
Research Article
A Deep Random Forest Model on Spark for Network
Intrusion Detection

Zhenpeng Liu ,1,2 Nan Su ,1 Yiwen Qin ,3 Jiahuan Lu ,1 and Xiaofei Li 2

1School of Cyber Security and Computer, Hebei University, Baoding, China
2Information Technology Center, Hebei University, Baoding, China
3School of Electric and Information Engineering, Lanzhou Jiaotong University, Lanzhou, China

Correspondence should be addressed to Xiaofei Li; lixiaofei@hbu.edu.cn

Received 12 October 2020; Revised 6 December 2020; Accepted 11 December 2020; Published 22 December 2020

Academic Editor: Salvatore Carta

Copyright © 2020 Zhenpeng Liu et al.)is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

)is paper focuses on an important research problem of cyberspace security. As an active defense technology, intrusion detection
plays an important role in the field of network security. Traditional intrusion detection technologies have problems such as low
accuracy, low detection efficiency, and time consuming.)e shallow structure of machine learning has been unable to respond in
time. To solve these problems, the deep learning-based method has been studied to improve intrusion detection.)e advantage of
deep learning is that it has a strong learning ability for features and can handle very complex data.)erefore, we propose a deep
random forest-based network intrusion detection model.)e first stage uses a slide window to segment original features into
many small pieces and then trains a random forest to generate the concatenated class vector as rerepresentation.)e vector will be
used to train the multilevel cascade parallel random forest in the second stage. Finally, the classification of the original data is
determined by voting strategy after the last layer of cascade. Meanwhile, the model is deployed in Spark environment and
optimizes cache replacement strategy of RDDs by efficiency sorting and partition integrity check.)e experiment results indicate
that the proposed method can effectively detect anomaly network behaviors, with high F1-measure scores and high accuracy.)e
results also show that it can cut down the average execution time on different scaled clusters.

1. Introduction

)e rapid development of cloud computing, edge com-
puting, and 5G technologies have widely infiltrated our
politics, economy, culture, and other aspects of life.)e
massive data generated from these everyday scenarios will
boost more valuable output from big data; meanwhile, these
extensive applications could make the prospect of big data
complicated and unsafe. Considering the complexity, high
dimension, heterogeneity, and processing speed of large data
volumes, potential risks exist not only in the system ar-
chitecture but also in the data itself. Most traditional pro-
tection solutions can no longer satisfy the requirements in
big data environment because the distributed data source
makes it difficult to define the boundaries of the dataset,
which will threaten the authenticity of the data being
analyzed.

Outliers are also known as anomalies or deviants in
data mining and statistical analysis. In cyberspace se-
curity, outlier detection is a process to analyze suspects
whose key-value or behavior pattern is significantly
different from the normal objects. Detection algorithm
recognizes the abnormalities and then cleans the con-
firmed data to ensure data security. Outlier detection is
now a hot topic in academia and industry. For example,
anomaly spots that appear in magnetic resonance im-
aging or other types of medical diagnosis devices typically
indicate disease conditions, and the outlier records in
product payment from unusual locations or frequent
large transactions would help detect credit card fraud in
financial situations. Other examples are rumor detection
in social media and congestion detection in urban traffic
management [1–3]. Among these challenges, network
intrusion detection is critical for cyberspace security [4].

Hindawi
Mobile Information Systems
Volume 2020, Article ID 6633252, 16 pages
https://doi.org/10.1155/2020/6633252

mailto:lixiaofei@hbu.edu.cn
https://orcid.org/0000-0002-7466-4622
https://orcid.org/0000-0002-8971-5314
https://orcid.org/0000-0003-0913-5019
https://orcid.org/0000-0003-3311-3004
https://orcid.org/0000-0003-3472-3461
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6633252

Network intrusion detection is a technology designed and
configured to ensure the security of computer systems
that can detect violations of security policies in computer
networks.)e combination of software and hardware for
intrusion detection is an intrusion detection system
(IDS). An intrusion detection system (IDS) is aimed to
analyze the network traffic or the activity of a single
machine in order to discover nonauthorized activities.
Such activities can be originated by a malware or can be
related to a human attack operated locally or remotely
[5].)ere are already many machine learning algorithms
that have been widely used to identify outliers in net-
works [6–8]. But most conventional methods are mainly
limited with unacceptable accuracy in detection when
network data are often complex and high-dimensional,
such as back propagation (BP), support vector machine
(SVM), and random forest (RF) [9]; the accuracy of the
UNSW-NB15 dataset does not exceed 91% [10].)at
reveals that the shallow structure of machine learning has
been vulnerable to respond. Despite the fact that intru-
sion detection is a key issue, research studies on the
methods which combine deep learning and machine
learning are still insufficient [11].)ough deep neural
networks are powerful, they are very complicated with
too many hyperparameters, and the learning perfor-
mance depends seriously on the careful tuning of these
hyperparameters, so the training costs are huge.)e
above scenarios usually make the training of deep neural
networks very hard; sometimes, it is like an art rather
than engineering.)is inspires us to explore other deep
learning structures for network anomaly detection.

Ensemble learning is an important approach of machine
learning, and random forest is one of the classic algorithms
in ensemble learning. It fits to high-dimensional data and
has only a few parameters, and the training of the RF is not
complicated. So, we consider using the forest as a layer to
replace the neurons in our deep network structure. Besides,
the training of each decision tree in the random forest is
independent, which is natural for parallel deployment. Each
layer of this deep forest structure can be deployed in parallel
to speed up the training process.

In order to reduce the obstacles caused by the numerous
parameters of the present deep learning-based method in
intrusion detection and to further improve the classification
accuracy and scalability, this paper proposes a detection
model based on feature segmentation and deep structure of
parallelized random forest (FS-DPRF).)e main contri-
butions of this paper are as follows.

(1) A deep cascade structure of random forest is pro-
posed, and each layer is parallelized to improve the
accuracy and scalability and to fit for massive data in
detection task. Various types of attacks can be
classified.

(2) A slide window is introduced to segment the high-
dimensional features into small size feature vectors
for training, which can reduce the calculation vol-
ume of each computing and keep the integrity of
original information.

(3) Compared with the classic parallel random forest in
Spark, the approach optimizes the replacement for
RDD loaded in memory with efficiency sorting and
partition integrity check, which can improve cluster
task execution efficiency.

)e performance of the proposed model is verified and
compared with other algorithms in four network intrusion
datasets, and the experiment results fully prove the effec-
tiveness of the proposed model on network anomaly
detection.

)e remainder of the paper is organized as follows.
Section 2 reviews the related work. In Section 3, we illustrate
the detection model designed for intrusion detection. Sec-
tion 4 introduces the memory optimization designed for
model parallelization. Evaluate the model with a series of
experiments in Section 5. Finally, the conclusion of this
paper is presented in Section 6.

2. Related Work

At present, many scholars have studied the intrusion de-
tection issue. A recent survey by Buczak and Guven [12]
made a comprehensive review of the current data mining
and machine learning methodologies of intrusion detection;
the survey described the strengths and weaknesses of the
algorithm and provided a clear outlook for future work.)e
classic algorithms can be categorized into artificial neural
networks [13, 14], clustering-based, Bayesian network, en-
semble learning [15], SVM-based [16], and hidden Markov
models (HMMs). Khalvati et al. [17] proposed the SVM
hybrid learning (distance sum-based SVM, DSSVM)
method. In DSSVM, the distance sum is calculated based on
the correlation between each data sample and the clustering
feature dimension obtained from the dataset, and then, the
SVM is used for classification and has a high detection rate.
Vinayakumar et al. [18] used the convolutional neural
network (CNN) for network intrusion detection, the re-
search models network traffic as a time series, and then used
supervised learning methods to model TCP/IP protocol
packets within a predefined time range.)e effectiveness of
this network structure in intrusion detection has been
proved on the KDD99 dataset. Potluri and Diedrich [19]
proposed an accelerated deep neural network (A-DNN)
structure, and it is used to identify anomalies in network
data and process them with an accelerator platform. Ex-
perimental results show that this method is feasible and
effective in NSL-KDD. Gao et al. [20] introduced a deep
belief network into the field of anomaly detection. A mul-
tilayered Boltzmann machine is used to form a neural
network classifier. When using deep belief networks in
comparison with SVM on the KDD99 dataset, the former
shows a better performance. Dominguez et al. [21] evaluated
unsupervised algorithms from various research fields by
doing lots of comparative experiments and unsupervised
feature learning works in most cases, but still lack inter-
pretability and require manual analysis. Hundman et al. [22]
proposed a model based on LSTM and a novel dynamic
threshold approach.)emodel does not rely on scarce labels

2 Mobile Information Systems

or false parametric assumptions to deal with time series data
and achieves high accuracy with good interpretability.
Manzoor et al. [23] introduced a density-based ensemble
method for feature-evolving streams problem, which mea-
sures outliers at multiple scales or granularities and espe-
cially works well in high noise environments.

In recent years, the stacking method [24] and boosting
method have become popular in ensemble learning. Liu et al.
[25] proposed the isolation forest algorithm to establish an
anomaly index based on the path length from leaf node to
root node.)e detection effect of global outliers is good, but
it is weak at dealing with local sparse points.)e gradient
boosting decision tree (GBDT) proposed by Friedman [26]
generates a prediction model in the form of a set of basic
learners and combines the basic learners into a strong
learner through iteration. Each time themodel is established,
the gradient descent direction of the loss function of the
model would be established first. In successive iterations, the
residual is continuously reduced to produce a vertically
deepened tree. It has the advantages of high prediction
accuracy and strong robustness to outliers. Chen and
Guestrin [27] put forward a scalable tree boosting system
(XGBoost); its main idea is also boosting according to the
negative gradient direction of the loss function.)e biggest
difference is that the empirical error was expanded by
second-order Taylor expansion, and some regular items
were added, which make loss function scalable, and have a
high precision and a good fitting effect. But there were too
many hyperparameters which make classification quite
dependent on the tuning result. Su et al. [28] proposed an
intrusion detection method using the XGBoost algorithm on
an unbalanced dataset; it uses the improved SMOTE algo-
rithm to oversample the minority samples and downsample
majority samples.)e method is based on the premise of
changing the original feature distribution of the data, which
not only increases the calculation burden of the model but
also easily loses some important information in the sample
and affects the final detection performance. Farnaaz and
Jabbar [8] proposed to use the random forest algorithm to
detect various types of attacks and verify the model on NSL-
KDD data.)e results prove that the detection accuracy of
DOS, PROBE, U2R, and R2L is improved, but the capability
of feature processing is weak. In the latest research, Roberto
et al. [5] proposed a probabilistic-driven ensemble model
(PDE) that uses logistic regression algorithms to evaluate the
effect of ensemble learning classifiers.)e model excludes
predictors with lower probabilities from the classification
process and combines the most effective algorithms by
weighted probability criteria. Experiments on the NSL-KDD
dataset show that the PDE has a high performance in
detecting intrusions. Zhou et al. [29] proposed a novel
ensemble system based on the modified AdaBoost with the
area under the curve (M-AdaBoost-A) algorithm. Strategies
such as SMV and PSO are applied to combine multiple
M-AdaBoost-A based classifiers. It shows better perfor-
mances for two intrusion detection issues: 802.11 wireless
networks and traditional enterprise networks, but it lacks
evaluation of model time consumption. Khan et al. [30]
proposed a deep learning model (TSDL) based on stacked

autoencoder with a soft-max classifier.)eir deep learning
model works in a cascade manner; the model uses a
probability score value as an additional feature in the final
decision stage in order to detect the normal state and other
classes of attacks. TSDL has achieved impressive results in
the accuracy of multiclass detection on UNSW-NB15 and
KDD99.

)e deep learning model usually has a good perfor-
mance, but it has too many complicated hyperparameters to
be adjusted. In most cases, it seems difficult to have a good
performance with less complexity. To solve the problem, the
model we propose introduces a sliding window and a deep
structure into random forests to enhance the diversity of
decision trees, thereby improving the generalization ability
of ensemble learning and the accuracy in network intrusion
detection, also with much fewer parameters. At the same
time, our method optimizes the data cache replacement of
RDDs on the Spark cluster and cuts down the execution time
of detection tasks.

2.1. Algorithm Selection Criteria.)e selection of the algo-
rithm needs to refer to the IDS architecture, which can be
divided into a centralized structure and a distributed
structure.

Most IDS algorithms use a single-machine centralized
structure, that is, data collection and analysis are performed
on a host.)is method performs detection based on host
audit data.)e centralized structure has the advantages of
simple structure and easy implementation.)e disadvantage
is that the processing time is slow. So, it is suitable for small
network systems.

Distributed structure comprises hierarchical structure
and collaborative structure.)e hierarchical structure is a
tree-type hierarchical system, like the proposedmodel in this
paper, and it combines the simplification of a centralized
structure and the robustness of a distributed structure.)e
distributed structure also makes the detection time faster,
which is suitable for larger-scale network systems.

3. Model Description

)e proposed detection model is described as feature seg-
mentation, deep parallel random forest, and voting strategy.
Feature segment is the first stage of the model, which seg-
ments original features to reduce the calculation volume of
high-dimensional data in a single compute and generates a
concatenated class vector as a new representation. In the
second stage, the concatenated class vector will be used to
train deep parallel random forest which predicts a proba-
bility distribution of original data type. Finally, the voting
strategy after the last layer of cascade will confirm the outlier.
Figure 1 shows the overview of the FS-DPRF model.

3.1. Feature Segment.)e first stage in the model simplifies
the original data features which are shown in Figure 2, by
using a slide window to segment features into many same
sized feature vectors; the data dimension of each feature
vector is less than the original feature, and it reduces the

Mobile Information Systems 3

calculation volume during every single compute in ran-
dom forest. Assume that a linear feature vector of length is
n, the window length of a feature slice is m, and each time
slides 1 unit length, n −m + 1 m-dimensional feature
vectors will be generated. Suppose that there is a detection
task that contains c categories, after feature processing, a
linear feature vector of length n will generate a new feature
vector of length c (n −m + 1). Similarly, for an image data,
feature segment will generate a new feature vector of
length c (n −m + 1)2. For instance, there is an intrusion
sample data including 40 features, and there are four types
of attacks such as DOS (denial of service), R2L (remote to
local), U2R (user to root), and PROBE (surveillance and
probing). And the slice window size is set to 10.)en, there
will be a total of 31 feature vectors where each one is 10-
dimensional.

After that, each feature vector will sequentially be put into a
single-layer random forest, and then, class probability vectors
[31] will be generated. A detailed explanation of the generation
process of the class probability vector is depicted in Figure 3.

)e entropy of feature vector will be calculated by the
Gini index before node split.)e Gini index is a model
for calculating the entropy defined in the following
equation.

Gini(t) � 1 − 􏽘
K

k�1
p Ck|t(􏼁􏼂 􏼃

2
, (1)

where t is the target split node, and p(Ck|t) represents the
probability that node t belongs to class Ck.

)e class probability is derived from the group of values
that eventually fall on the leaf node and then averages the
predictions of all decision trees in the forest to get the output
class vector.)e 31 feature vectors before will transform into
31 class vectors in which each one is 4-dimensional. Finally,
as shown in Figure 2, all class vectors will connect to form a
rerepresented feature vector as an enhanced representation
corresponding to original data features. And the new feature
will be used as input to train the cascade random forest in the
next stage.

Feature
segmentation

Deep parallel random forest

Original
data

Transformed
feature vector

Slide
window

ResultVote
strategy

Random
forest Convergent

Y

N

Figure 1: Overview of the FS-DPRF model. Slide window is created to reduce the dimension of the data being processed.

Random
Forest

Connect

c(n – m + 1)

n – m + 1

m

Feature vectors Class vectors

m
n

Original
features

c
n – m + 1

Transformed
feature vector

Slide
window

Figure 2: Illustration of original feature split.)e original features will be divided into many same sized feature vectors by the sliding
window where the dimension is reduced in this part.

4 Mobile Information Systems

3.2.DeepParallel RandomForest.)e parallel random forest
forms the deep forest structure by cascade stacking. Each
new layer in the cascade structure concatenates the rere-
presented feature vector and the class vector of the previous
layer as input. Specifically, each layer of the cascade PRF will
count the prediction results of all decision trees on input
samples and generates the probability of different class
distribution, as a class vector. Subsequently, the class
probability vector will connect with the transformed feature
which is formed by feature segmentation to train the next
layer. For example, the rerepresented feature vector in the
first stage will be input to train the cascade random forest.
)e first layer of the cascade will output a 4-dimensional
class vector according to the previous assumption; then, it
will connect with the input feature vector to train the next
layer and so on.)e structure of the deep parallel random
forest is shown in Figure 4. Compared with the parallel
random forest, the cascade PRF can improve the general-
ization ability of ensemble learning. It is worth noting that
each time a new cascade layer is expanded, the cascade
structure will randomly extract 80% of the training set for
growing and the remaining 20% as the validation set to verify
the performance gain of the new cascade layer. When the
performance improvement is lower than the threshold, the
training process will be terminated automatically and the
number of cascaded PRF layers will be finally determined.

3.3. Voting Strategy. In ensemble learning, individual
learners will output the final prediction after combining the
independent judgment through the voting method. For an
actual outlier detection task, it can be simplified as an
anomaly classification task and identifies outliers by using
voting strategy.)e prediction of the last layer in cascade
PRF will be the final result where the output classes of all
decision trees in the last layer are counted, and then, the
decision is made by using voting strategy based on the
probability distribution. Majority voting is used in anomaly
detection tasks with high reliability requirements. If a sample
receives more than half of the votes, it is predicted as an
outlier, otherwise it is rejected. However, if the task pre-
diction result is necessary, the majority voting method will

degenerate to the plurality voting method; in this condition,
if many prediction results get the same votes at the time, one
would be selected.)e majority voting and plurality voting
are defined as

H(x) �
cj, if 􏽘

T

i�1
h

j
i (x)> 0.5 􏽘

N

k�1
􏽘

T

i�1
h

k
i (x),

reject, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

H(x) � c
argmaxj􏽘

T

i�1
h

j

i
(x)

, (3)

where hi represents the decision treei, and T represents the
number of decision tree in forest. N is the dimension of
probability vector. cj is the one of the class labels in collection
{c1, c2, c3. . .cN}.)e basic learner hi will make a prediction
which belongs to the set of class labels {c1, c2, c3. . .cN}, and
probability distribution of hi on the sample x is an N-di-
mensional vector (h1

i (x), h2
i (x), h3

i , . . . , hN
i (x)), where

h
j
i (x) is the probability output of hi on class label cj.
)e detailed steps of FS-DPRF are described in

Algorithm 1.

4. Parallelization on Spark

Spark is a distributed computing framework developed by
UC Berkeley AMP Lab. Spark supports a variety of ways to
combine with other big data platforms, which enables it to
process large-scale data efficiently. Its memory-based Re-
silient Distributed Dataset (RDD) mechanism allows data
intermediately cached in memory [32], saving a lot of I/O
operation overhead, and is well qualified for iterative and
ensemble algorithms.)e framework has unique advantages
in processing. Each decision tree of RF is built independently
of each other, and each subnode of decision tree is also split
independently.)e structures of the FS-DPRF model and
decision-tree based forest enable the computing tasks have
natural parallelism [33]. However, the training data in the
parallel random forest generation process requires multiple
iterations, and a large number of RDD data blocks need to be
reused in the iteration until the convergence are met. Spark’s
default least recently used replacement algorithm (LRU)

…

Decision tree 1

[0.1, 0.5, 0.3, 0.1] [0.6, 0.15, 0.2, 0.05] [0.1, 0.4, 0.4, 0.1]

Ave

Decision tree 2 Decision tree N

Class vector

Feature
vector

Figure 3: Example of a class vector generation in a random forest.)e rectangle on the left represents an instance of input feature vector,
and the yellow leaf is a probability distribution of each independent decision tree.

Mobile Information Systems 5

cannot cope with our model’s requirement on the reuse of
RDD data block because it could easily swap high-reuse
block out of the cache, causing inefficiency job execution
[34]. Based on these facts, a cache hierarchical replacement
optimization for RDD objects is presented, which can ef-
fectively improve the cluster execution efficiency during the
process of building FS-DPRF.

4.1. High Reuse Caching. First, Spark’s cache mechanism
assigns a cache manager to each worker to manage the RDDs
and calculate the cache size.)e RDD data size requires a
storage which is no larger than the remaining memory.
Otherwise, the replacement will be implemented.

Si � Si1, Si2, Si3, . . . , Sij􏽮 􏽯,

􏽘

n1

j�1
S1j + 􏽘

n2

j�1
S2j + · · · + 􏽘

nm

j�1
Smj < Scache,

(4)

where Si represents the total size of all RDDi partitions, and
Sij is the size of the partition j of RDDi.)e computing cost
between RDD partitions is another very important factor,
which is defined as

CTij � ETij − STij, (5)

where STij is the start time, and the ETij is the end time of
each RDD partition; both are obtained by the partition
dependency mechanism in Spark. Note that CTij already
includes communication overhead.)us, we can get the
weight of each RDD, which is defined as follows:

W Rij􏼐 􏼑 � μ ·
f Rij􏼐 􏼑 · CTij

Sij

,

W Ri(􏼁 � 􏽘
n

j�1
W Rij􏼐 􏼑.

(6)

Here, W (Rij) is the weight of partition j of RDDi, and
W(Ri) is the weight of RDDi. μ is an impact factor defined by
a different work environment. f (Rij) represents the usage
count of partition j of RDDi.

Second, processing time is linearly related to the size of
the data block in general.)e execution time of the RDD can
be represented by the percentage of the RDD size which
occupies the memory size in the Spark cluster environment.

T Rij􏼐 􏼑 �
Sij

Scache
, (7)

T Ri(􏼁 � max T Ri1(􏼁, T Ri2(􏼁, . . . , T Rin(􏼁􏼈 􏼉, (8)

where T (Rij) represents the execution time of partition Rij.
Sij is the partition size of Rij, and Scache is the cluster memory.
Since each partition of the RDD under the task set is exe-
cuted in parallel, the total execution time of the RDD is the
longest among all partitions. Finally, the execution efficiency
of RDD can be quantified as the ratio of the weight value of
RDD to the execution time, and ε(Ri) is used to represent the
execution efficiency of each RDD, which is defined in the
following equation:

ε Ri(􏼁 �
W Ri(􏼁

T Ri(􏼁
. (9)

)e directed acyclic graph (DAG) of Spark divides the
RDD stage and generates the RDD structure tree; we then
calculate the execution efficiency of each RDD and cache
high reused RDDs in the MapcacheList (rddi, ε).)e steps
of the high reuse cache method are described in
Algorithm 2.

4.2.Hierarchical Replacement. Hierarchical replacement is
the second step of optimization for parallel. It classifies
the RDD target before the replacement, giving priority to
incomplete RDDs. As it is shown in Figure 5, we design
the IntegrityCheck function to verify RDD, and the
function will check the partition and mark down the
integrity in a collection where the flag records the par-
tition status. If the partition of RDD is incomplete, it will
be marked as FALSE and be replaced; otherwise, it will be
marked as TRUE.)en, the RDD with less efficiency will
be replaced according to MapcacheList(rddi, ε).)e pro-
cess of hierarchical replacement is presented in
Algorithm 3.

Random
forest

Transformed
feature vector

Random
forest

Final
prediction

Max

Last layer

Random
forest

Figure 4:)e architecture of deep PRF, the number of layers, is automatically determined based on the calculated performance gain, and the
training process will be terminated if improvement is lower than the threshold.

6 Mobile Information Systems

5. Preliminary Assumptions and Hypotheses

)ere are three preliminary assumptions for the excellent
performance of deep learning models:

(i) Layer-by-layer processing
(ii) Feature transformation
(iii) Sufficient model complexity

Traditional machine learning methods such as decision
trees are processed layer by layer, but they lack sufficient
complexity.)e ensemblemethod can increase the complexity,
such as random forest, but it is still not complex enough
because there is no feature transformation process, and the
processing is always performed in the same feature space.
)erefore, ourmain hypothesis is that the feature segmentation
and cascading structure can make the random forest increase
the feature transformation ability and sufficient complexity on

its original basis, thereby improving generalization ability.
Another hypothesis is that the optimization of the spark-based
RDD cache replacement strategy can reduce the training and
detection time of the proposedmodel.)e experiment requires
the conversion of character features to numerical feature
training models.)e results and analysis in following sub-
sections prove the hypothesis claims.

Input: training dataset D� {(x1, y1), (x2, y2). . . (xm, ym)};
x: potential anomaly data.

Output: H (x): voting result of sample x;
CPRF: Deep random forests where {PRFi |i� 1, 2, . . ., N}.

(1) CPRF � {∅}
(2) Initialize hyperparameters: tolerance t and slice window size winSize
(3) D′� Feature Grained (D); //D′ is newly generated feature vector.
(4) do
(5) i� 1//layer i of cascaded PRF.
(6) for j� 1, 2, . . ., T do
(7) PRFi � {∅}
(8) D′j⟵Bootstrap sampling (D′)
(9) Treej⟵ decision tree (D′j)
(10) PRFi+� {Treej}
(11) end for
(12) if (tolerance≥ t)
(13) CPRF+� {PRFi}
(14) else
(15) Break
(16) i� i+ 1
(17) while (TRUE)
(18) H (x)� voting method (x)//the last layer votes for classification
(19) Return CPRF

ALGORITHM 1: FS-DPRF.

Input: Treerdds: RDD structure.
Output: MapcacheList(rddi, ε): Cache collection of RDD.

(1) for (i� 0 to Treerdds.Length-1)
(2) calc ε(Ri) //Calculate RDD execution efficiency
(3) if (ε(Ri)>1)
(4) MapcacheList(rddi, ε).add(Treerdds[i], ε)
(5) end if
(6) end for

ALGORITHM 2: High reuse cache.

TaskSet

IntegrityCheck

R 01

R 02

R 03

R 11

R 12

R 13

Figure 5: Detailed working principle of integrity checks function.

Mobile Information Systems 7

6. Experiment

6.1. Dataset and Preprocessing. In order to evaluate the
proposed model and report the experiment results, four
intrusion datasets are selected, i.e., NSL-KDD [35], UNSW-
NB15 [36], CICIDS2017, and CICIDS2018 [37].

NSL-KDD is an improvement of the KDD 99 dataset
which was collected from a simulated US Air Force
network environment over 9 weeks.)e train set does not
contain redundant records. In addition, there are no
duplicate records in the test set, which makes the de-
tection rate more accurate. Each piece of data contains 43
features including a label.)e labels are divided into 5
classes, including attack and normal.)e types of attacks
are divided into four categories: DOS (denial of service
attack), R2L (unauthorized access from the remote
master), U2R (unauthorized local super user privileged
access), and PROBE (port monitoring or scanning).
Normal represents normal data.

)e second dataset used in the experiment is UNSW-
NB15.)e dataset was collected in 2015 under the real
network environment of Australian Center for Cyber
Security (ACCS).)e network traffic record contains true
normal activity and attack behavior.)e network record
of this dataset contains 49 network features including a
class label, and there are 10 types of network including
normal behavior and 9 abnormal intrusion attacks.
CICIDS2017 and CICIDS2018 datasets are the recent
datasets that were developed by the Canadian Institute of
Cyber Security.)ese two datasets are closer to the real
network environment.)e CICIDS2017 contains 83
original features. We have removed some features, such as

source and target IP, ID, and timestamp, because using
this information may lead to overtraining. Finally, we got
a dataset containing 80 features and selected 2515416
samples for experiments. Similarly in CICIDS2018, we
also removed some unnecessary features and selected an
unbiased subset of the original dataset. All datasets details
are shown in Tables 1–5.

)e features of the four datasets are composed of many
numerical features and several character features that the
characters cannot be directly used in the proposed intrusion
detection model, and the experiment uses the one-hot
encoding method to convert it from character to number.
For example, the second column of the NSL-KDD dataset
“protcol_type” contains three different values: “tcp,” “udp,”
and “icmp,” and encoding represent them as [0, 0, 1], [0, 1,
0], [1, 0, 0]. After encoding, the data are normalized to avoid
that the size relationship between values will affect the
training results, and all the feature values are mapped to the
interval [0, 1].

yi �
xi − min(x)

max(x) − min(x)
, (10)

where yi represents the value after the feature is normalized,
xi represents the feature value, and min(x) and max(x)
represent the minimum and maximum values within the
range of feature values, respectively.

)e experiment cluster is deployed in High-Perfor-
mance Computing Center of Hebei University, which
consists of a master node and 50 slave nodes.)e hard-
ware conditions of each slave node are 2 ∗ Intel Xeon E5-
2680 v2 (Ivy Bridge| 10C | 2.8 GHz), 64 GB DDR3 ECC

Input: MapcacheList(rddi, ε): cache collection of RDD, Scache: cluster cache size, SAll: cached RDD size, Rnew: cache candidate, Snew:
size of candidate.
Output: rddCacheList

(1) calc ε(Rnew);
(2) IntegrityCheck (rdds);
(3) Maprdds(rddi, flag).add(rddi, flag);
(4) if (Snew + SAll > Scache)
(5) for ((k,v)⟵Maprdds(rddi, flag))
(6) if (v � � FALSE)
(7) Replace (k� Rnew,v �TRUE)
(8) end if
(9) end for
(10) if (Maprdds(rddi, flag).contains(Rnew))
(11) Maprdds(rddi, flag).key To List()

(12) else
(13) for ((k,v)←MapcacheList(rddi, ε))
(14) v.QuickSort ();//Sort by execution efficiency
(15) if (v<ε(Rnew))
(16) Replace (k� Rnew, v � ε(Rnew))
(17) end if
(18) end for
(19) MapcacheList(rddi, ε).key To List
(20) end if
(21) end if

ALGORITHM 3: Hierarchical replacement.

8 Mobile Information Systems

Table 1: Information of the experimental datasets.

Datasets Instances Features Classes
NSL-KDD 148517 43 5
UNSW-NB15 257673 49 10
CICIDS2017 2515416 80 13
CICIDS2018 288909 80 15

Table 2: Information of the experimental NSL-KDD.

Train/Test Total Normal DOS U2R R2L PROBE
Train set 125973 67343 45927 11656 995 52
Test set 22544 9711 7458 2421 2754 200

Table 3: Information of the experimental UNSW-NB15.

Class Train set Test set
Normal 56000 37000
Analysis 2000 677
Backdoor 1746 583
DoS 12264 4089
Exploits 33393 11132
Fuzzers 18184 6062
Generic 40000 18871
Reconnaissance 10491 3496
Shellcode 1133 378
Worms 130 44
Total counts 175341 82332

Table 4: Information of the experimental CICIDS2017.

Class Number Proportion
Normal 2089692 83.07
DoS Hulk 172838 6.87
PortScan 128008 5.08
DDoS 90694 3.6
Dos GoldenEye 10283 0.41
FTP-Patator 5931 0.23
SSH-Patator 5385 0.21
DoS Slowloris 5228 0.2
DoS SlowHTTPTest 3219 0.12
Web attacks 2143 0.085
Bot 1948 0.08
Infiltration 36 0.0014
Heartbleed 11 0.0004

Table 5: Information of the experimental CICIDS2018.

Class Train set Test set
Normal 50791 12698
SSH-BruteForce 184 46
FTP-BruteForce 489 122
BruteForce-XSS 7504 1876
BruteForce-Web 15469 3867
SQL injection 70 17
DoS attacks-Hulk 18667 4667
DoS attacks-SlowHTTPTest 55956 13989
DoS attacks-Slowloris 4396 1099
DoS attacks-GoldenEye 16603 4151
DDOS attack-HOIC 27441 6860
DDOS attack-LOIC-UDP 1384 346
DDOS attack-LOIC-HTTP 23048 5762
Bot 11448 2862
Infiltration 6478 1620
Total counts 231127 57782

Mobile Information Systems 9

1866MHz four-channel memory. Moreover, the master
node is equipped with 4 ∗ Intel Xeon E7-4850 (Ivy Bridge|
10C|2.0 GHz) and 512 GB DDR3 REG 1333 memory.
Internal connection bandwidth is 56 Gbps IB, and chip
transmission delay 100 ns.)e system setup for all nodes
is CentOS-7-GenericCloud-1503.qcow2, Hadoop 2.6.3,
Scala-2.10.5, and Spark 1.6.1.

6.2.Hyperparameter Setting. In this part, NSL-KDD is taken
as an example dataset to illustrate the influence of hyper-
parameters in the proposed model and to demonstrate the
process of parameter tuning.

Equation (11) interprets that about 1/3 of samples will
not appear in the collection set whenever bootstrap, which is
called out-of-bag (OOB) data.

lim
n⟶∞

1 −
1
n

􏼒 􏼓
n

�
1
e
≈ 0.368. (11)

)ese data will not participate in the establishment of the
decision tree and can replace the validation set to verify the
model.

OOB error rate is calculated to evaluate the effect of
different sliding window sizes on the model. As can be
seen from Figure 6, when the window size is d/4, the
average error rate is the lowest, and the average OOB error
rate is the highest at d/16, where d is the raw feature
length.)is result interprets that a more fine-grained
window size is not necessarily better when trying to en-
hance the generalization performance of the model. With
the increase of decision trees, the error rate starts to
converge at about 0.06. So, it is finally recommended that
d/4 is the suitable size.

)en, the remaining parameters are adjusted by using
10-fold cross-validation. For instance, n_estimators is the
number of decision trees. Generally speaking, more trees
make the model more robust and have better perfor-
mance. Considering a wider availability, we searched it on
the range of (0, 500] by step-size 50 and compared the
results after 10-fold cross validation to get the optimum
value. Finally, Table 6 summarizes the rest of hyper-
parameters setting of FS-DPRF.

6.3. Model Evaluation. In this section, we compare FS-
DPRF with parallel random forest (PRF), DSSVM [17], and
A-DNN [19].)e classification performance is measured
by the accuracy, recall precision and F1, detection rate
(DR), and false alarm rate (FAR).)e F1 score is an
evaluation index that comprehensively considers the recall
rate and precision, and its definition is shown in equation
(13).)e higher F1 score value means the better the
classification performance of the algorithm.)e evaluation
metrics are defined as follows:

Accuracy �
TP + TN

TP + TN + FP + FN
,

DR �
TN

TN + FP
,

FAR �
FP

FP + TN
,

Recall �
TP

TP + FN
,

Precision �
TP

TP + FP
,

(12)

F1 − measure � 2 ·
precision × recall
precision + recall

, (13)

where TP represents the number of true attacks predicted as
attack type, FN represents the number of true attacks pre-
dicted as normal, FP represents the number of true normal
predicted as attack type, and TN represents the number of
normal predicted as normal.)e comparison results are the
average value obtained from ten experiments under different
datasets. In order to verify the performance of the model
under two classifications: normal and attack. In this part, all
attack types are regarded as abnormal types. We mark all
data as two types: normal and abnormal. Table 7 shows the
comparison results of normal and abnormal on given
datasets.

On the NSL-KDD dataset, the accuracy of the com-
parison algorithm is more than 90%, and the deep neural
network has achieved a good result of 98%, but it is still 1%
lower than FS-DPRF. Similarly, precision and recall reflect
that our model’s ability to confirm normal network behavior
is the best. On the UNSW-NB15 dataset, shallow machine
learning algorithms began to perform weak, only 80%–85%

40 60 80 100 120
n_estimators

140 160 180 200

0.11

0.10

0.09

0.08

O
O

B
er

ro
r r

at
e

0.07

0.06

0.05

Feature segment winsize = d/4
Feature segment winsize = d/8
Feature segment winsize = d/16

Figure 6: Impact of feature slice window size.

10 Mobile Information Systems

on accuracy.)e two methods based on deep learning carry
a high accuracy rate on above 94.2% and 97.7%. FS-DPRF is
better than the deep neural network. As data become more
and more complex and closer to the real network envi-
ronment, the average accuracy of shallow algorithms on the
two datasets of CICIDS2017 and CICIDS2018 has been
lower than 90%. Precision and recall have also lost their
competitiveness.)e accuracy rates of A-DNN and FS-
DPRF on the CICIDS2017 dataset reached 96.5% and 97.4%,
respectively. Although the precision of A-DNN is higher,
leading by 1%, the recall rate of the FS-DPRF is higher.)e
higher the recall rate, the higher the probability that the
attack is predicted, which means that FS-DPRF has better
attack detection capabilities on CICIDS2017.)e last group
of data is the result of the CICDIS2018.)e accuracy of FS-
DPRF is 3% higher than that of A-DNN, and the precision
and recall rate are also higher than A-DNN by 1.3% and
2.4%, respectively.

Figure 7 shows the comparison results of FS-DPRF,
parallel random forest, DSSVM, and deep neural network
on F1 index.)e score of the new method on the NSL-
KDD dataset is higher than that of shallow machine
learning, with an advantage of 3%–5%, and it is also 1%
higher than A-DNN.)e results on the UNSW-NB15
dataset show that there is a gap between the performance
of deep learning-based methods and PRF and DSSVM.
Deep learning-based methods perform better, and the
score of FS-DPRF is 3% higher than that of deep neural
networks. On CICIDS2017 and CICIDS2018, the F1 scores
of the four methods are slightly lower than the experi-
mental data of the first two groups, but the deep learning-
based method still maintains the lead over PRF and
DSSVM.)e F1 score of FS-DPRF on CICIDS2017 is 1%
higher than that of A-DNN, and the F1 score of FS-DPRF
on CICIDS2018 is 1.9% higher than that of A-DNN.)e
score of the F1 index on those four datasets shows that the
forest-based deep learning network in this normal/ab-
normal two-type classification experiment is better than
the shallow machine learning method and is competitive
compared with the deep neural network.

In order to verify the detection ability of the model in
multiclassification, we did another set of experiments on the
NSL-KDD dataset. According to the original label, all data
are divided into five classes as shown in Table 8.)e data
preprocessing and the parameter settings are the same as the
previous part, and ten experiments are performed to take the
average. It is worth noting that, considering the support
vector machine’s binary classification limitation, we spend a
lot of labeling works to test DR and FAR on “a certain attack/
other” separately. It can be seen from the experimental
results in Table 8 that the method proposed in this paper has
improved the detection rate on 5 class labels, and the FR is
relatively low. Although the detection results of U2R attack
types are not particularly ideal, this is also related to the
imbalance in the distribution of categories in the dataset. In
summary, the method in this paper has shown the best

strength in multiclass attacks and normal classification
experiments.

We then tested our model by average execution time and
speedup, which are used to measure the scalability of parallel
cluster.)e speedup is defined as

Sp �
T1

TP

, (14)

where p is the number of CPUs, T1 refers to the execution
time of the sequential execution algorithm, and Tp rep-
resents the execution time of p nodes parallel algorithms.
As it can be seen from Figure 8, with the increase of slave
nodes, the average execution time of the model on four
given datasets is reduced.)e decrease trend of execution
time on different datasets is not exactly the same due to
the data size.)e average execution time and the number
of cluster nodes show a strong correlation in all cases,
which indicates that the proposed method has good
scalability.

)e speedup experiment tested the model in different
numbers of slave nodes. As shown in Figure 9, the speedup
of each dataset all increase routinely when the number of
nodes increases from 1 to 25 and tends to slow down by the
number of nodes from 25 to 50.)e result shows that the
model has a good speedup performance in datasets of dif-
ferent volumes and dimensions. However, it does not show a
perfect linear growth like the definition shown above, and it
can be interpreted that the communication overhead and
task scheduling costs would become larger as the cluster
scale increased.

Finally, we setup 20 slave nodes for experiment and
compared the cache performance between Spark’s default
LRU algorithm and our optimized method in FS-DPRF. It
can be seen from Figure 10 that the FS-DPRF has less
execution time, where the time reduces by 8.8% in NSL-
KDD and 8.9% in UNSW-NB15 compared to LRU.)e
execution time of FS-DPRF on the CICIDS2017 and the
CICIDS2018 also decreases by 7.2% and 13.3%, respec-
tively, compared with LRU.)e column chart indicates the
cache replacement strategy proposed in this paper can cut
down the execution time of anomaly detection task suc-
cessfully. Even if the efficiency sort and partition integrity
check in the replacement sacrifice a part of memory, as
shown in Figure 11, that FS-DPRF is a little bit higher than
the LRU algorithm in memory occupancy rate, and ac-
ceptable real-time performance is more important to in-
trusion detection.)erefore, the optimization for
parallelization successfully improves the task execution
efficiency of the proposed intrusion detection model.

7. Limitations of the Research

)e limitation of the research is that the model will consume
a lot of memory, so to get a well-trained intrusion detection
model requires powerful computing equipment. Although

Mobile Information Systems 11

0.9382

0.9042

0.8594

0.9087

0.9541

0.8936

0.8441

0.8856

0.9778

0.9477 0.9514
0.9387

0.9897
0.9737

0.9661
0.9572

NSL-KDD UNSW-NB15 CICIDS2017 CICIDS2018
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

F1
-M

ea
su

re

PRF
DSSVM

A-DNN
FS-DPRF

Figure 7: Comparisons of F1 score between the proposed model and previous classic algorithms.

Table 6:)e hyper-parameter setting of FS-DPRF.

Parameters Feature-grained random forest Cascade layers random forest
n_estimators 150 350
max_depth 10 15
max_features

�
n

√
log2(n + 1)

min_samples_leaf 4 2
min_samples_split 2 2
Criterion Gini Gini

Table 7:)e experiment results on the four given datasets.

Dataset Algorithm Accuracy Precision Recall

NSL-KDD

PRF 0.93224 0.94648 0.93013
DSSVM 0.94137 0.95763 0.95065
A-DNN 0.98952 0.98101 0.97474
FS-DPRF 0.99132 0.99213 0.98733

UNSW-NB15

PRF 0.85321 0.93752 0.87308
DSSVM 0.81927 0.92931 0.86054
A-DNN 0.94219 0.95740 0.93829
FS-DPRF 0.97763 0.98363 0.96401

CICIDS2017

PRF 0.86532 0.85655 0.86227
DSSVM 0.85290 0.84739 0.84075
A-DNN 0.96527 0.96028 0.94272
FS-DPRF 0.97430 0.95330 0.97931

CICIDS2018

PRF 0.89876 0.91010 0.90733
DSSVM 0.87852 0.89110 0.88031
A-DNN 0.94480 0.94754 0.93015
FS-DPRF 0.96750 0.96031 0.95424

Table 8:)e multiclassification results on NSL-KDD.

Type
PRF DSSVM A-DNN FS-DPRF

DR FAR DR FAR DR FAR DR FAR
DOS 0.942 0.057 0.960 0.040 0.983 0.017 0.990 0.010
R2L 0.947 0.053 0.892 0.109 0.924 0.076 0.961 0.039
U2R 0.930 0.073 0.921 0.078 0.925 0.075 0.976 0.024
Probe 0.863 0.136 0.911 0.088 0.887 0.113 0.946 0.053
Normal 0.955 0.048 0.960 0.040 0.948 0.052 0.983 0.016

12 Mobile Information Systems

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

180

200

CICIDS2017
CICIDS2018

UNSW-NB15
NSL-KDD

A
ve

ra
ge

 ex
ec

ut
io

n
tim

e (
s)

Slave nodes

Figure 8: Average execution time of FS-DPRF in different node scales.

0 10 20 30 40 50
0

10

20

30

40

50

Sp
ee

du
p

(ti
m

es
)

Slave nodes

NSL-KDD
UNSW-NB15

CICIDS2018
CICIDS2017

Figure 9: Speedup curve of FS-DPRF in different node scales.

17.7
23.9

102.7

42.2

16.1
21.8

95.8

37.3

NSL-KDD UNSW-NB15 CICIDS2017 CICIDS2018
0

20

40

60

80

100

120

Ti
m

e (
s)

LRU

FS-DPRF

Figure 10: Execution time comparison between FS-DPRF and LRU.

Mobile Information Systems 13

the model proposed in this paper has achieved good results
trained by CPUs in the Spark distributed environment,
unfortunately, the current structure is naturally not suitable
for GPUs.)is makes the model temporarily unable to be
better accelerated on the GPUs like a deep neural network.

8. Conclusion and Future Work

From the work of predecessors, the ensemble learning-based
method has shown convincing performances in challenging
missions that can be abstractly understood as classification
problem.)e main scientific contribution of this paper is to
propose a deep learning model based on ensemble decision
trees. Inspired by deep neural networks, we used layers
composed of random forests to imitate the hidden layers and
fully connected layers in the neural network to build a cas-
cading model of random forests.)e proposedmodel utilizes a
slide window to segment sample features into many small
pieces, which can reduce calculation volume of high dimension
data for every compute and keep the integrity of raw features.
)e cascade structure improves the generalization ability and
has a higher accuracy rate.)e model has only a few hyper-
parameters while achieving good generalization ability. An-
other part of the contribution is to propose a cache replacement
strategy for RDDs in the Spark environment and determine the
priority order of RDD loading by calculating weights and
completeness. It effectively reduces the average execution time
of intrusion detection tasks on distributed clusters.)e ex-
perimental results on four datasets have demonstrated that the
model proposed in this paper performs better than the parallel
random forest and support vector machine in F1-measure and
accuracy and achieves competitive performance compared to
the state-of-the-arts approach of deep neural networks. Al-
though the model reduces the average execution time, it in-
creases the memory consumption and does not support GPU
acceleration temporarily.)erefore, the model is more suitable
for deployment on a distributed cluster with sufficientmemory,
which also reflects the limitations of our model. In the future,

the work will focus more on the optimization processes of the
features of training data to improve the prediction accuracy
and will further research on the issue of unbalanced data
distribution in the intrusion detection task.

Data Availability

)e datasets are available at https://www.unb.ca/cic/
datasets/index.html, Cyber Range Lab of the Australian
Center for Cyber Security (ACCS) (https://www.unsw.adfa.
edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-
Datasets/), and Canadian Institute for Cybersecurity
(https://www.unb.ca/cic/datasets/ids-2017.html https://
www.unb.ca/cic/datasets/ids-2018.html).

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was supported by the Natural Science Foundation
of Hebei Province, China (F2019201427) and Ministry of
Education Fund Project of China (2017A20004).

References

[1] M. Ahmed, A. N. Mahmood, and M. R. Islam, “A survey of
anomaly detection techniques in financial domain,” Future
Generation Computer Systems, vol. 55, pp. 278–288, 2016.

[2] R. Yu, X. He, and Y. Liu, “GLAD: Group Anomaly detection
in social media analysis,” ACM Transactions on Knowledge
Discovery from Data, vol. 10, no. 18, pp. 1–22, 2015.

[3] Y. Djenouri and A. Zimek, “Outlier detection in urban traffic
data,” in Proceedings of the International Conference on Web
Intelligence, Mining and Semantics, no. 3, pp. 1–12, Novi Sad,
Serbia, June 2018.

[4] K. Sequeira and M. Zaki, “ADMIT: anomaly-based data
mining for intrusions,” in Proceedings of the Eighth ACM

0.336

0.423

0.644
0.574

0.435
0.478

0.703
0.631

NSL-KDD UNSW-NB15 CICIDS2017 CICIDS2018
0.0

0.2

0.4

0.6

0.8

M
em

or
y

oc
cu

pa
nc

y
ra

te

LRU

FS-DPRF

Figure 11: Memory usage comparison between FS-DPRF and LRU.

14 Mobile Information Systems

https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unb.ca/cic/datasets/ids-2017.html%20https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2017.html%20https://www.unb.ca/cic/datasets/ids-2018.html

SIGKDD International Conference on Knowledge Discovery
and Data Mining, Edmonton, Canada, July 2002.

[5] S. Roberto, S. Carta, and D. R. Recupero, “A probabilistic-
driven ensemble approach to perform event classification in
intrusion detection system,” in Proceedings of the 10th In-
ternational Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management,
pp. 139–146, Seville, Spain, June 2018.

[6] M. S. Pervez and D. M. Farid, “Feature selection and intrusion
classification in NSL-KDDCUP 99 dataset employing SVMs,”
in Proceedings of the 8th International Conference on Software,
Knowledge, Information Management and Applications
(SKIMA), pp. 1–6, Kuala Lumpur, Malaysia, December 2014.

[7] S. Vishwakarma, V. Sharma, and A. Tiwari, “An intrusion
detection system using KNN-ACO algorithm,” International
Journal of Computer Applications, vol. 171, no. 10, pp. 18–23,
2017.

[8] N. Farnaaz and M. A. Jabbar, “Random forest modeling for
network intrusion detection system,” Procedia Computer
Science, vol. 89, pp. 213–217, 2016.

[9] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[10] R. K. Malaiya, D. Kwon, S. C. Suh, H. Kim, I. Kim, and J. Kim,
“An empirical evaluation of deep learning for network
anomaly detection,” IEEE Access, vol. 7, pp. 140806–140817,
2019.

[11] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, “A
survey of deep learning-based network anomaly detection,”
Cluster Computing, vol. 22, no. 3, pp. 1–13, 2019.

[12] A. L. Buczak and E. Guven, “A survey of data mining and
machine learning methods for cyber security intrusion de-
tection,” IEEE Communications Surveys & Tutorials, vol. 18,
pp. 1153–1176, 2016.

[13] B. Kolosnjaji, G. Eraisha, G.Webster, A. Zarras, and C. Eckert,
“Empowering convolutional networks for malware classifi-
cation and analysis,” in Proceedings of the International Joint
Conference on Neural Networks (IJCNN), pp. 3838–3845,
Anchorage, AK, USA, May 2017.

[14] D. Li, D. Chen, J. Goh, and S. Ng, “Anomaly detection with
generative adversarial networks for multivariate time series,”
2019, http://arxiv.org/abs/1809.04758.

[15] J. Chen, S. Sathe, C. Aggarwal, and D. Turaga, “Outlier de-
tection with autoencoder ensembles,” in Proceedings of the
2017 SIAM International Conference on Data Mining,
pp. 90–98, Houston, TX, USA, April 2017.

[16] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie,
“High-dimensional and large-scale anomaly detection using a
linear one-class SVM with deep learning,” Pattern Recogni-
tion, vol. 58, pp. 121–134, 2016.

[17] L. Khalvati, M. Keshtgary, and N. Rikhtegar, “Intrusion de-
tection based on a novel hybrid learning approach,” Journal of
AI and Data Mining, vol. 6, no. 1, pp. 157–162, 2018.

[18] R. Vinayakumar, K. P. Soman, and P. Poornachandran,
“Applying convolutional neural network for network intru-
sion detection,” in Proceedings of the International Conference
on Advances in Computing Communications and Informatics
(ICACCI), pp. 1222–1228, Udupi, India, September 2017.

[19] S. Potluri and C. Diedrich, “Accelerated deep neural networks
for enhanced Intrusion Detection System,” in Proceedings of
the IEEE 21st International Conference on Emerging Tech-
nology and Factory Automation (ETFA), pp. 1–8, Berlin,
Germany, September 2016.

[20] N. Gao, L. Gao, Q. Gao, andH.Wang, “An intrusion detection
model based on deep belief networks,” in Proceedings of the

2014 Second International Conference on Advanced Cloud and
Big Data, pp. 247–252, Huangshan, China, November 2014.

[21] R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui, “A
comparative evaluation of outlier detection algorithms: exper-
iments and analyses,” Pattern Recognition, vol. 74, pp. 406–421,
Feb, 2018.

[22] K. Hundman, V. Constantinou, C. Laporte, L. Colwell, and
T. Soderstrom, “Detecting spacecraft anomalies using LSTMs
and nonparametric dynamic thresholding,” in Proceedings of
the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 387–395, London, UK,
August 2018.

[23] E. Manzoor, H. Lamba, and L. Akoglu, “xStream: outlier
detection in feature-evolving data streams,” in Proceedings of
the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 1963–1972, London, UK,
August 2018.

[24] H. Zheng, Y. Zhang, L. Yang et al., “A new ensemble learning
framework for 3D biomedical image segmentation,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 5909–5916, Honolulu, HI, USA, February 2019.

[25] F. T. Liu, K. M. Ting, and Z. H. Zhou, “Isolation-based
anomaly detection,” ACM Transactions on Knowledge Dis-
covery from Data, vol. 6, no. 3, pp. 1–39, Mar, 2012.

[26] J. H. Friedman, “Greedy function approximation: a gradient
boosting machine,” Ae Annals of Statistics, vol. 29, no. 5,
pp. 1189–1232, 2001.

[27] T. Chen and C. Guestrin, “XGBoost: a scalable tree boosting
system,” in Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
pp. 785–794, San Francisco, CA, USA, August 2016.

[28] P. Su, Y. Liu, and X. Song, “Research on intrusion detection
method based on improved smote and XGBOOST,” in Pro-
ceedings of the 8th International Conference on Communi-
cation and Network Security, pp. 37–41, Qingdao, China,
November 2018.

[29] Y. Zhou, T. A. Mazzuchi, and S. Sarkani, “M-AdaBoost-a
based ensemble system for network intrusion detection,”
Expert Systems with Applications, vol. 162, p. 113864, 2020.

[30] F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, “TSDL: a
two-stage deep learning model for efficient network intrusion
detection,” IEEE Access, vol. 7, pp. 30373–30385, 2019.

[31] J. Gao and P. Tan, “Converting output scores from outlier
detection algorithms into probability estimates,” in Pro-
ceedings of the 6th International Conference on Data Mining
(ICDM), pp. 212–221, Hong Kong, China, December 2006.

[32] M. Zaharia, “Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing,” in Proceedings
of the Conference on Networked Systems Design and Imple-
mentation (NSDI), pp. 15–28, San Jose, CA, USA, April 2012.

[33] J. Chen, “A parallel random forest algorithm for big data in a
spark cloud computing environment,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 4, pp. 919–933,
2017.

[34] M. M. Khan, M. A. U. Alam, A. K. Nath, and W. Yu, “Ex-
ploration of memory hybridization for RDD caching in
Spark,” in Proceedings of the ACM SIGPLAN International
Symposium on Memory Management (ISMM), pp. 41–52,
Phoenix, AZ, USA, June 2019.

[35] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A
detailed analysis of the KDD CUP 99 data set,” in Proceedings
of the 2009 IEEE Symposium on Computational Intelligence in
Security and Defense Applications, pp. 1–6, Ottawa, ON, USA,
July 2009.

Mobile Information Systems 15

http://arxiv.org/abs/1809.04758

[36] N.Moustafa and J. Slay, “UNSW-NB15: a comprehensive data
set for network intrusion detection systems (UNSW-NB15
network data set),” in Proceedings of the IEEE Military
Communications and Information Systems Conference, MilCIS
2015, pp. 1–6, Canberra, Australia, November 2015.

[37] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion
traffic characterization,” in Proceedings of the 4th Interna-
tional Conference on Information Systems Security and Pri-
vacy, pp. 108–116, Funchal, Portugal, June 2018.

16 Mobile Information Systems

