so they can be added to their profile for later use. ,e
results obtained from the experiments demonstrate that BLE
technology can indeed be used to detect and monitor the
users’ temporal proximity patterns.

5.1. Implications. Although the results showed that BLE is
not accurate in the measurements of distance, it is precise

enough to detect people’s proximity patterns, especially if
the potential deviations are taken into account during
pattern detection. In particular, the proximity detection
algorithm does not depend on the accuracy of the mea-
surements, as it only uses these measurements to rank other
users by proximity, and once a companion has been detected
and added to a proximity pattern, the distance is no longer
relevant for the system.

It is also important to emphasize that the greatest
inaccuracies obtained during the experiments were found
when there were obstacles between the devices, as it is said in
[29]. ,is circumstance is far from being negative for our
proposal, since this lack of precision when there is a wall
between the devices, or when they are on different floors,
prevents the system from detecting people that, while close
in distance, do not really share time with the user as
companions. Moreover, as concluded in [55], other com-
munication standards, such as WiFi or other devices
emitting within the same range, can affect the detected
distance. Additional contextual information would be re-
quired to identify these situations. Nonetheless, in many
scenarios, such as elder caring, the subjects are not in a social
environment (so that there would be fewer interferences
with the devices of other people) and it is more important to
determine their proximity with their companions—and the
continuity of that proximity—than the exact distance be-
tween them.

Regarding the reliability of the communications, the
results showed that BLE is reliable enough to detect temporal
proximity patterns between users. Even in the worst-case
scenarios where other emitting devices caused interferences,
the devices were still able to detect one another with suf-
ficient frequency to compute the proximity patterns. In any
case, the reliability can be improved by modifying the values
of the application’s advertising interval, scan window, and
scan interval. Such changes, however, would involve a trade-
off with worsened battery consumption and would therefore
need to be implemented with caution.

,e battery consumption in the devices in no way
reached alarming levels. Indeed, the results showed battery
consumption to be lower than the levels of currently ac-
cepted social network applications and therefore should not
affect user acceptance.

,e algorithms for the identification of proximity pat-
terns can identify most of the situations in which two people
share their time together. False positives and false negatives
mainly resulted from interferences preventing us to clearly
detect whether there is an obstacle between the smartphones
or not. Again, more contextual information would be re-
quired to identify these situations.

Finally, the results not only demonstrated the feasibility
of the system but also served to fine-tune the thresholds and
accepted deviations used in the proximity pattern detection
algorithm. Appropriate calibration of these values allowed us
to improve the algorithm with respect to the false-positive
and false-negative rates in the pattern detection. By adjusting
the accepted deviation when splitting the pattern timeline
into fragments with the information obtained during the
experiments, we reduced the number of false-positive
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patterns detected that were caused by measurement error.
Similarly, by adjusting the thresholds used in the comparison
of the stored patterns and timeline fragments with the results
obtained in the experiments, we reduced the number of false
negatives of pattern detections that were caused by mea-
surement errors.

5.2. Limitations andFutureWork. Now that we have verified
the feasibility of using smartphones BLE capabilities to
detect the temporal proximity patterns of their users, and we
are preparing additional validation experiments. ,e ob-
jective of these new experiments is to obtain more precise
information about the temporal proximity patterns of users
in noncontrolled environments.

We are also currently working on an evolution of the
PeaaS model. Our aim is to develop the capacity of
smartphones to define and manage their owners’ virtual
profiles, enabling new applications to be designed. In the
present work, the focus was on improving the quality of the
contextual information stored in the virtual profiles by
adding temporal proximity patterns. For the future, we are
working on a new concept termed Situational Context.

,e Situational Context is a form of analysing the
conditions that exist at a particular time and place in order to
predict, at run-time, the expected behaviour of IoT systems
[56]. Considering environments in which there are different
entities, each of which has a virtual profile, the Situational
Context can be defined as the composition of the virtual
profiles of all the entities involved in a particular situation.
,e result of composing the virtual profiles is the combined
history of the entities ordered in a single timeline. ,e
Situational Context thus provides a higher level of auto-
mation of smart things with people.

5.3. Concluding Remarks. ,e results presented in this work
allow one to use BLE to compute users’ temporal proximity
patterns. One can then use these patterns to enrich the
contextual information stored in each user profile. ,e
proposed solution can be applied in both indoor and out-
door situations without the need to deploy any kind of
infrastructure in the areas where it will be used.

,is is a small, but relevant step in our goal of bringing
technology closer to nontechnical users. ,e richer the
contextual information gathered from the user, the farther
one can advance in seamlessly integrating IoT systems into
the users’ daily lives.
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