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As a lightweight deep neural network, MobileNet has fewer parameters and higher classification accuracy. In order to further
reduce the number of network parameters and improve the classification accuracy, dense blocks that are proposed in DenseNets
are introduced into MobileNet. In Dense-MobileNet models, convolution layers with the same size of input feature maps in
MobileNet models are taken as dense blocks, and dense connections are carried out within the dense blocks. 1e new network
structure can make full use of the output feature maps generated by the previous convolution layers in dense blocks, so as to
generate a large number of feature maps with fewer convolution cores and repeatedly use the features. By setting a small growth
rate, the network further reduces the parameters and the computation cost. Two Dense-MobileNet models, Dense1-MobileNet
and Dense2-MobileNet, are designed. Experiments show that Dense2-MobileNet can achieve higher recognition accuracy than
MobileNet, while only with fewer parameters and computation cost.

1. Introduction

Computer image classification is to analyze and classify
images into certain categories to replace human visual in-
terpretation. It is one of the hotspots in the field of computer
vision. Because the features are very important to classifi-
cation, most of the researches on image classification focus
on image feature extraction and classification algorithms.
Traditional image features such as SIFT and HOG are
designed manually. Convolutional neural networks have the
ability of self-learning, self-adapting, and self-organizing; so,
it can automatically extract features by using the prior
knowledge of the known categories, and avoid the com-
plicated process of feature extraction in traditional image
classification methods. At the same time, the extracted
features are highly expressive and efficient.

Deep convolutional neural network (CNN) has achieved
significant success in the field of computer vision, such as
image classification [1], target tracking [2], target detection
[3], and semantic image segmentation [4, 5]. For example, in

the ImageNet Large Scale Visual Recognition Challenge 2012
(ILSVRC2012), Krizhevsky et al. won the championship with
an AlexNet [1] model of about 60 million parameters and
eight layers. In addition, VGG [6] with 16-layer, GoogleNet
[7] with Inception as the basic structure, and ResNet [8] with
residual blocks that can alleviate the problem of gradient
disappearance have also achieved great success. However,
the deep convolutional neural network itself is a dense
computational model. 1e huge number of parameters,
heavy computing load, and large number of memory access
lead to huge power consumption, which makes it difficult to
apply the model to portable mobile devices with limited
hardware resources.

In order to apply the deep convolutional neural network
model to real-time applications and low-memory portable
devices, a feasible solution is to compress and accelerate the
deep convolutional neural networks to reduce parameters,
computation cost, and the power consumption. Denil et al.
[9] proved that the parameters of deep convolutional neural
network have a lot of redundancy, and these redundant
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parameters have little influence on the classification accu-
racy. Denton et al. [10] found an appropriate low-rank
matrix to estimate the information parameters of deep
CNNs by singular value decompositions. 1e method re-
quires high computational cost and more retraining to
achieve convergence. Han et al. [11] deleted the unimportant
connections in the pretrained network by parameter
pruning, retrained and quantized the remaining parameters,
and then encoded the quantized parameters by Hoffman
coding to further reduce the compression rate. However, the
method requires manual adjustment of superparameters.
Chen et al. [12] used a low-cost Hash function to group the
weights between the two adjacent layers into a Hash bucket
for weight sharing, which reduces the storage of additional
positions and realizes parameter sharing. Hinton et al. [13]
compressed the network model by knowledge distillation,
and extracted useful information. 1e useful information is
migrated to a smaller and simpler network, which made the
simple network and the complex network have similar
performance.

In addition, many related researches have improved
network models to compress networks. For example,
SqueezeNet [14] is a network model based on fire module,
MobileNets [15] is a network model based on depthwise
separable filters, and ShuffleNet [16] is improved on the basis
of residual structure by introducing group pointwise con-
volution and channel shuffle operation.

Compared with VGG-16 network, MobileNet is a
lightweight network, which uses depthwise separable con-
volution to deepen the network, and reduce parameters and
computation. At the same time, the classification accuracy of
MobileNet on ImageNet data set only reduces by 1%.
However, in order to be better applied tomobile devices with
limited memory, the parameters and computational com-
plexity of the MobileNet model need to be further reduced.
1erefore, we use dense blocks as the basic unit in the
network layer of MobileNet. By setting a small growth rate,
the model has fewer parameters and lower computational
cost. 1e new models, namely Dense-MobileNets, can also
achieve high classification accuracy.

2. Fundamental Theory

2.1.MobileNet. MobileNet is a streamlined architecture that
uses depthwise separable convolutions to construct light-
weight deep convolutional neural networks and provides an
efficient model for mobile and embedded vision applications
[15]. 1e structure of MobileNet is based on depthwise
separable filters, as shown in Figure 1.

Depthwise separable convolution filters are composed of
depthwise convolution filters and point convolution filters.
1e depthwise convolution filter performs a single convo-
lution on each input channel, and the point convolution
filter combines the output of depthwise convolution linearly
with 1∗ 1 convolutions, as shown in Figure 2.

2.2. Dense Connection. DenseNet [17] proposed a new
connection mode, connecting each current layer of the

network with the previous network layers, so that the
current layer can take the output feature maps of all the
previous layers as input features. To some extent, this kind
of connection can alleviate the problem of gradient dis-
appearance. Since each layer is connected with all the
previous layers, the previous features can be repeatedly
used to generate more feature maps with less convolution
kernel.

DenseNet takes dense blocks as basic unit modules, as
shown in Figure 3. In Figure 3, a dense block structure
consists of 4 densely connected layers with a growth rate of 4.
Each layer in this structure takes the output feature maps of
the previous layers as the input feature maps. Different from
the residual unit in ResNet [8], which combines the sum of
the featuremaps of the previous layers in one layer, the dense
block transfers the feature maps to all the subsequent layers,
adding the dimension of the feature maps rather than adding
the pixel values in the feature maps.

In Figure 4, the dense block only superimposes the
feature maps of the previous convolution layers and in-
creases the number of feature maps. 1erefore, only the
magnitude of xl and xl+1 is required to be equal, and the
number of feature maps does not need to be the same.
DenseNet uses hyperparameter growth rate to control the
number of feature map channels in the network. 1e growth
rate k indicates that the output feature maps of each network
layer is k. 1at is, for each convolution layer, the input
feature maps of the next layer will increase k channels.

3. Dense-MobileNet

Dense-MobileNet introduces dense block idea into Mobi-
leNet. 1e convolution layers with the same size of input
feature maps in MobileNet model are replaced as dense
blocks, and the dense connections are carried out within the
dense blocks. Dense block can make full use of the output
feature maps of the previous convolution layers, generate
more feature maps with fewer convolution kernels, and
realize repeated use of features. By setting a small growth
rate, the parameters and computations in MobileNet models
are further reduced, so that the model can be better applied
to mobile devices with low memory.

In this paper, we design two different Dense-MobileNet
structures: Dense1-MobileNet and Dense2-MobileNet.

3.1. Dense1-MobileNet. MobileNet model is a network
model using depthwise separable convolution as its basic
unit. Its depthwise separable convolution has two layers:
depthwise convolution and point convolution. Dense1-
MobileNet model considers the depthwise convolution layer
and the point convolution layer as two separate convolution
layers, i.e., the input feature maps of each depthwise con-
volution layer in the dense block are the superposition of the
output feature maps in the previous convolution layer, and
so is the input feature maps of each deep convolution layer,
as shown in Figure 5. Because depthwise convolution is a
single channel convolution, the number of output feature
maps of the middle depthwise convolution layer is the same
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as that of the input feature maps, which is the sum of the
output feature maps of all the previous layers.

DenseNet contains a transition layer between two
consecutive dense blocks. 1e transition layer reduces the
number of input feature maps by using 1∗ 1 convolution

kernel and halves the number of input feature maps by using
2∗ 2 average pooling layer. 1e above two operations can
ease the computational load of the network. Different from
DenseNet, there is no transition layer between two con-
secutive dense blocks in Dense1-MobileNet model, the
reason are as follows: (1) in MobileNet, batch normalization
is carried out behind each convolution layer, and the last
layer of the dense blocks is 1∗ 1 point convolution layer,
which can reduce the number of feature maps; (2) in ad-
dition, MobileNet reduces the size of feature map by using
convolution layer instead of pooling layer, that is, it directly
convolutes the output feature map of the previous point
convolution layer with stride 2 to reduce the size of feature
map.

3.2. Dense2-MobileNet. Dense2-MobileNet takes depthwise
separable convolution as a whole, called a dense (depthwise
separable convolution) block, which contains two point
convolutional layers and a depthwise convolutional layer.
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�e input feature maps of depthwise separable convolution
layer is the accumulation of output feature maps generated
by point convolutions in all previous depthwise separable
convolution layers, while the input feature map in point
convolution layer is only the output feature map generated
by the depthwise convolution in the dense block, not the
superposition of the output feature maps of all the previous
layers. So, the dense block structure in this model only has
one dense connection, as shown in Figure 6.

In Dense2-MobileNet model, only one input featuremap
needs to overlay the output feature map of point convolution
in the upper depthwise separable convolution layer. Because
of the fewer cumulative times of structural feature maps, the
number of output feature maps of all layers in a dense block
is also less cumulative; so, it is not necessary to reduce the
channel of feature maps by a 1∗ 1 convolution. After
superimposing the output feature maps generated by the
previous separable convolutions, the size of the feature map
can be reduced by the depthwise convolution with stride 2;
so, the Dense2-MobileNet model does not add other tran-
sition layers too. �e MobileNet model is �nally pooled
globally and connected directly to the output layer. Ex-
periments show that the classi�cation accuracy of the global
average prepooling depthwise separable convolution with
dense connection before the global average pooling is higher
than that of two-layer depthwise separable convolution
without dense connection.�erefore, the depthwise separable

convolution layer before global average pooling is also densely
connected.

3.3. Dense-MobileNet Performance Analysis.
Dense-MobileNet model is constructed by adding dense
connections in MobileNet. By setting a small hyper-
parameter growth rate, it achieves less parameters and
computational complexity than that in the MobileNet
model. In the MobileNet model, every 2 depthwise separable
convolution layers need to reduce the dimension of the
feature map by depth convolution with stride of 2. Since the
sizes of the input feature maps in same dense blocks need to
be the same, there are only 2 depthwise separable convo-
lution layers included in a dense block. �e growth rate in
Dense-MobileNet is set by using the least di�erence between
the number of input feature maps of each layer in Mobi-
leNets and that in Dense-MobileNet. In fact, other optimal
growth rates can be selected based on the balance between
the compression rate and the accuracy rate of the model.

In this paper, the Dense1-MobileNet model decomposes
depthwise separable convolution into 2 separate layers, and
uses 4 convolutions as a dense block. �e growth rate of
dense blocks in Dense1-MobileNet is {32, 64, 64, 128, 128,
128, 256}. When the parameters of the Dense1-MobileNet
model decrease to 1/2 of MobileNet, its calculation decreases
to 5/11 of MobileNet.

�e Dense2-MobileNet model takes depthwise separable
convolution as a whole and 4 convolution layers as a dense
block, but only one dense connection is used. �e Dense2-
MobileNet model has a growth rate of {32, 64, 128, 256, 256,
256, 512} for dense blocks. When its model parameters drop
to 1/3 of MobileNet, its calculation decreases to 5/13 of
MobileNet. �e parameters and calculation of each model
are shown in Table 1.

�e DenseNet121 model in Table 1 contains 121 con-
volutional layers. With 16 as growth rate, the compression
ratio of transition layer is set to 0.5.�at is, all output feature
maps in the previous dense block are used as input feature
maps in transition layer, and the number of output feature
maps in this layer is half of the number of input feature
maps. As can be seen from Table 1, DenseNet121 model is
a�ected by dense connections, which has fewer parameters
but a large amount of computation. At the same time,
the parameters and computations of the two improved
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Dense-MobileNets models are less than those of the
MobileNet model.

4. Experiments and Result Analysis

In order to prove the validity of D-MobileNet models, we
carry out classification experiments on Caltech-101 [18]
and Uebingen Animals with Attributes, and compare the
experimental results with those of the MobileNet model
and the DenseNet121 model.

1e Caltech-101 data set contains 9145 images in 102
classes, including 101 object classes and one background
class. 1e number of images in each class ranges from 40 to
800. Figure 7 shows some samples in the Caltech-101 data
set. In the experiments, the images in the data set are firstly
labeled, and then fully scrambled. 1500 pictures are ran-
domly selected as testing images, and the remaining pictures
are used as training images.

1e Uebingen Animals with Attributes database has
30475 pictures in 50 animal classes. Because the picture
number in not the same in different classes, 21 largest animal
classes with little difference in sample numbers are selected
as our data set. 1ere are 22742 pictures in the data set. 1e
picture numbers in each class range from 850 to 1600.
Figure 8 shows the samples in Uebingen Animals data set.
Before training network, pictures in the data set are labeled
and 2,000 of them are randomly selected as the test set. 1e
rest of the pictures are used as the training data set.

1e experiment uses Python language under TensorFlow
framework. 1e model is implemented on a server equipped
with NVIDIA TITAN GPU. RMSprop optimization algo-
rithm with an initial learning rate of 0.1 is used to optimize
the experiment. Depending on the number of training
samples, we set different epoch numbers to reduce the
learning rate. 1e weight initialization adopts the Xavier
initialization method, which can determine the random
initialization distribution range of parameters according to
the number of inputs and outputs at each level. It is a
uniform distribution with zero initial deviation. A total of
50,000 batches are trained, with 64 samples in each batch.
ReLU is used as the activation function.

Table 2 shows the classification accuracy of four clas-
sificationmethods on the Caltech-101 data set. From Table 2,
we can see that after 30,000 iterations, the accuracy of the 4
classification models has reached a balance, and the accuracy
of our 2 improved structures is higher than that of Den-
seNet121. Compared with the accuracy of the standard
MobileNet model, the accuracy of the Dense1-MobileNets

model is lower than that of the standard MobileNet model,
while the accuracy of the Dense2-MobileNets model is
higher than that of the standardMobileNet model.When the
number of iterations is 50000, the accuracy of the Dense1-
MobileNet model decreases by 0.13%, and the structure
reduces less parameters and computation. When the
number of iterations is 50000, the accuracy of the Dense2-
MobileNet model increases by 1.2%, and its parameters and
computation are reduced relatively.

Table 3 shows the classification accuracy of 4 classifi-
cation methods on the Uebingen Animals data set. From
Table 3, we can see that after 30,000 iterations, the accuracy
of the 4 classification models also has reached a balance, and
the accuracy of our 2 improved structures is higher than that
of DenseNet121. Compared with the accuracy of the stan-
dard MobileNet model, the accuracy of the Dense1-Mobi-
leNets model is lower than that of the standard MobileNet
model, while the accuracy of the Dense2-MobileNets model
is higher than that of the standard MobileNet model. When
the number of iterations is 5000, the accuracy of the Dense1-
MobileNet model decreases by 0.1%, while the accuracy of
the Dense2-MobileNet model increases by 1.2%.

1e above two experiments were conducted under the
same hyperparameter conditions. When the number of it-
erations is 5000, the classification accuracy of dense network
on the Uebingen Animals data set is 0.4% higher than that of
the MobileNet model, but it is 4.7% lower than that of the
MobileNet model on the Caltech-101 data set. From the
above two experiments, it can be seen that the classification
accuracies of dense connection in the Dense1-MobileNet
model are lost about 1% in both data sets, while they are
improved in the Dense2-MobileNet mode. 1e main reason
is that depthwise convolution and point convolution in
depthwise separable convolution realize spatial correlation
and channel correlation in standard convolution, respec-
tively. However, Dense1-MobileNet using depthwise con-
volution and point convolution as the separate convolution
layers will destroy channel correlation and reduce classifi-
cation accuracy. 1e input feature map of the average
pooling layer in Dense2-MobileNet is the superposition of
the output feature maps of the previous 2 deep separable
convolutions. It makes full use of the previous feature maps,
reduces the parameters and computation, and improves the
classification accuracy.

In order to further illustrate the performance of our
method, we tested different methods in real data and other
experimental environment. In the experimental comparison,
we added the comparison with DenseNet161 and Mobile-
NetV2 [19], and the experimental settings are shown in
Table 4.1e data set is our own children’s colonoscopy polyp
data set. 1ere are two types of samples. One includes the
samples with polyps, and the other includes the samples
without polyp. As shown in Figure 9, the upper row is the
samples with polyps, and the lower row is the samples
without polyp.

1e expanded training set contains 31450 samples, in-
cluding 4005 polyp samples. 1e test set contains 4005
samples, including 1005 polyp samples. 1e size of each
sample is 260∗ 260. 1e batch size of test set is set to 10, and

Table 1: 1e parameters and calculation of each model.

Network model Calculations
(millions)

Parameters number
(millions)

DenseNet121 1364.7 1.78
MobileNet 568 3.21
Dense1-
MobileNet 258 1.51

Dense2-
MobileNet 217 1.12

Mobile Information Systems 5



the initial learning rate is 0.1. Every network trains 200 epochs
in total, and the learning rate decreases to half of the previous
in the 50th epoch and then decays by half every 20 epoch.1e
average recognition accuracy of the last 100 epochs is taken as
the final recognition result, as shown in Table 5.

Because there are only two types of test data sets, the
classification accuracy of all methods is relatively high, all
of which are over 96%. As can be seen from Table 5, the
accuracy of Dense2_MobileNet (using full connection
layer) is a little better than those of DenseNet121, Mobi-
leNet, and MobileNetV2, and slightly lower than that of
DenseNet161. However, DenseNet161 is a deeper network
with a large amount of parameters and calculation. In our
experiments, the parameters and calculation of Dense-
Net161 are about 26.48M and 10360.23M, respectively,
and the parameters of MobileNetV2 are about 2.23M and
479.28M, respectively. Although MobileNetV2 makes the
network more lightweight, its parameter amount and
calculation amount are still more than twice of our Den-
se_MobileNets. 1erefore, the Dense_MobileNets still has
certain advantages in the comprehensive evaluation of the

Figure 8: Samples in the Uebingen Animals (21) data set.

Figure 7: Samples in the Caltech-101 data set.

Table 2: Classification accuracy (%) on the Caltech-101 data set.

Number of iterations 30000 35000 40000 45000 50000
DenseNet 72.07 72.27 72.07 72 71.9
MobileNets 76.73 76.6 76.6 76.8 76.6
Dense1_MobileNet 76.6 76.53 76.47 76.4 76.47
Dense2_MobileNet 77.6 77.67 77.87 77.8 77.8

Table 3: Classification accuracy (%) on the Uebingen Animals data set (21classes).

Number of iterations 30000 35000 40000 45000 50000
DenseNet 91.85 92.15 91.95 92 92
MobileNets 91.6 91.6 91.6 91.55 91.6
Dense1_MobileNet 90.65 90.6 90.6 90.6 90.65
Dense2_MobileNet 92.1 92.05 92.1 92.05 92.05

Table 4: Experimental settings on children’s colonoscopy polyp
data set.

Attribute Configuration information
OS Ubuntu 14.04.5 LTS
CPU Intel® Xeon® CPU E5-2670 v3 @ 2.30GHz
GPU Nvidia GeForce GTX TITAN X
CuDNN CuDNN 6.0.21
CUDA CUDA 18.0.61
Framework PyTorch
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accuracy of classification, the number of parameters, and
the amount of calculation.

5. Conclusions

1e memory intensive and highly computational intensive
features of in deep learning restrict its application in portable
devices. Compression and acceleration of network models
will reduce the classification accuracy.

1is paper introduces the Dense-MobileNet model
with dense blocks for image classification. 1e dense
blocks are used as the basic structure to improve the
structure of MobileNet, and two improved models are
proposed. 1ese two models can reduce the parameters
and calculation by setting the hyperparameter growth rate.
At the same time, experiments show that Dense2-Mobi-
leNet can also increase the accuracy of classification.
Compared with the MobileNet model, although the
classification accuracy of Dense1-MobileNet is reduced, it
reduces the number of parameters by at least half and the
amount of calculation by nearly half. Generally speaking,
the models proposed in this paper can be better applied to
mobile devices.

Data Availability

All data sets are public data sets that can be downloaded
online.
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