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In order to improve the credibility of big data analysis platform’s results in IoT, it is necessary to improve the quality of IoT data.
Many detection methods have been proposed to filter out incredible data, but there are certain deficiencies that performance is not
high, detection is not comprehensive, and process is not credible. So this paper proposes an area-context-based credibility
detection method for IoT data, which can effectively detect point anomalies, behavioral anomalies, and contextual anomalies. The
performance of the context determination and the data credibility detection of the device satisfying the area characteristics is
superior to the similar algorithms. As the experiments show, the proposed method can reach a high level of performance with

more than 97% in metrics, which can effectively improve the quality of IoT data.

1. Introduction

With the rapid development of information technology, IoT
(Internet of Things) products have been widely used in
various aspects of agriculture, industry, and social life,
bringing a huge market to the world [1, 2]. Combining IoT
technology with the artificial intelligence and big data
analysis, the new service model, big data analysis platform in
IoT, has been created in recent years. Using the IoT as data
source, the big data as the object of analysis, and the artificial
intelligence as the technology [3, 4], the big data analysis
platform’s credibility depends on the data collected by the
IoT devices. However, existing IoT devices are prone to
malfunction and security issues, resulting in erroneous data
[5, 6] and incorrect analysis results.

Due to the analysis of incredible data by the big data
analysis platform in IoT, there have been many security
incidents all around the world leading to serious conse-
quences recently. In June 2018, Alibaba Cloud Computing
launched an automatic operation and maintenance function
but triggered a bug that generated erroneous data when
identifying the internal normal IP, which caused denial of
service when users accessing to the Alibaba Cloud Com-
puting. In December 2018, an accident occurred in the
Amazon Warehouse in New Jersey, USA. Due to errors in

the robot detection data, it was mistaken that a beast broke
into the warehouse and pierced a can of bear-spraying spray
in the warehouse, causing 24 Amazon employees to be taken
to the hospital for treatment. How to improve the credibility
of IoT data, detect and filter out incredible data, and enable
the big data analysis platform to process credible data and
produce trusted analysis results has become a key issue in
IoT research [7, 8].

Related research has been a focus of many researchers in
diverse areas. In terms of IoT device protection, Trusted
Computing Technology [9, 10] adds a TPM (trusted plat-
form module) to hardware architecture of the device,
transfering trust from TPM to the application layer, to
protect the integrity of device and predictability of behavior;
TNC (Trusted Network Connection) [11] builds a trusted
network transmission process by extending trust from the
device itself to the network, which can effectively prevent
more and more complex network attacks [12]. However,
trusted computing needs to change the hardware archi-
tecture of the device, which will bring excessive cost in the
deployment of IoT devices. In terms of IoT anomaly de-
tection, device vulnerability detection [13], Web attack
detection [14], configuration file detection [15], chip radi-
ation detection [16], lateral movement detection of the
network environment [17], botnet detection [18], dynamic
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attack detection for Internet of Vehicles [19], routing ab-
normal behavior analysis [20], and other methods have
achieved good results, but these methods are all aimed at [oT
devices or networks and do not take data into account which
is the object of the big data analysis platform. To funda-
mentally solve this problem, it is necessary to detect the
credibility of [oT data itself, filter out the untrusted data, and
ensure the credibility of analysis results.

In view of the abovementioned problems, this paper
proposes a credibility detection method for IoT data based
on area-context. Our method introduces the concept of area-
shared-context and uses the characteristics of devices in the
same area sharing the same context in the IoT environment
to determine the devices’ working state. For cases that do not
meet this characteristic, we use the same detection of single
device as the existing method. Then, the probabilistic de-
tector based on the sliding window is used to detect the
credibility of IoT data itself. The feasibility of the above
scheme is verified by experiments, and the experimental
results show that the proposed method has good
performance.

2. Related Works

In order to improve the credibility of IoT data and ensure the
security of the analysis process, it is necessary to make
credibility detection on IoT data, filter out untrusted data,
and retain high availability data. Researchers around the
world have proposed many solutions to this problem.

The method of credibility detection of the IoT data is
mainly to judge whether the data itself is abnormal. The
anomalies discussed in this paper can be divided into three
types: (1) Point anomalies: the data at one time is signifi-
cantly different from the value of most other data. For
example, the normal value of a thermometer ranges from
35°C to 42°C, and if a data of 45°C appears, it is called a point
anomaly. (2) Behavioral anomalies, or collective anomalies:
the way data changes in a period of time is different from the
way credible data changes. For example, the gear speed of a
factory equipment ranges in 0-180 r/min and changes slowly
and continuously, and if a 10 r/min mutation to 160 r/min
occurs at a certain time, the changing pattern is abnormal,
which is called behavioral anomaly. (3) Contextual anom-
alies: IoT devices have different working states in different
contexts, and if the data do not correspond to the context in
which the device should be currently, we call it a contextual
anomaly. For example, the car is accelerating, and the data
displayed by the speedometer is decreasing. Many of the
existing anomaly detection methods focus on the above
three types of anomalies.

References [21] and [22] use Gaussian detectors for
anomaly detection. They construct a Gaussian distribution
by using the mean and variance of training data and then
determine whether the new sample is abnormal according to
the threshold. However, this method which determines
outliers as anomalies can only detect point anomalies.
Maxion and Tan [23] and Cuzzocrea et al. [24] use the
Markov detector to detect the security state of the embedded
system. This method constructs a Markov matrix based on
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transition probability of the state sequence. The probability
of the current state is calculated according to the previous
state value and the probability in the Markov matrix. But
they only target point anomalies. Yan et al. [25] propose a
hybrid method of using hidden Markov and STIDE de-
tectors for intrusion detection. It mimics the way the im-
mune system works by matching the test data by
constructing a template of the normal data, storing all oc-
currences of the state sequence in the predefined length n
into a buffer, and then matching the test data. However, this
method consumes a lot of computational and storage re-
sources. The above solutions can detect point anomalies, but
they are difficult to detect behavioral abnormalities.
Therefore, they are not suitable for the IoT environment.

The detection algorithm using the sliding window
mechanism [26] can detect behavioral anomalies very well.
Zandrahimi et al. [27] propose an anomaly detector based on
sliding window and buffer, which stores the normal data
information extracted during the training phase in the
buffer. If the data stream of the test data does not exist in the
buffer, a miss occurs. If the hit rate does not reach the
predefined threshold, then there is an anomaly in the test
data. This method is similar to STIDE and also requires large
computational and storage resources. Summerville et al. [28]
develop an ultralightweight deep packet anomaly detection
method that uses a mask and bit pattern matching data in the
sliding window for network deep packets to effectively
distinguish between normal and abnormal payloads. It only
requires a bitwise “AND” operation, so it is suitable for
running on resource-constrained IoT devices. Zandrahimi
et al. [27] also propose a probabilistic detector method,
which samples two pieces of data with different distances in
the sliding window, counts the probability of the corre-
sponding state, and detects the anomaly by calculating the
overall probability in the sliding window. It has the char-
acteristics of small calculation and high accuracy. There are
also many algorithms based on the sliding window [29-31]
that are used in a variety of areas for anomaly detection and
credibility detection. The sliding window can reflect the
behavior of the measured data well but without considering
the context. When facing the diversity of IoT devices, we
need to consider the context of data to meet the re-
quirements of credibility in the IoT environment.

In order to detect contextual anomalies in data or device,
researchers have already begun some work. Hayes and
Capretz [32] propose a postprocessing context-aware
anomaly detection algorithm based on a sensor profile,
which uses a well-defined context anomaly detection algo-
rithm to perform on large sensor data, then uses k-means
clustering algorithm to divide different contexts, and finally
uses the Gaussian detector to perform anomaly detection on
the data that have determined the context. However, the core
part of the method uses a Gaussian detector with low ac-
curacy and cannot detect behavioral anomalies. In Reference
[33], a context-aware anomaly detection method based on
the probabilistic detector is proposed. The scheme takes the
probabilistic detector algorithm with good performance as
the core, introduces the KNN algorithm to determine the
context of data, and loads the corresponding probabilistic
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matrix for credibility detection. The detection rate of this
method is high, but it does not consider the situation that
multiple devices can affect each other when they are related
in an area, and the KNN algorithm increases the cost of
calculation.

According to the above description and analysis, existing
solutions have certain deficiencies when applied to IoT: (1)
traditional methods can only detect point anomalies; (2)
simple sliding window mechanisms cannot cope with
context; (3) existing context-aware detection method pro-
cess is not credible, and the performance needs to be im-
proved. In order to improve the credibility of IoT data and
ensure the correct and effective results from the analysis
platform, a credible decision method that can compre-
hensively detect point anomalies, behavioral anomalies, and
contextual anomalies should be proposed for the IoT en-
vironment, and the detection process must be trusted.

3. Methods

In view of the demand for data credibility of the big data
analysis platform in IoT and the shortcomings of existing
methods, this paper proposes a credibility detection method
for IoT data based on area-context, as shown in Figure 1. Our
method can effectively detect point anomalies, behavioral
anomalies, and contextual anomalies and determine the
context of data based on the area, which solves the un-
trustworthy problem of the contextual anomaly detection
process.

3.1. Threat Model. The data credibility detection in the IoT
environment is quite different from the traditional em-
bedded device anomaly detection. The IoT system studied in
this paper has multiple types, quantities, and context states,
so the following hypotheses are proposed to construct the
threat model of this paper:

Hypothesis 1. IoT data may be credible before it arrives at
the analysis platform. That is, the reason of incredibility may
be that the IoT device is attacked or fails or it may be wrong
during transmission.

There are many reasons why the IoT data is not credible.
This paper starts from the perspective of data, only de-
termines whether the data itself is credible, and filters out
incredible data without locating the anomaly.

Hypothesis 2. If an attacker controls an IoT device, it can
only obtain data from the device that has been attacked but
cannot obtain any information about other devices.

If the attacker forges false data, the incredible data will be
detected by the credibility detection center. If the attacker
hides itself, its behavior will show a difference when com-
pared with other devices in the same area, so it will be
detected by the context determination module.

Hypothesis 3. The number of incredible data is a minority of
all data analyzed at the same time.

There are lots of devices in IoT. If most of the data is
incredible, data analysis will lose its meaning, and it is very
difficult to cause such a large number of abnormalities.
Therefore, the abnormal data in this paper always accounts
for a small part of the total data.

In summary, the constructed threat model conforms to
the characteristics of the IoT environment. Our method can
solve the security problem in this threat model by taking the
data itself as the analysis object, the model trained by
credible data as the static analysis part, and the area-shared-
context determination of different devices in the actual
runtime as the dynamic analysis part.

3.2. Sliding Window and Improved Probabilistic Detector

3.2.1. Principle of Sliding Window. Sliding windows have
proven to be a good method for detecting behavioral
anomalies in embedded devices and IoT devices [26-28]. A
sliding window of fixed length is set on a time series. It slides
with the direction of newly generated data over time, and
attention is only paid to the sequence in the window at a
time. For a piece of data, we represent it as the sequence
Data = {d,,d,,d;, ...}, where d, is one data in the sequence,
and the larger i is, the newer the data is. We set a sliding
window SW of length w on Data, each time
SW, ={d;,d;,1,d;,p> ..., d;y 1} Tepresents a sequence of
length w starting from d,. A probability threshold p and an
incredible sequence size threshold k are defined for the
sequence in the sliding window, where p € (0,1) and k is a
positive integer.

Based on the above definition, we believe it is incredible
when a sequence of data meets the following conditions:

Data ={d,,d,,d;,...,d,};

SW; ={di’di+l’di+2’ s ’di+w—1};
P(SW,,;)<p, j=0,1,2,... .t
t+1>k

1

For the sequence that satisfies the above formula, we
think that there is a t + 1 length anomaly event starting from
d; in Data; that is, this piece of data is incredible and needs to
be filtered out, as shown in Figure 2.

When w =3,k =3, andSWHj <p,j=0,1,2,3,4,5,itis
considered that an abnormal event of length 6 has occurred
from d; in this data sequence.

3.2.2. Probabilistic Matrix Construction. The probabilistic
detector [27, 33] is a good anomaly detection algorithm,
which can effectively detect point anomalies and behavioral
anomalies. Before training, the original data is represented
by size and block and converted into a state sequence
TrainingData = {d,,d,,ds, ...,d,}, where d; is no longer
one data but the symbol of the block in which the data is
located. For example, Data ={5,11,9,22,27,18} can be
divided into three blocks and expressed as
TrainingData = {A, B, A,C,C, B}. A sliding window SW is
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i tection for IoT data also needs to meet the real-time re-
w=3 quirement of IoT. A large number of multiplications in the
k=3 actual calculation process of the original algorithm consume
SWiyi<p a lot of computing resources, and the result of multiplying

FiGure 2: Sliding window mechanism detects abnormal events.

set, and each time the frequency of occurrence of all possible
two data pairs in the SW at various distances is counted.
When w = 3, at some time, SW; = {d;,d,,,,d;,,}; the state
pairsared;, d,;,; and d,,;, d,,, when the distance is 1, and the
state pair is d;, d;,, when the distance is 2. When the length
of SW is w and the data pair may be
{AA, AB, AC, BA, BB, BC,CA,CB,CC}, the state matrix
constructed by this TrainingData can be expressed as a
matrix with 9 rows and w — 1 columns, of which each item
Num (distance, StatePair) counts the total number of times
the StatePair at the distance appearing in the sliding window
when it slides across the entire TrainingData. Finally, the
probability is calculated by distance to obtain the final
probabilistic matrix, that is, the feature matrix. Figure 3 and
equation (2) show a probabilistic matrix:

Num (distance, StatePair)

P (distance, StatePair) = - —,
Y iatepair NUM (distance, StatePair)

,w—1.
(2)

It represents the probability of occurrence of each state
pair at each distance as a feature matrix for the training data.

The probability matrix construction is expressed in
Algorithm 1:

distance = 1,2,...

the P values is too small and makes it difficult to set
threshold. And when a small P but not 0 appears, it may
affect the probability calculation of the entire sliding win-
dow, leading to misjudgment.

We improve the probabilistic detector. The test data is
divided into blocks as the same way of training data to form
TestData = {d,,d,,d;,...,d,}. Setting a sliding window
SW; =1{d;,d;;1,d;1n, - - . d;yy 1}, we each time extract the
corresponding P (distance, StatePair) of distance 1~ w — 1in
SW from the probabilistic matrix and calculate
P(SWI) = ZdistanceZStatePairin distancep(diStance> StatePair).
For example, for SW = {A,B,C, B}, P(SW) = P(1,AB) + P
(1, BC) + P(1,CB) + P(2, AC) + P(2, BB) + P (3, AB).

When a certain P is small and the surrounding value is
large, since P > 0, that is, it appears in the training data, so we
determine this situation as credible data; if P = 0 or the data
value is outside the block range, it is considered that a point
anomaly occurs at this time, and we should set P (SW;) = 0.
The improved probability detector proposed in this paper
can reduce the overhead of computing resources, adapt to
the real-time requirements of IoT, and be convenient to set
threshold. Experiments show that it can maintain a high
detection rate of over 97%.

The threshold p is selected based on the performance of
the algorithm on the test data. We use four metrics,
accuracy, precison, recall, and F1 to evaluate the perfor-
mance of our algorithm. The improvement of some metrics
will lead to the decline of the other metrics. p is the most
effective one when the four metrics are all higher. That is, the
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Input: TrainingData

Output: ProbMatrix
(1) for SW slides in TrainingData
(2)  calculate Num (distance, StatePair);
(3) for distance from 1 to w—1
(4)  calculate P(distance, StatePair);
(5) construct ProbMatrix;

ALGORITHM 1: ProbMatConstruct.

(10)
(11)
(12) return credible;

Input: TestData, Probabilistic Matrix
Output: credible or incredible

(1) for SW; slides in TestData

(2) for distance from 1 to w—1

(3) for StatePair in distance

(4) if P (distance, StatePair) ==
5) P(SW,)=0;

(6) calculate SW;, ;

(7) else

(8) P(SW,)+ = P(distance, StatePair);

(9) for i from 1 to TestData

if (JP(SW,,)<p, j=0,1,2,..,)A(t+12k)
return incredible;

ALGoriTHM 2: Credibility Detect.

position where the four metrics intersect corresponds to the
best p, which we will describe in detail in Section 4.1.

For a piece of test data, the following equation is de-
termined as incredibility:

2 distance ZStatePair in distance> VL > 03
P(SWI) — { 0 1stance aterailr in distance HP _ 0

bl bl (3)
P(SW,;)<p j=0,1,2,... .t
t+1>k

The improved probabilistic detector is expressed in
Algorithm 2.

3.3. Area-Shared-Context. A large number of studies [34-
37] have shown that consideration of context is necessary for
anomaly detection. The context of IoT data means that the
working state of IoT devices will change in different contexts,
and the generated IoT data will exhibit different behavioral
characteristics.

For a single IoT device A, we define Context(A) as all of
its existing contexts and C (A) as the current context. In this
case, we use training data to construct the probabilistic
matrix as the feature matrix for each context and then use
the test data to construct probabilistic matrix to compare
with each feature matrix to determine the context. However,
the credibility of data before the determination is unknown,
so this way is an incredible process, and the contextual
anomalies may be missed.

For a plurality of IoT devices of same type A, devices
which have the same context as the surrounding devices in the
time stamp are divided into one area, and others without such
characteristics are divided into different areas. The IoT en-
vironment often requires multiple similar devices to work
together, and these IoT devices often work in the same state as
other devices around them. For example, when the workers in
downhole operation safety monitoring system are at —200 m,
—450m, and -700m depth, the temperature, air volume,
humidity, dust concentration, lighting status, and other data
will show a coordinated behavior pattern. We construct a
credible context determination process based on Hypothesis 3
in the threat model, which constructs the probabilistic matrix
of data from all devices A and average it, and then use the
result to compare with feature matrix of each context to
determine C (A) of the area. If a device’s context is offset, it
has little effect on the area-context and can be detected.

For many types of IoT devices, we define
AreaSharedContext to represent the correspondence be-
tween all area-shared-contexts and each type of device’s
context, ASC (area) to represent the area-shared-context of
the current area. For example, Context(A)=
{1,2,3}, Context(B) = {1,2}, AreaSharedContext = {(1, 1),
(1,2), (2,1), (2,2)}, ASC(area) = 1, which indicates that
there are four possibilities for the area-shared-context of the
area within device types A and B, and the current area-
shared-context is 1, corresponding to C(A)=1 and
C(B) = 1. For an area with only two device types, we discuss
the following two situations:



(1) A and B are not relevant. That is, the contexts of two
device types have no effect on each other. For ex-
ample, when A has 3 contexts, device B has 2 con-
texts, and there are 2 X 3 = 6 area-shared-contexts in
this area.

(2) A and B are relevant. That is, the context of device
type A can have an impact on B, and the same for B to
A. It is very common in IoT, for example, the
greenhouse environmental intelligent monitoring
system can remotely monitor the temperature, hu-
midity, light, ground temperature, soil moisture, and
other parameters in the greenhouse in real time by
configuring IoT sensors; inside the greenhouse, light
and ground temperature are related to time and
weather; and air humidity and soil moisture are
positively correlated. Figure 4 shows a case of rele-
vant context and its AreaSharedContext.

For the case described in Figure 4, there are only four

area-shared-contexts:
AreaSharedContext = {(1,1), (2,1), (2,2), (3,1)}, and we
can see that when A’s context is 1, B’s context cannot be 2. In
this case, the contexts of A and B interact with each other and
are mutually constrained in the determination process of
area-shared-context.

Based on all the above situations, this paper proposes the
concept of area-shared-context for the IoT environment, which
divides unrelated devices into different areas, so that all devices
in each area have the same area-shared-context and each area-
shared-context has a context value for each type of device.

After defining the area-shared-context, we need to con-
struct AreaSharedContext from the devices to be detected. (1)
If the contexts of all device types are clearly defined or can be
visually seen, it can be directly generated. (2) If the context
definition is not clear, based on the idea of the buffer detector,
we provide the algorithm AreaSharedContextConstruct:
the context of each device type is recorded in the buffer on the
timestamp. After storing a large amount of test data’s

DTypeeDeviceType [
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contexts, the records with higher frequency are reserved as an
item in AreaSharedContext, and others will be deleted, as
shown in Figure 5.

The algorithm in Figure 5 has a high time complexity but
needs to be executed only once during the training phase, so
it will not affect real-time performance.

3.4. Determination of Area-Shared-Context. This section
describes the credibility detection methods in a single area.

We define DeviceType = {DType | Dtype € all device types},
where DType represents the device type.

Define Num (DType) as the amount of devices with type
DType in the area.

Define Data (DType, number) to represent a piece of IoT
data generated by the device of which type is DType and ID
is number.

Define PMatrix(DType, number) to represent the
probabilistic matrix constructed from Data(DType,
number) by using the algorithm ProbMatConstruct, that
is, PMatrix (DType, number) = ProbMatConstruct (Data
(DType, number)).

Define CMatrix (DType, C(DType)) to represent the
feature matrix of device DType in C(DType) context. The
CMatrix is constructed by the training data, which is the
probabilistic matrix corresponding to the training data.

Define a function Difference (m,,m,) to calculate the
Euclidean distance between matrix m,; and m,.

We propose a function F (ASC (area)), which indicates
the possibility that the current area’s area-shared-context is
ASC(area). The specific method is averaging the proba-
bilistic matrices constructed from the data generated by
each type of device in the area and then calculating the
distance between them and all the feature matrices cor-
responding to contexts of each device type in ASC(area).
The smaller the sum of the differences is, the more the area-
shared-context tends to be ASC (area), which is expressed
as the following equations:

Num (DType) x Differences]

>
F(ASC (area)) =

(4)
ZDTy]:»eEDeviceTypeI\Il'un (DType)
Num (DType) .
PMat DType, b
Differences = Difference Lnumber-1 atrix (DType, num er),CMatrix , (5)
Num (DType)
CMatrix = CMatrix (DType, ASC (area) —> C(DType)), (6)

where ASC(area) — C(DType) means the contexts of
each device type in ASC(area).
We take the minimum value of F(ASC (area)) to de-
termine the area-shared-context, expressed as follows:
{F(x) = min (F (ASC (area))), ASC (area) € AreaSharedContext;
ASC (area) = x.

(7)

Finally, we extract each C(DType) according to
the  determined value ASC(area) from  the
AreaSharedContext and load the corresponding CMatrix
to detect the credibility of IoT data by using the algorithm
Credibility Detect.

The area-shared-context determination is expressed in
Algorithm 3.
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CA) =1 C(A)=2 C(A)=3
Device A ( A . A " A .
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FIGURE 4: Relevant context of multi-type devices and its AreaSharedContext.

3.5. Process of Credibility Detection for IoT Data. Based on
the method proposed in the above three sections, we define
the data packet from each device as DataPackage =
(area, DType, Data) and give the processing flow as follows:

(1) Classify training data by device type and context, and
use algorithm ProbMatConstruct to construct
feature matrices of all contexts.

(2) Construct the AreaSharedContext by using the al-
gorithm AreaShare dC ontextConstruct on train-
ing data.

(3) Collect DataPackage of all devices to be detected at
the same time, and classify the data packets
according to area. Each area separately performs
credibility detection.

(4) Use the algorithm ASC De termine on all IoT data
in each area to calculate the area-shared-context.

(5) According to the area-shared-context, load the
corresponding feature matrix, and use algorithm
Cre dibility De tect to detect each piece of data.

(6) Send credible data to the big data analysis platform,
and send incredible data to the Incredible Data
Processing Module.

4. Results and Discussion

We implement our method in MATLAB R2016a and design
the following experiments to evaluate the performance of the
method. We run different programs to collect power data on
two demoboards: ZYNQ7350 (model: XC7Z035-2FFG676)
and ZYNQ7020 (model: XC7Z020-2CLG4001), to build the
data set required for the experiment. Programs with different
computational loads are executed on demoboards to sim-
ulate different contexts of one device. Different demoboards
correspond to different devices, and the area-shared-context
is simulated by the program designed on the timestamp.
After preprocessing, the final data set includes four types of
devices, where device A is relevant to B and device C is
relevant to D, forming 16 area-shared-contexts. Our in-
credible data are divided into point abnormal data, be-
havioral abnormal data, and contextual abnormal data, of
which point anomalies are generated by injecting outliers,

behavioral anomalies are generated by interference, and
contextual anomalies are generated by running a program
on the timestamp that does not belong to the current area-
shared-context.

We evaluate the performance of the proposed method
and compare it with two similar methods of contextual
anomaly detection. Finally, the time cost of our method is
evaluated. The results show that our method has a higher
detection rate with lower false positives, and the time cost is
acceptable.

4.1. Performance Evaluation. We first evaluate the perfor-
mance of context determination in this paper to select the
sliding window size parameter and data length parameter of
the algorithm. We set the WinSize from 4 to 8 and the data
length from 10 to 100 and calculate the accuracy rate of
context determination in each case. We extract 471 groups of
data with length 10 to 100 from the dataset and mark the
context. The context of each piece of data is determined by
the method proposed in this paper, and then the accuracy
rate of context determination is calculated by comparing it
with the actual context. The effect of the size parameter and
the length parameter on the accuracy of context de-
termination is shown in Figure 6.

As shown in Figure 6, when the data length is 100 and the
sliding window size is 5, the accuracy rate of context de-
termination reaches the highest level of 98.73%. Therefore,
the subsequent experiments are performed with a sliding
window size of 5 and a data length of 100.

Then, we evaluate the effect of parameter k on the
performance of the improved probabilistic detector when
detecting a single device. We select 287 normal and ab-
normal data with a length of 100 and use false negatives and
false positives to evaluate the performance of the algorithm.
Table 1 shows the effect of parameter k.

As can be seen from Table 1, when k = 3, the algorithm
has the best performance on a single device because its false
negatives and false positives are lower than others. There-
fore, the subsequent experiments are performed with k
set to 3.

Finally, we evaluate the effect of the number of data
blocks and the threshold p on the performance of credibility
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Input: area, Data from all devices in an area
Output: ASC (area)
(1) for ASC (area) € AreaSharedContext
(2)  extract CMatrix corresponding to C(DType) in ASC (area);
(3) calculate the difference between CMatrix and average PMatrix;
(4) calculate F(ASC (area));
(5) for x =all ASC (area)
(6) calculate x = ASC (area) of minimum F;
(7) return x;

ALGORITHM 3: ASC Determine.

TaBLE 1: Effect of k on the performance of the improved probabilistic detector.

k 2 3 4 5
P False negatives False positives False negatives False positives False negatives False positives False negatives False positives
0.015 17 5 31 3 47 0 87 0
0.020 5 8 7 5 35 0 74 0
0.025 3 12 4 5 31 3 66 0
0.030 3 14 4 6 28 3 63 2
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FiGure 7: Effect of threshold p and number of data blocks on the performance of credibility detection. (a) Blocks =15. (b) Blocks = 20.

(c) Blocks =25. (d) Blocks = 30.

detection. In this paper, we choose four metrics, accuracy,
precison, recall, and F1 constructed by four basic values (TP,
TN, FP, and FN) to evaluate the performance, expressed as
equations (8)-(11), respectively:

TP + TN (8)
racy = ,
Y = TP+ IN+ FP + FN
TP
ison = P 9
precison = s (9)
TP
M= 10
recall = 75— (10)

2 x precision X recall

F1 (11)

precison + recall

When these four metrics are all high, it reflects the better
performance of the model. This experiment used 67 * 30
credible data and 629 groups of abnormal data, and each
group contained small amount of incredible data. Finally
there are more than 2000 pieces of data within credible and
incredible data. Figures 7(a)-7(d) separately show the effect
of threshold p on the performance of credibility detection
when the data are divided into 15, 20, 25, and 30 blocks. The
improvement of some metrics will lead to the decline of the
other metrics. p is the most effective when the four metrics
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TaBLE 2: Performance of three methods for three types of
anomalies.

Our method KNN k-means-
(%) probabilistic (%)  Gaussian (%)
Point anomaly 98.91 95.18 98.76
Behavioral 96.51 91.07 73.09
anomaly
Contextual 97.28 78.50 73.96
anomaly
Total 97.43 88.04 80.45
70 T T T T T T
60 + 4
50 E
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I Context anomaly detection
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Figure 8: Comparison of time cost in two ways.

are all higher. Because the different blocks will lead to the
changes of the setting of best p, the horizontal axis of
Figures 7(a)-7(d) takes different values in order to show the
best performance.

As can be seen from Figure 7, when the number of data
blocks is 25, the performance of the four metrics is the
highest when they are aggregated. In this case, when
p=0.02, accuracy = 97.74%, precison = 98.36%,
recall = 97.43%, and F1 = 97.89%. Therefore, considering
the four metrics, the data block number is set to 25, and the
threshold p is set to 0.02, which is most suitable for the data
set of this paper.

4.2. Comparison Study. In order to evaluate the performance
of three types of anomalies in this paper, point anomalies,
behavioral anomalies, and contextual anomalies, we choose
two similar algorithms of contextual anomaly detection to
compare with our method. One is a KNN-based context
determination combined with a probabilistic detector pro-
posed in Reference [33], and the other is a k-means-based
context determination combined with a Gaussian detector
proposed in Reference [32]. We evaluate the performance of
three methods when detecting 643 point anomalies, 918
behavioral anomalies, and 772 contextual anomalies and
calculate (the number of incredible data detected by the
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method)/(actual anomalies). Table 2 shows the performance
of the three methods for three types of anomalies.

We can see from Table 2 that, for point anomaly, all three
methods have good performance, but the accuracy rate of
context determination in our method is higher, so our final
detection rate is the highest; for behavioral anomalies, the
Gaussian detector used by the k-means-Gaussian method
cannot detect behavioral anomalies effectively, so its per-
formance is much lower than the other two methods; for
contextual anomaly, the KNN probabilistic method will
cause context misjudgment when facing longer anomalies,
resulting in a lower detection rate, but our method can still
show good performance due to the characteristics of area. In
summary, our method is superior to other two methods for
three types of anomalies with a high level of performance.

4.3. Time Cost Analysis. Finally, we evaluate the perfor-
mance in time cost of our method. We set the number of
devices in an area from 30 to 180 and record the time cost of
two ways that using the context determination of this paper
or directly detecting without determining the context.
Figure 8 shows the results of the evaluation.

The time overhead of the proposed method in this paper
is less than 35%. In the case of 180 devices, the time used in
this method is only 0.063 seconds, which indicates that the
time cost of our method is acceptable.

5. Conclusions and Future Work

Aiming at the problem that IoT is easy to generate incredible
data and the analysis platform makes untrusted results, this
paper proposes a credibility detection based on area-context
for IoT data. This method introduces the concept of area-
shared-context and combines it with the probabilistic de-
tector, so it can effectively detect point anomalies, behavioral
anomalies, and contextual anomalies. The credibility of the
context determination process of the context-relevant device
that satisfies the area characteristics is higher, making the
overall detection performance better. Experiments show that
our method can reach a high level of performance with more
than 97% in all kinds of metrics, which is better than the
similar methods. And time cost of our method is acceptable,
which meets the real-time requirements of the IoT system.
Because the proposed method in this paper can detect
multiple devices in an area at the same time, it is suitable for
the IoT environment with a large number of devices. And the
characteristics of area are more suitable for the edge com-
puting architecture, so we can further improve the efficiency
when deploying the credibility detection center to edge nodes.

Future work will need to detect the running status of the
sensor device in the IoT system and the security of data
transmission. It will also focus on the situation awareness of
the overall IoT system and the prediction of the future
system security status.

Data Availability

The data used to support the findings of this study are
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