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A reliable Indoor Positioning System (IPS) is a crucial part of the Ambient-Assisted Living (AAL) concept. The use of Wi-Fi
fingerprinting techniques to determine the location of the user, based on the Received Signal Strength Indication (RSSI) mapping,
avoids the need to deploy a dedicated positioning infrastructure but comes with its own issues. Heterogeneity of devices and RSSI
variability in space and time due to environment changing conditions pose a challenge to positioning systems based on this
technique. The primary purpose of this research is to examine the viability of leveraging other sensors in aiding the positioning
system to provide more accurate predictions. In particular, the experiments presented in this work show that Inertial Motion
Units (IMU), which are present by default in smart devices such as smartphones or smartwatches, can increase the performance of
Indoor Positioning Systems in AAL environments. Furthermore, this paper assesses a set of techniques to predict the future
performance of the positioning system based on the training data, as well as complementary strategies such as data scaling and the
use of consecutive Wi-Fi scanning to further improve the reliability of the IPS predictions. This research shows that a robust
positioning estimation can be derived from such strategies.

1. Introduction

The current increase in the population’s average age [1] leads
to new requirements in the healthcare domain, particularly
in aspects such as care-giving, home assistance, rehabilita-
tion, early detection of diseases, or physical support [2]. The
need for assistance and healthcare to the elderly is becoming
more and more necessary for social as well as for economic
reasons. This trend urges affording suitable assistance sys-
tems to improve the quality of life of older people [3] with
the aim of helping them live an active and productive aging
at an affordable cost [4]. Due to underlying and often de-
bilitating health conditions that are associated with elderly

people, aspects of everyday living can become physically and
mentally challenging for them. Technology can be integrated
into the healthcare of senior citizens to provide safe, high-
quality lives, improve their health and happiness, and enable
a longer period of independent living. Assistive technical
applications should be easy to use, unobtrusive, suitably
designed, and adaptable to changing needs and individual
preferences.

Ambient Assisted Living (AAL) concept has been de-
fined as a set of products and services aimed at building
intelligent environments in the assistance of these groups of
people [5]. One of the goals of AAL is to provide reliable and
meaningful information to health professionals, caregivers,
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psychologists, or family members. AAL applications consist
of networks of heterogeneous information appliances and
smart artifacts that can assist people with special needs in
several areas such as daily task facilitation, mobility assis-
tance, healthcare and rehabilitation, and social inclusion and
communication. With the help of Artificial Intelligence (AI),
AAL facilitates the use of technology in a nonintrusive way
to support safe, high-quality, and independent lives for the
frail and elderly. AAL platforms strongly rely on an accurate
underlying localization system in order to provide timely
and reliable services to elderly users. Knowing their position
and actions is vital for medical observation, timely accident
prevention, behavioral pattern characterization, or anomaly
detection [6].

While the problem of localization in outdoor environ-
ments has been solved by the use of satellite positioning
systems such as GPS or Galileo, which provide an acceptable
level of accuracy and precision, indoor positioning remains
an open issue. Satellital signals are not available inside
buildings, since they are attenuated and scattered by roofs,
walls, and other building elements and are unable to reach
the user’s device with enough intensity to provide precise
positioning services. Researchers and industry are currently
involved in the investigation, development, and improve-
ment of reliable Indoor Positioning Systems. Although
significant progress has been made, there is not an accurate
and widely accepted solution for this topic.

Indoor Positioning Systems (IPS) are systems that lo-
cate and track people or objects inside buildings using radio
waves, magnetic field, acoustic signals, images, or other
information collected by sensors [7]. A suitable IPS system
for AAL has to be able to localize the assisted person in an
indoor environment, with accuracy and performance high
enough to reliably monitor his/her activity and provide
meaningful assistance and services. These systems have to
be deployed at the user’s living place, in real scenarios
where the particular constructive characteristics and pe-
culiarities of the building may affect the way that signals
propagate. This type of scenarios is very different from the
controlled experiments where environmental conditions
are known in advance. The fact that homes are diverse, with
different layouts and varied architectural particularities
makes it complex, time-consuming, and expensive to
model the propagation of radio-frequency signals each time
the positioning system has to be installed. Furthermore,
technical proposals for AAL should be easy to use, un-
obtrusive, and inexpensive, so deployment has to be as
simple as possible.

In order to predict the position of an agent in an indoor
environment, traditional approaches rely on the construc-
tion of reliable models for signal propagation, which is a
complex topic. The performance of these methods depends
on the correct assumptions about the underlying rules
governing the observed signals. If the assumptions are
wrong, the model will not describe the observations and will
not be able to make solid predictions. On the other hand,
Machine Learning (ML) algorithms allow the identification
of correlations in datasets without the need for a proper
determination of the underlying model. In other words, ML
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techniques treat the model as a black box for which an
explicit characterization is unknown. The training process of
the supervised ML algorithms is able to uncover meaningful
and characteristic patterns directly from the data and to
build effective and predictive models that perform well on
unseen data.

Wi-Fi fingerprinting, which uses ML techniques to take
advantage of an already deployed infrastructure, is a good
choice for such systems [8, 9]. Nevertheless, factors such as
channel interference, sensor orientation, or multipath
propagation and fading introduce a level of indeterminacy in
Wi-Fi sensor readings, impacting negatively on the per-
formance of this positioning method [10]. In scenarios
where accuracy at room level is enough to provide relevant
services, selecting an adequate classifier algorithm and
collecting data appropriately can significantly improve
precision. Furthermore, taking into consideration readings
from other sensors, such as Inertial Motion Units (IMU),
along with Wi-Fi fingerprints, can help to account for
changes in the user’s location, providing valuable infor-
mation that can be utilized to improve the IPS results.

This paper presents the results of a study to assess the
impact on the IPS performance of strategies based on the
utilization of motion sensor readings to detect user states.
This work also presents some preliminary data study
techniques that can help to predict the quality of the data
recorded by the users, which directly affects the accuracy of
the IPS system. Furthermore, we also carried out a set of
experiments to evaluate the effectiveness of a series of actions
aimed at reducing the influence of Wi-Fi signal uncertainty
and selecting the most appropriate ML algorithm for the
positioning system. As a summary, the main contributions
of this paper are as follows:

(i) We perform a set of data analysis techniques that
help to predict the performance of the positioning
system based on the characteristics of the training
data recorded by the user

(if) We assess the performance gain of considering
readings from body-worn inertial sensors to rec-
ognize room transitions

(iii) We compare the impact of some strategies to in-
crease the positioning performance of the posi-
tioning algorithms and to reduce uncertainty in Wi-
Fi signals

(iv) We also compare the performance of four machine
learning algorithms in room level indoor localiza-
tion tasks

A preliminary version of this work, entitled “Improving
Positioning Accuracy in Ambient Assisted Living Envi-
ronments. A Multi-Sensor Approach” [11] was presented at
the 15™ International Conference on Intelligent Environ-
ments (IE19). With respect to the preliminary version, we
have extended and partially rewritten all sections. Fur-
thermore, we have added a new section dedicated to ex-
ploring data characteristics and their relationship with the
performance of the classification algorithms used in the
experiments.
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The organization of this paper is as follows: Section
“Background” shortly provides context on Ambient Assisted
Living and Indoor Positioning Systems. Section “System
Overview” presents an overview of the positioning system
used to perform the experiments. Section “Data” presents a
study of the data and discusses the outcomes. Section
“Experiments Description” describes the experiments per-
formed and section “Results” discusses their results. Finally,
section “Conclusions and Future Work” underlines the main
conclusions of this work and explores possible future lines of
research.

2. Background

General Al and Machine Learning (ML) based systems are
being developed and used in areas such as context-aware-
ness, agent-based technologies or computer vision, to
provide more intelligent, flexible, natural and supportive
services for healthcare. Some examples of how services based
on Al and ML techniques can be used in healthcare services
are:

eHuman Activity Recognition (HAR): systems can
combine data from multiple sensors to recognize user’s
activities and identify behavioral patterns. The performance
of daily activities can be used as a measure of the cognitive
and physical condition of the elderly [12-14].

eAnomaly Detection: anomaly detection techniques can
expose declining health conditions. Changes and anomalies
in the user behavior can be of use in chronic diseases
monitoring [15] and early depression detection [16] and can
denote elder-specific illnesses such as cognitive decline,
Alzheimer’s disease, dementia or functional impairment
[17, 18].

eDecision Support: decision support systems assemble
different types of data from multiple patients and help
doctors and healthcare professionals to organize their work,
to analyze people personal needs, or to survey some com-
mon phenomenon

Some of the key aspects of deploying an IPS for Ambient
Assisted Living are related to choosing the right positioning
technology while implementing the system in a passive,
device-free, and unobtrusive way. This objective might re-
quire the use of an existing infrastructure, the deployment of
a new one, the use of the so-called signals-of-opportunity, or
even a combination of some of these techniques. Many of
these techniques take advantage of the radio-frequency
signals emitted by devices, whose position can be known or
not, to estimate the user’s position from the perceived
strength of these signals, the Received Signal Strength In-
dication (RSSI). RSSI is used to measure the relative quality
of a received signal to a client device. The value read by a
device is given on a logarithmic scale and can correspond to
an instant reading or a mean of some consecutive readings,
but each chipset manufacturer is free to define their own
scale for this term. There are many kinds of devices and
technologies that can be used for positioning purposes, such
as Wi-Fi access points, Bluetooth beacons, Radio-Frequency
Identification (RFID), or Ultra-Wide Band (UWB) devices
[19]. The effectiveness of these techniques can be improved

by leveraging the use of other sensors that are commonly
present in wearable devices.

Beyond Wi-Fi or Bluetooth signals, the use of the Earth’s
magnetic field to build an Indoor Positioning System has
been explored in recent years in several research works.
Man-made constructions cause disturbances that alter the
magnetic field. These magnetic anomalies are location
specific and temporally stable and can be leveraged to build
an indoor positioning framework. In many works, this
approach is combined with other sensors to enhance its
performance. For example, in [20], the authors use the
magnetic field along with opportunistic Wi-Fi signals to
achieve a 90-percentile accuracy of 3.5m for localization.
The use of different deep learning architectures, such as deep
neural networks (DNN) or convolutional neural networks
(CNN), has also been proved to achieve good localization
accuracy [21-23].

Using inertial sensors’ data has been applied previously
to solve diverse problems related to localization. In [24], the
authors present a pedestrian dead reckoning tracking system
that relies on two modules: a step counter and a stride length
estimator. Although the reported results are good, their
solution is based on a homogeneous walking, which cannot
be assumed in some small indoor scenarios such as homes.
Combining radio-frequency signals along with other sen-
sors’ data has been implemented in several previous works.
For example, Xie et al. [25] achieve good accuracy in large
indoor buildings using magnetic field fingerprinting to-
gether with an augmented particle filter. The use of particle
filters to fuse data from various sensors has been a common
practice for indoor localization systems [26, 27], generally
providing good results. In [28], the authors use magnetic
field readings along with Wi-Fi to create a spatiotemporal
signal fusion graph to identify crowd-flows in large indoor
scenarios such as malls or airports. This technique can be
applied to applications or services like advertisement and
recommendation or urban-flow monitoring systems.

Techniques used for indoor location can be divided into
three general categories: proximity, triangulation, and fin-
gerprinting [29]:

(i) Proximity methods compare the RSSI value from
different transmitters and determine the position of
the client assuming that the received signal with the
highest value is from the closest access point. The
accuracy is generally low and relates to the density
of deployed beacons and its signal range.

(ii) Triangulation methods use the geometric properties
of triangles to determine the target location. When
the position of at least three transmitters is known,
the position of the mobile node can be estimated
calculating its distance to each device. The diffi-
culties come with the task of finding the right model
for transforming RSSI to distance. Triangulation
methods can be divided into two groups: lateration
techniques such as Time-of-Arrival (ToA), Time-
Difference-of-Arrival (TDoA), or Round-Trip-
Travel-Time (RTTT), based on the measurement of
the propagation time, and angulation techniques,



such as Angle-of-Arrival (AoA), based on the angle
of the arrival wave. These technologies are not
available to inexpensive positioning infrastructures
due to the need for antenna arrays or time syn-
chronization [30].

(iii) Fingerprinting methods assume that, for a given
indoor environment, a signal mapping exists and
that such map can be reconstructed measuring
the RSSI signal at discrete locations of the
mapped area. In the case of Wi-Fi fingerprinting,
its main advantage relies on the fact that there
already is an existing Wi-Fi infrastructure in the
majority of urban areas. Therefore, the location of
the user can be obtained without deploying any
additional equipment. Obstacles, reflections,
multipath interference, environmental changes,
or device orientation are factors that affect the
signal propagation [31] and can degrade the
performance of IPS based on Wi-Fi
fingerprinting.

Mapping fingerprinting assumes that an RSSI map exists,
and it is constructed by measuring the RSSI at some loca-
tions of interest. The radio map, or fingerprinting dataset, is
composed of a set of collected fingerprints and the associated
positions where the measurements were taken and may
contain some additional variables, such as the type of device
used or a timestamp of the observation, along with any other
useful data. This stage in which the data is acquired to
construct the radio map is known as training, offline, or
survey phase. During operation, once the radio map is
completed, the IPS will use this map as a database for lo-
cation purposes [32]. This stage is known as the online phase
(see Figure 1).

Determining the location of a receiver device at room
level based on the RSSI mapping can be seen as a clas-
sification problem, where the classes are the mapped
rooms and the features are the RSSI signals. However,
there are some issues that make it difficult to achieve good
classification performance in IPS. The main problems are
caused by the heterogeneity of devices and RSSI vari-
ability in space and time due to environment changing
conditions. Regarding the former, since RSSI is a not
standardized indication of power level being received by a
wireless device, any device manufacturer may implement
its measuring in a different way. Therefore, RSSI value can
vary depending on the hardware, software driver li-
braries, operating system, or software monitoring
implementation. With respect to the latter, RSSI is
sensitive to dynamic environmental conditions such as
channel noise, interference, reflection, and attenuation.
This can degrade the performance of the IPS when cir-
cumstances change from the offline to the online phase.
There have been some proposals to tackle different as-
pects of the heterogeneity problems. For example, in [33],
the authors find that the relation in the order of RSS
values from different APs at a fixed location is more stable
than the values themselves and propose the use of an
algorithm that uses this relation to construct a more

Mobile Information Systems

stable fingerprint. Other works [34] propose hybrid
systems based on the use of pyroelectric infrared sensors
to process sets of zone-based fingerprints with the goal of
excluding outliers due to device diversity or shadowing
effects. Other authors [35] disregard the traditional ap-
proach for fingerprinting and propose a system that
exploits the Wi-Fi access points’ coverage area unique-
ness and the coverage area overlap to calculate the user’s
current position while mitigating the impact of using
heterogeneous devices.

Furthermore, collecting and maintaining a radio fin-
gerprint database is a high cost and time-consuming task.
This cost can be reduced considerably in household envi-
ronments when room level positioning is enough to provide
most AAL services. In those cases, the training stage has to
be performed at least once in each room. In a typical house
with 6 rooms, this process can take 10-20 minutes.

The ubiquity of smartphones and smartwatches and the
availability of different wireless interfaces, such as Wi-Fi,
3G, and Bluetooth, make them an attractive platform for
indoor monitoring. Smart home-based behavioral data
have already been found to be useful in assisting older
adults to live independently and to monitor health state
and the onset and progress of age-related diseases and
disorders such as dementia and Alzheimer’s disease [36].
Psychological health in older adults (loneliness, depres-
sion, or emotional states) has been assessed by means of
such data too [37]. Nevertheless, the level of technology
readiness for home health monitoring technologies is still
low [38].

When choosing a particular device to implement an IPS
in AAL, one of the most important factors to consider is the
fact that it has to be as unobtrusive as possible and do not
modify, disturb, limit, or interfere in the user’s daily ac-
tivities or lifestyle. Most Wi-Fi fingerprinting location sys-
tems are based on the use of a smartphone. Nevertheless,
tracking the user location implies the device to be perma-
nently attached to the user, which may not be applicable in
home daily living. For instance, forgetting the device on the
top of the bedside table would point the IPS to assume that
the user is still in bed.

Smartwatches can be seen as an extension of a
smartphone which looks like a common watch. A
smartwatch is always attached to the user, so it is less likely
to be forgotten on top of the bedside table than a
smartphone. In addition, it is a nonobtrusive, relatively
cheap, and easy-to-use tool, which can also provide direct
communication between the user and caregivers, nurses,
or general practitioners.

As most smartphones do, smartwatches also embody
several sensors such as accelerometer, gyroscope, ambient
light intensity, and compass. On the connectivity layer, most
of them also embody Bluetooth, NFC, and Wi-Fi commu-
nications, which allows the use of Wi-Fi fingerprinting
technology as a suitable positioning candidate to be
deployed in such devices. Moreover, most of these devices
also include a GPS chip. This sensor can be used along with
an IPS to provide the location of the user both outdoors and
indoors.
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3. System Overview

The Indoor Positioning System designed to perform these
experiments is part of the research project “Senior Moni-
toring” [39], which is aimed at providing solutions for
monitoring elderly people’s behavior and detecting short-
term issues (falls) as well as long-term issues (cognitive de-
cay). The IPS consists of a smartwatch, which is worn by the
user who is being monitored, and a paired smartphone, which
is used to configure and control the smartwatch behavior and
to communicate with a central cloud server (see Figure 2). The
server stores the sensory data gathered through the smart-
watch and offers assistance to provide decision support
services by performing analysis tasks such as indoor posi-
tioning, activity recognition, or anomaly detection.

3.1. Hardware. The IPS described in this paper requires the
use of a smartwatch attached to the user’s wrist and a
smartphone that communicates with the former through a
user-friendly application in the following way.
eSmartwatch: The wearable device used is the model
SmartWatch 3, manufactured by Sony. This device runs
Android Wear as its operating system and embodies a Wi-Fi

chip along with GPS, accelerometer, compass, gyroscope,
and ambient light sensors. Connectivity is supported
through Wi-Fi, NFC, and Bluetooth. The resolution of its
1.8" screen is 320 x 320 pixels. This device runs an appli-
cation that can be set up to continuously scan for any nearby
Wireless Access Points (WAPs) signal, as well as to record
readings from some other sensors. This application is
controlled via a paired Android one that runs its corre-
sponding version of the application.

eSmartphone: The smartwatch is paired with a smart-
phone that controls its behavior. The smartphone is used to
configure some sensor options such as scan intervals, number
of consecutive scans, sensor activation. Both devices com-
municate through Bluetooth. All the smartwatch readings are
sent to a central server through the smartphone. In case the
devices are not in range, the smartwatch buffers the data to be
sent when a network connection becomes available.

3.2. Software. The Android application that runs in the
smartwatch is in charge of collecting the sensor data. The
configuration and behavior of this application are con-
trolled by means of its reciprocal application installed in
the paired smartphone. Figure 3 shows the main screen of
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FIGURE 2: Senior monitoring IPS overview. The smartwatch sends
sensors data to the smartphone. An application installed in the
smartphone is the interface through which the user or the caregiver
configures the smartwatch. The smartphone sends the data to a
cloud server. This server performs data analysis and can com-
municate with the user through notifications (icons made by
Freepik from http://www.flaticon.com).

the smartphone application. This version of the software
is used for research purposes, so it shows some infor-
mation relevant only to this purpose, along with general
information that is useful for end users. The smartphone
is the interface through which the elderly user can per-
form tasks such as checking the smartwatch status,
viewing his/her level of physical activity, observing the
readings and status of active sensors, or responding to
notifications delivered by his/her caregivers, health
professionals, psychologists, or automatic healthcare
services provided by the analysis system.

The smartphone sends the sensory data to a cloud server
using the MQTT protocol. The server stores the data for
posterior analysis using Elasticsearch as a NoSQL database.
The data provided through user interaction, such as login
data or interaction through notifications, is sent to a REST
cloud server and stored in the same database.

3.3. Sensors. The goal of the structure described so far is to
collect meaningful sensory data to build systems able to
provide reliable AAL services to its users. To this end, the
software previously outlined has been designed to make use
of the following sensors:

3.3.1. Wi-Fi. 'This sensor constitutes the base of the posi-
tioning system. The smartwatch performs a given number of
consecutive Wi-Fi scans every minute. The default number
of scans is 5, but this setting can be modified through the
smartphone app. The procedure is described as follows:
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FiGure 3: The application’s main screen shows detailed infor-
mation about the smartwatch status, the levels of physical activity of
the user in the previous hour, and other useful information from
other active sensors such as Wi-Fi or step counter.

(1) The app sends a startScan command to the Wi-Fi
module to scan for nearby AP signals.

(2) The Wi-Fi module performs a scan and stores its
results in the cache. A notification is sent to the
operating system.

(3) The operating system notifies the app when a scan is
completed. The app then sends a getScanResults
command to request the scanning results stored in
the cache.

When a scan is performed, the Wi-Fi module updates
some data in the cache while keeping some intact. Some
WAPs may be present in the scan results although they have
not been detected in the most recent scan. The details of the
cache updating algorithm are unknown, but outdated data
may persist during some scans. Moreover, in highly crowded
WAP environments, channel interference is very likely. This
means that some WAP signals, especially those whose RSSI
is low, may appear and disappear stochastically. Other
circumstances such as heating and ventilation have their
own impact on the radio signals. Because of the afore-
mentioned conditions, signals collected from incorrect lo-
cations at incorrect times are likely to happen, introducing
errors in data analysis. To minimize the impact of this
behavior and lessen stochasticity, the application completes
a default number of 5 consecutive scans, each one taking
approximately one second to complete. For the smartwatch
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model used in the experiments, these settings allowed for
around 15 hours of battery duration, long enough to collect
data during day time and recharge the device during the
night.

3.3.2. Significant Motion Sensor. The user physical activity
can be determined with the use of inertial sensors such as
accelerometer and gyroscope. Both sensors are capable of
measuring human motion and estimating body position,
which allow determining the physical activity the user is
performing, such as walk, run, and sit [40]. The main
drawback of the use of these sensors in a smartwatch is its
energy cost. Continuously monitoring inertial readings
keeps the system from going into low power/sleep mode and
drastically reduces the battery duration to less than a whole
day, which is a minimum requirement for monitoring
applications.

An alternative is the use of the Significant Motion Sensor
(SMS), a virtual sensor that uses the physical accelerometer
but only is triggered when it detects a motion that might lead
to a change in the user’s location. Thus, though this sensor
does not allow determining the activity the user is per-
forming, it provides a way to detect a possible change in his/
her location. Inversely, if the SMS has not been triggered
during an interval of time, it may be assumed that the user
has not changed its location during that period.

3.3.3. Step Counter. This sensor detects the number of steps
taken by the user since the last time the sensor was acti-
vated. The application automatically resets the counter
every day at midnight. Similarly to the SMS, the step
counter could help to detect intervals during which the user
is not walking.

3.34. Activity Recognition. In order to automatically
monitor the user’s activity, at least one inertial sensor,
preferably the accelerometer, has to be continuously mon-
itored and its data analyzed in search of patterns that
characterize the activities of interest. This would cause a
considerable battery drain, seriously compromising the
device’s usefulness. To remedy this situation, the Android
API allows registering for activity recognition updates. To
keep the power usage to a minimum, the activity detection is
done by periodically waking up the smartwatch and reading
short bursts of motion sensor data. It can detect if the user is
currently on foot, in a vehicle, or on a bicycle or is still, but
the accuracy of the prediction depends on the update in-
terval. Larger interval values will result in fewer activity
detections while smaller values will result in more frequent
activity detections but will consume much power. Each
detection result contains a list of activities sorted by a
probability that indicates how likely that activity is.

To prevent excessive battery use, the activity reporting
service may stop when the device is motionless for an ex-
tended period of time. Once the device moves again, which is
detected through the SMS, the service will resume.

3.3.5. Magnetic Field. Geomagnetic fingerprinting (GF) is a
technique that maps disturbances of the Earth’s magnetic
field caused by the metal construction of buildings and uses
this data to achieve indoor localization through pattern
matching [41].

The 3D magnetometer of the smartwatch measures the
magnetic field in its coordinate system. As the smartwatch
may be oriented arbitrarily in the user’s wrist, the mea-
surements have to be transformed into the coordinate
system of the indoor plan, which can be done with the aid of
inertial sensors such as the accelerometer and the gyroscope.
An alternative to this transformation is to only use the
module of the signals, thus eliminating the need for other
sensor reading but compromising the quality of the
localization.

Geomagnetic fingerprinting can be integrated with some
other positioning technology in a sensor fusion system to
improve localization. For instance, Wi-Fi fingerprinting can
be used to determine the location at room level and GF to
estimate the most likely position within the room.

The smartwatch scans the magnetic field continuously
and sends the collected data to the server every minute.

4. Data

When the system is deployed in a home, users manually
create the radio map while wearing the smartwatch and
following the indications of the smartphone application. The
users first select a set of rooms and then the software guides
them to collect training data in certain points of the selected
rooms, such as the center or any commonly used location.
When this process finishes, the collected training data is sent
to the server. During the system’s normal operation, the data
acquired by the device sensors are sent every minute to the
paired smartphone, which in turn dispatches it to the server
to be stored and analyzed.

The data used to perform these experiments were col-
lected by four users, two males and two females, at their
homes for two months. During this period, the users
manually reported many intervals of time at which they were
in a particular room performing activities of their daily
living. This labeled information constitutes the test data used
to assess the accuracy of the predictions. Table 1 shows some
of the characteristics of each dataset, such as the number of
data points for each room, the total number of access points
detected, or the number of rooms that were selected by each
user.

4.1. Data Exploration. Since data has been labeled at room
level and given that usually rooms are separated by walls that
attenuate the perceived intensity of the Wi-Fi signal, the
feature space of the data should reflect this; that is, we should
be able to find a way to separate the RSSI data into a number
of clusters equal to the number of labels. Each one of these
clusters is formed by signals that have high similarity among
them but are dissimilar to signals in other clusters. There-
fore, we can have a measure of the predictive quality of the
data by finding these clusters and comparing them to the
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TaBLE 1: Data distribution for each dataset.

Dataset WAPs Instances Room 1 Room 2 Room 3 Room 4 Room 5 Room 6

User 1 train 45 4900 800 (16.33%) 800 (16.33%) 800 (16.33%) 900 (18.35%) 800 (16.33%) 800 (16.33%)

User 1 test 29227 3909 (13.37%) 8930 (30.55%) 1214 (4.16%) 1010 (3.46%) 1870 (6.40%) 12294 (42.06%)

User 2 train 115 3600 800 (22.22%) 800 (22.22%) 500 (13.89%) 600 (16.67%) 900 (25.00%)

User 2 test 36718 31700 (86.33%) 778 (2.12%) 2790 (7.60%) 0 (0.00%) 1450 (3.95%)

User 3 train 3350 750 (22.39%) 1000 (29.84%) 500 (14.93%) 500 (14.93%) 600 (17.91%)

User 3 test 74731 27444 (36.72%) 32065 (42.91%) 5779 (7.73%) 3488 (4.67%) 5955 (7.97%)

User 4 train 2600 600 (23.08%) 600 (23.08%) 400 (15.38%) 600 (23.08%) 400 (15.38%)

User 4 test 8322 5134 (61.69%) 328 (3.94%) 1125 (13.52%) 610 (7.33%) 1125 (13.52%)

actual labels. The more similar the clusters are to the labels,
the more feasible it will be for a machine learning algorithm
to find these discriminative patterns between classes and
achieve a good classification accuracy.

The well-known k-means clustering algorithm works by
grouping data into a given number of clusters by calculating
the Euclidean distance among data instances and assigning
each observation to the cluster with the nearest mean. The
algorithm iteratively minimizes within-cluster squared Eu-
clidean distances until the solution converges; that is, there
are no changes from the previous iteration or until the
maximum number of iterations has been reached.

In order to find if the training data is well segmented and
to know if we can expect good classification accuracy, we
apply the k-means algorithm to the data from each user and
then compare the obtained clusters with the actual labels.
Figure 4 shows four heatmaps with the results, with darker
colors representing higher room-cluster correlation and
values denoting percentage. A perfect correlation would
show 100% on each diagonal value, that is, each cluster being
composed only by data from the correct label (room).

Since users usually did not spend the same time in all
rooms, the train and test dataset may be imbalanced.
Therefore, we adopt the fl metric as the metric for classi-
fication performance, since it is more resilient than accuracy
on imbalanced datasets:

2 - precision - recall

fi= (1)

precision + recall ~

When more than two classes are considered, we report
the weighted average of the individual f1-scores of all classes
as the evaluation metric for each model:

fi=— (2)

where ¢ is the number of classes and w; is the weight (the
number of instances) of the i class.

The calculated metrics for each user, shown in Table 2,
can be seen as a predictor of the quality of data. Higher
values will indicate well defined boundaries between classes,
revealing potentially useful hidden predictive information
that will make it easier for a classifier to assign the correct
room to a new instance of data. From these results, it is clear
that the k-means clustering algorithm was able to find a

better partitioning of the data space for users 2 and 3 than for
users 1 and 4. Therefore, we may expect better classification
results for these users.

Users 2 and 3 are also users with a higher number of Wi-
Fi access points detected, which could partially explain the
results obtained. Since the sensor used to record the data is
the same for all users and leaving aside factors such as each
particular house layout, which are unknown, we can assume
that the number of WAPs clearly influences the ability of the
k-means algorithm to differentiate between classes.

A visual representation can make it easier to detect
meaningful patterns and outliers in groups of data. To be
able to find a structure in data in a way that can be visualized,
we need to reduce its dimensionality while trying to keep
most of the knowledge. There are many techniques available
to automatically reduce the complexity of high-dimensional
data. Some of these techniques are as follows.

(i) Principal Components Analysis (PCA) is an un-
supervised technique that finds the components that
hold most of the variance (information) of the data.
Each component has both direction and magnitude.
The direction represents across which principal axes
the data has most variance, and the magnitude
expresses the amount of variance that is captured of
the data when projected onto that axis. Each sub-
sequent principal component is orthogonal to the
previous and has less variance. The final result is a
set of uncorrelated principal components.

(ii) Linear Discriminant Analysis (LDA) identifies a
suitable low-dimensional representation of original
data by finding not only the component axes that
maximize the variance of the data (PCA) but also
the axes that maximize the separation between
multiple classes, thus maintaining the class-dis-
criminatory information. LDA is a supervised
technique since it needs label information to de-
termine a suitable feature space in order to dis-
tinguish between patterns that belong to different
classes.

(iii) t-Distributed Stochastic Neighbor Embedding (t-
SNE) is an unsupervised, nonlinear technique pri-
marily used for exploration and visualization of
high-dimensional data. It differs from PCA by
preserving only small pairwise distances or local
similarities whereas PCA preserves large pairwise
distances to maximize variance. The algorithm
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FIGURE 4: Confusion matrices for users’ clustered data. The vertical axis represents true labels; the horizontal axis represents the predicted

labels. (a) User 1, (b) User 2, (c¢) User 3, and (d) User 4.

TaBLE 2: Accuracy and f1 metrics for k-means clustering of training
data.

User Accuracy fl

User 1 0.4769 0.4950
User 2 0.8801 0.8792
User 3 0.7674 0.7740
User 4 0.4220 0.4291

calculates a similarity measure between pairs of
instances in the high-dimensional space and the
low-dimensional space and tries to minimize the
difference between these two similarity measures
using gradient descent and the Kullback-Leibler
divergence (KL) as the cost function

Figure 5 shows the visualization obtained for each user
and algorithm. PCA does not seem to reveal any clear pattern
for any user. For users 2 and 3, there are some rooms that
seem to be well segmented, but there is still some confusion
with the remaining groups. With respect to LDA, it has been
able to find a good separation between classes for dataset 1,
specially for 2 and 3. For user 4 the representation found looks
more cluttered. And finally, the t-SNE algorithm shows some
structure for datasets 2 and 3, where we can visualize a clear
separation between some classes. On the other hand, the plots
corresponding to data from users 1 and 4 look more chaotic.

In order to get a numeric evaluation of these figures, we use
the Silhouette metric [42]. The silhouette analysis can be used
to study the separation distance between the resulting clusters,
as a measure of the quality of clustering achieved. This value
measures the space between clusters with a value in the range
-1 to 1. If cluster cohesion is good and cluster separation is
good, the value will be close to 1. On the other hand, if samples
have been assigned to the wrong clusters, the score will be near
to —1. Figure 6 shows the values obtained for this metric for
each one of the algorithms used for visualization.

The conclusions that arise from these visualization and
silhouette plots are consistent with the results obtained with
the k-means clustering. We can expect machine learning
classifiers to have more difficulty finding discriminative
patterns for those datasets on which clustering and visual-
ization techniques have not been able to find significant
differentiation among groups of instances belonging to

PCA LDA t-SNE

User 1

User 2

User 3

User 4

FIGURE 5: Visualization of data using feature reduction algorithms
(PCA, LDA, and t-SNE).

distinct rooms. In particular, silhouette values predict a
better classification accuracy for users 2 and 3 with respect to
users 1 and 4, for which the algorithm could not find clear
boundaries between clusters.

5. Experiments’ Description

The goal of the experiments is to evaluate the influence of a
set of parameters in the accuracy of the positioning system,
as well as assessing the impact of considering the lack of
motion as a constraint for its predictions. Each experiment
consists of the evaluation of the classification metric for a
particular dataset and a given set of parameter values. The
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FIGURE 6: Silhouette metric for PCA, LDA, and #-SNE algorithms.
The dashed line shows the average result for each user.

parameters that will determine each experiment are the
following.

oClassifier: A total of four classification algorithms have
been tested: Decision Tree (DT), k-Nearest Neighbors
(kNN), Neural Net (NN), and Random Forest (RF). The best
parameters for each classifier were determined through a
series of tests before the experiments:

(i) DT: max. depth=20

(ii) kNN: k=3, distance = euclidean
(iii) NN: 5 hidden layers, units =50, act=RELU
(iv) RF: max. depth =20, max nodes=>50

oScaling: The RSSI values from the Wi-Fi fingerprints are
usually in the range (-100, —30). One common strategy [43] to
ease the work of classification algorithms and increase their
performance is to scale those values into the range (0, 1), where
0 would mean that the WAP is not present in the fingerprint,
and 1 would represent the maximum value for a RSSI (see
equation (1)). We compare the performance of this strategy
against feeding the classifiers without preprocessing the data:

RSSI + 100
RSSIscaled = T (3)

eReducing Stochasticity: As stated in Section 3, the IPS
described in this work performs a number of consecutive
scans to minimize the impact of uncertainty in the RSSI values
of Wi-Fi fingerprints. These scan instances, five by default, are
passed to the classifiers and the predictions are determined by
a majority vote. We assess the performance impact of this
strategy against classifying only the first scan instance.

eMinimum Interval without Significant Motion (MISM):
To improve indoor localization accuracy, specially in room
level applications, motion sensors can play an important
role, since the detection of steps or any significant motion
could be used to discover transitions from one room to
another. If a body-worn sensor does not register a significant
motion in a given period of time, it can be supposed that the
user has not changed his/her location. In this scenario, all
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fingerprints received during this interval must correspond to
the same room. Knowing this, the most reasonable proce-
dure may seem to take the locations estimated by the IPS for
that period and assume that all occurrences correspond to
the location that occurs more frequently.

As an example, let us consider that the user gets into the
living room and sits on the sofa. Since the user was moving,
we have a signal from the SMS. Now she stays on the sofa for
30 minutes and then goes to the bathroom. When she gets up
from the sofa, we receive another signal from the SMS. We
know that she was in the same room for 30 minutes, but we
do not know which room it is. During this time, the Wi-Fi
sensor has been sending signals every minute, so we have 30
fingerprints. Let us suppose now that inferring the position
of the user from the Wi-Fi signals gives us these results: 22 in
the living room, 6 in the kitchen, and 2 in the bathroom. It is
safe to assume, given the fact that we know that she did not
move that she was in the living room?

The MISM parameter represents the minimum period to
consider when recognizing intervals at which the user has
not made a significant movement and, therefore, is supposed
to be in the same room. We considered 20 different intervals,
between 10 and 200, in steps of 10 minutes.

ePrediction Threshold (PT): During the interval of time
in which the user stays in a particular room, the IPS gen-
erates a series of predictions, specifically, one per minute.
Due to the particularities of Wi-Fi signals, environment
changes, or user orientation, the predictions produced by the
classification algorithm for this period may not be uniform
and contain different predicted rooms. If we assume that the
user has not changed his/her position, the best policy to
determine the actual position may be to select the most
commonly occurring prediction. In this experiment, we
evaluate the performance gain of following this strategy, in
relation to the ratio of the most occurring prediction over
the total number of predictions. To this end, we considered
50 values for this ratio, in the range (0.50, 1.00) with a step
value of 0.01. A ratio value of 0.50 would correspond to a
case where the most occurring prediction corresponds to the
50% of the IPS predictions. A ratio of 1.00 would correspond
to a case where all predictions are equal. In this case, there
would not be any improvement when considering motion
sensors to amend the IPS predictions.

This configuration gives a total of 16000 experiments for
each dataset. This figure is broken down as follows:

4 classifiers x 2 scaling x 2 maj — vote

(4)
x 20 MISM x 50 PT = 16000.

To compare the results to determine the best parameter
values, we used the Wilcoxon signed-rank test [44], a paired
difference test to evaluate the mean ranks differences that we
applied to the f1 metric.

6. Results

Figure 7 shows a boxplot presenting the results obtained for
each classifier on the four datasets. The Random Forest
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FIGURE 7: Boxplot of the fl metric for each classifier algorithm and each dataset.

TaBLE 3: Results of Wilcoxon signed-rank test for algorithm comparison between RF and each other ML algorithm.

Dataset Algorithm p value HO rejection
User 1 DT <0.001 Yes
User 1 kNN <0.001 Yes
User 1 NN <0.001 Yes
User 2 DT <0.001 Yes
User 2 kNN <0.001 Yes
User 2 NN <0.001 Yes
User 3 DT <0.001 Yes
User 3 kNN <0.001 Yes
User 3 NN <0.001 Yes
User 4 DT =0.035 Yes
User 4 kNN <0.001 Yes
User 4 NN <0.001 Yes
0.925 -
0.900 -
0.875 -
0.850 -
= 0.825 -
0.800 -
0.775 -
1
0.750 -
0.725 -
| | | |
User 1 User 2 User 3 User 4
Dataset
[ Scaled
[ Not scaled
FIGURE 8: Boxplot of the f1 metric for scaled and raw data.
TaBLE 4: Results of Wilcoxon signed-rank test for scaling strategy.
Dataset p value HO rejection
User 1 <0.001 Yes
User 2 <0.001 Yes
User 3 <0.001 Yes
User 4 <0.001 Yes
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FIGURE 9: Boxplot of the f1 metric for majority vote strategy versus considering all Wi-Fi scans.

TaBLE 5: Results of Wilcoxon signed-rank test for majority vote strategy.

Dataset p value HO rejection
User 1 <0.001 Yes
User 2 <0.001 Yes
User 3 <0.001 Yes
User 4 <0.001 Yes

8 &

/1 increase (%)

Dataset
User1 User 3
~ -~ User2 == User 4

FIGURE 10: f1 average increase versus prediction threshold (PT) for all values of MISM. Each line represents a different dataset and the
confidence interval of the result. The thick line marks the average value and its confidence interval.
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FIGURE 11: Results for stage 2; f1 average increase versus prediction threshold (PT) for all values of MISM. Each line represents a different
dataset and the confidence interval of the result. The thick line marks the average value and its confidence interval.

algorithm seems to perform better in all scenarios. To detect
significant differences between the performances of the four
algorithms and determine the most reliable option, we apply
Wilcoxon signed-rank test as a statistical method for testing
the differences among the outcomes. The results of the test,
comparing RF algorithm versus each one of the remaining
classification algorithms for each dataset, are shown in
Table 3. In all cases, the Null Hypothesis (HO) of equivalence
of means can be rejected (p value <0.05). Therefore, the
experimental results show an improved performance in
room detection when using the RF algorithm.

These results also endorse the results obtained in Section
4.1. The Random Forest classifier obtains better results in the
test data for those datasets that showed a significant
structure or pattern when using a clustering or visualization
technique. In particular, the best results are obtained for
users 2 and 3 that show an average fl1 of 0.88 and 0.89,
respectively. On the other hand, results for users 1 and 4,
with an average f1 of 0.83 and 0.76, also confirm the intuition
that the correlation between clustering groups and rooms in
training data is a good predictor for the performance of the
positioning system on test data.

Figure 8 displays a boxplot comparing the classification
effectiveness of scaled data versus raw data. Table 4 shows
the results of the Wilcoxon signed-rank test used to
compare the results. The outcome shows that for all the
datasets, the Null Hypothesis (HO) can be rejected, showing
that scaling the data increments the performance of the
algorithms.

With regard to diminishing the influence of the Wi-Fi
signal stochasticity, Figure 9 displays a boxplot evaluating
the use of the majority vote strategy applied to the con-
secutive samples acquired by the Wi-Fi sensors during each
scan process. As is shown in Table 5, for all datasets, the Null
Hypothesis is rejected, indicating that a majority vote
strategy significantly increments the accuracy of the posi-
tioning algorithm.

The previous tests helped to determine the best posi-
tioning algorithm and strategies to improve the positioning
accuracy. In order to assess the impact of considering the
SMS data to further improve the performance of the IPS, we
used scaling and majority vote strategies and RF as the
selected classifier. Figure 10 shows the average performance
increase obtained depending on the value for the PT pa-
rameter, for all possible values of MISM.

The averaged results show an f1 increase of around 3% in
the range of 0.50 to 0.8. Therefore, the results suggest that it
is safe to assume the most predicted class as the outcome for
the positioning system for a given period of time with no
motion detected. Moreover, the performance increase is
mostly independent of the MISM parameter.

The results for each particular dataset show much var-
iability in the range of PT between 0.5 and 0.7, where the
accuracy cost of making an incorrect prediction is greater.
This variability may be caused by the different house dis-
tribution of rooms on each dataset. Spaces like open plan
kitchen/dining rooms may need additional information,
such as the use of Bluetooth beacons or magnetic field
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sensors, to help the IPS discriminate areas in the same open
space. Nevertheless, the maximum cost in the accuracy of
incorrect predictions is around 1%, and it occurs only for PT
values lower than 0.65. Hence, for PT values greater than
0.65, there is a general performance increase in positioning
system when using the SMS as an indicator of room/position
changes.

In the process of continuously improving the per-
formance of the positioning system and with the goal of
assessing the validity of these findings, we scheduled a
new round of data collection four months after the data
used for the previous experiments were recorded. These
new datasets were recorded by seven elder users, two
females and five males, who performed the training
process while following the indications showed by the
application. In the same way as with the previous dataset,
the process was conducted at their homes, where they
used the positioning system during a period that varies
between one and two months. Following the conclusions
arisen from the previous experiments, we used these new
data to validate the method of using the SMS as a
landmark to detect possible room changes. The results are
shown in Figure 11.

The results for the second stage show a similar pattern
to the results shown earlier, but with increased variability in
the results in the range of PT between 0.5 and 0.7. In this
interval, there is not a general gain in performance, since
the majority of the users report a decrease in the accuracy.
This behavior was already detected for two datasets in the
first stage, and now it happens for four out of seven users.
As discussed earlier, this drop of performance in this in-
terval of PT values can be expected, since it is risky as-
suming that the correct room can be predicted with only
50-65% of occurrences in a given period of time. For PT
values greater than 0.65, the results validate the proposed
approach, since there is a general gain in performance for
all Users.

7. Conclusions and Future Work

The experiments presented in this paper show an improved
accuracy in room detection when using strategies such as
data scaling and the use of consecutive Wi-Fi scanning. The
results also demonstrate that the use of a Significant Motion
Sensor along with the Wi-Fi fingerprints can help to sig-
nificantly increase the performance of Indoor Positioning
Systems.

As future work, more data from a variety of new users is
being collected and will be used to validate the conclusions
of this work, while providing more data to test new strategies
such as the step counter and the activity recognition API to
improve positioning accuracy and the use of the magnetic
field readings to assess the possibility of determining the
position of the user within the room.

Data Availability

The data used in this work are available upon request to the
authors.
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