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Nowadays, the heterogeneity gap of different modalities is the key problem for cross-modal retrieval. In order to overcome
heterogeneity gaps, potential correlations of different modalities need to be mined. At the same time, the semantic information of
class labels is used to reduce the semantic gaps between different modalities data and realize the interdependence and inter-
operability of heterogeneous data. In order to fully exploit the potential correlation of different modalities, we propose a cross-
modal retrieval framework based on graph regularization and modality dependence (GRMD). Firstly, considering the potential
feature correlation and semantic correlation, different projection matrices are learned for different retrieval tasks, such as image
query text (I2T) or text query image (T2I). Secondly, utilizing the internal structure of original feature space constructs an adjacent
graph with semantic information constraints which can make different labels of heterogeneous data closer to the corresponding
semantic information. *e experimental results on three widely used datasets demonstrate the effectiveness of our method.

1. Introduction

With the rapid growth of multimedia information, the
representing form of information becomes rich day by day in
the era of big data. *e ways people obtained information
have also evolved to include newspapers, websites, Weibo,
and WeChat. *e rapid development of mobile network
provides a convenient resource platform for people. People
can search a lot of information by using search engines of
various websites on mobile devices according to their own
needs. *e structures of modal data which can be used in the
mobile network are various, making it difficult to display the
information needed in mobile devices accurately. Most of
the retrieval methods, such as text [1–3], image [4–7], and
video [8–11] retrieval, focus on single-modality retrieval
[12–15], in which the query sample and retrieve sample must
be performed on the same data type. Nowadays, the same
thing can be expressed in different ways, and there is a
growing demand for diversified forms of information ex-
pression. For example, when tourists are sightseeing, they
record a wonderful journey by taking photos or recording

videos. *ese photos and videos present the same range of
content although they represent different types of media
objects. Similarly, information about singers and album
images is used to search for the corresponding songs, so as to
obtain more information about the songs. People retrieve
image data or video data related to its semantic information
through text data, but different dimensions and attributes of
multimedia data lead to obvious feature heterogeneity be-
tween different modalities. So the practical application of
large-scale data similarity retrieval needs more effective
solutions. To solve this problem, the features of different
modal data need to be extracted effectively, and the retrieval
method is used effectively to get more accurate information
in a large amount of information.

To solve the heterogeneous problem of cross-modal
retrieval [16–20], subspace learning methods have been
proposed. Although different modalities have different
original feature spaces, we can project such modalities into a
common potential space [21]. Specifically, the most tradi-
tional feature learning method called canonical correlation
analysis (CCA) [22] maximized the correlation between two
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couples of different modalities’ features and obtained low-
dimensional expressions with high correlations of different
modalities in a common potential space. CCA is a simple
algorithm for realizing the feature space association. Based
on CCA, Hwang et al. proposed kernel canonical correlation
analysis (KCCA) [19], which obtains the correlation between
image and text through cross-view retrieval in a high-di-
mensional feature space. *e partial least squares (PLS) [23]
method measured the similarity between different modali-
ties through visual feature space to text feature space. *e
potential correlation of the cross-modal data obtained by the
above methods through linear projection is limited, and it
cannot effectively improve the performance of cross-modal
retrieval. *e unsupervised cross-media retrieval method
only obtains pairwise information of different modalities
during the subspace learning process without obtaining
accurate information of high-level semantics. Another
method called T-V CCA [20] obtained high-level semantics
by considering the semantic class view as the third view.
*e correlation between different modalities is enhanced by
learning semantic information. *erefore, the linear re-
gression term is applied to a cross-modal retrieval
framework, and the semantic structure is maintained. So
the regression error of different modalities data is
minimized.

*e deep learning method has a strong ability of non-
linear learning. *e deep canonical correlation analysis
(DCCA) [24] combines DNN and CCA to learn more
complex nonlinear transformation between different mo-
dalities data. Peng et al. proposed cross-media multiple deep
networks (CMDNs) [25], which use hierarchical structures
to hierarchically combine independent representations of
different modalities. In addition, Wei et al. proposed deep
semantic matching (deep-SM) [26] to use the CNN feature
for deep semantic matching to improve the retrieve accu-
racy. *e above method makes use of the neural network to
measure the similarity of different modal data well but ig-
nores the similarity within single modality and the similarity
between the modalities. *e complex latent correlations of
different modalities data can be well learned by using graph
regularization. *e application of graph regularization
[27, 28] in cross-modal retrieval lies in the construction of
the graph model, maintaining the similarity between the
projected data through the edges of the graph model. *e
graph regularization not only enhances semantic relevance
but also learns intramodality and intermodality similarity.
*e cross-modal retrieval models we have mentioned are
learned through joint distribution in a common space. On
the basis of subspace learning, the correlation between
multimodal data is further mined to improve the perfor-
mance of cross-media retrieval.

In this paper, we propose a cross-modal retrieval
framework (Figure 1) based on graph regularization and
modality dependence (GRMD). *e method measures the
distances between different modalities’ projection matrices
in the semantic subspace and obtains the similarity of dif-
ferent modalities. *e projection matrices of different mo-
dalities belonging to the same label should be as similar as
possible. In the process of feature mapping, two different

projection matrices are mapped into their respective se-
mantic spaces through two linear regressions. Correlation
analysis can project original data into a potential subspace,
and multimodal data of the same labels can be correlated.

*e main advantages of our method can be summarized
as follows:

(i) *e construction of the label graph enhances the
consistency of the internal structure of the het-
erogeneous data feature space and the semantic
space. *e graph model of different modal data is
constructed for different retrieval tasks, which not
only maintains the similarity between different
modal data after projection but also deepens the
correlation between multimodal data and corre-
sponding semantic information.

(ii) Heterogeneous data are projected into the semantic
space of different modalities in different retrieval
tasks. In different cross-modal tasks learning, dif-
ferent transformation matrices are obtained by
combining semantic correlation and feature clus-
tering. *e mapping of media data of different
modalities is achieved from the underlying features
to high-level semantics, and the accuracy of sub-
space learning is improved by using semantic in-
formation. *is approach not only retains the
similarity relationship of multimodal samples but
also makes the semantic information more accu-
rately understood in the projection process.

(iii) *e results of experiments that we carried out on
three datasets indicate that the proposed framework
is superior to other advanced methods.

2. Related Work

We briefly introduce several related methods in this section.
Most cross-modal retrieval methods focus on joint modeling
of different modalities. Image and text retrieval are the main
subjects of cross-modal retrieval research. *e representa-
tion features of different modalities are not only inconsistent
but also located in different feature spaces. By learning
potential common subspaces, data of different modalities are
mapped to common isomorphic subspaces for retrieval from
traditional heterogeneous spaces.

Subspace learning plays an important role in cross-
modal problems, and the most traditional unsupervised
method is canonical correlation analysis (CCA) [22], which
maps heterogeneous data into isomorphic subspaces,
maximizing the correlation of the two couples of features. It
only uses the information of the multimodal pair, ignoring
the importance of labels’ information, and the result of the
search is not optimal. Heterogeneous data with the same
semantics are interrelated in a common semantic space.
After the data have been projected into the isomorphic
feature space, the supervised method (SCM) [22], which
combines CCA and SM, generates a common semantic space
for CCA representation learning by linear regression to
improve retrieval performance. In addition to CCA, Sharma
et al. proposed a generalized multiview analysis (GMA) [29]
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for learning a common subspace through a supervised ex-
tension of CCA for cross-modal retrieval.

It is limited to improve the retrieval performance by
learning the potential relationship between different mo-
dalities data. *e retrieval method [30] based on deep
learning can better combine the feature extraction of
samples with the learning of common space, to obtain better
retrieval result. Andrew et al. proposed deep canonical
correlation analysis (DCCA) [24] nonlinear learning of CCA
to learn complex nonlinear transformations of different
modalities, through the corresponding constraints of the
corresponding subnetworks to make data highly linearly
related. Srivastava et al. proposed deep Boltzmann machines
(DBMs) [31], which is an algorithm that learns general-
ization models, and thus enhances the effectiveness of re-
trieval. In addition, other deep models are used for cross-
modal retrieval by exploiting the relevance of enhanced
multimedia data. Peng et al. [32] proposed constructing a
multipathway network, using coarse-grained instances and
fine-grained patches to improve cross-modal correlation and
achieve the best performance. *e cross-modal retrieval
method based on DNN uses DNN to learn the nonlinear
relationship of different modalities, and the training data
play a key role in the learning process. In [33], Huang et al.
proposed the modal-adversarial hybrid transfer network
(MHTN), an end-to-end architecture with a modal-sharing
knowledge transfer subnetwork, and a modal-adversarial
semantic learning subnetwork. It enhances the semantic
consistency of the data, making the different modalities
aligned with each other. Yu et al. proposed the graph in
network (GIN) [34], which learns text representation to get
more semantically related words through the graph con-
volution network. In the learning process, the semantic
information is promoted significantly; the data information
is extracted effectively; and the retrieval accuracy is im-
proved better.

In addition, different feature representations of different
modalities data cause the problem that cross-modal data
cannot be effectively established. *e uniform sparse rep-
resentations of different modalities data are obtained
through dictionary learning, but accurate semantic

relationships cannot be obtained through dictionary
learning alone. Semantic differences are reduced by using
semantic constraints. *erefore, semantic differences should
be reduced through semantic constraint methods. Semantic
information is used to project sparse representations of
different modalities in the semantic space to perform cross-
modal matching for more accurate understanding and re-
trieval. A dictionary learning algorithm [35, 36] proposed by
Xu et al. uses the learning of a coupled dictionary to update
the dictionary that optimizes different modalities and ob-
tains the sparse representation corresponding to different
modalities data. With the rapidly increasing availability of
high-dimensional data, hash learning for cross-modal re-
trieval has emerged. *e hash learning method not only
projects high-dimensional data into Hamming space but
also preserves the original structure of data features as much
as possible. Multiscale correlation sequential cross-modal
hashing learning (MCSCH) [37] is a multiscale feature-
guided sequential hashing learning method that can mine
multiscale correlations among multiscale features of dif-
ferent modalities. In the process of cross-modal hash
learning, the correlation of similar data is maximized and the
correlation of dissimilar data is minimized.

Complex correlation between different modalities can-
not be fully considered, but cross-modal retrieval method
[38] based on graph regularization can learn complex po-
tential correlation of different modalities data by building
graph models. *e graph regularization [39] is used to
maintain intrapair and interpair correlations and perform
feature selection for different feature spaces. Zhai et al.
proposed a joint representation learning algorithm
(JGRHML) [27] to consider heterogeneous relationships in a
joint graph regularization. *e algorithm optimizes the
correlation and complementarity of different modalities data
and obtains related information between heterogeneous data
through nearest neighbors. To improve the JGRHML al-
gorithm, joint representation learning (JRL) [28] proposed
by Zhai et al. maintains the structural information between
the original data through k-nearest neighbors, and it added
the semantic regularization term to integrate the semantic
information of the original data. *e cross-modal retrieval
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Figure 1: Flowchart of our proposed method.
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methods we have mentioned that use adjacent graphs to learn
the potential space and maintaining multimodal feature
correlation, simultaneously maintaining local relationship,
also significantly improve the retrieval performance.

We propose a method based on modality-dependence
and graph regularization. In a common semantic subspace,
data with the same semantics are similar to each other
through potential relationships. Wei et al. proposed a mo-
dality-dependent cross-media retrieval method [40]. *e
method focuses on the retrieval direction and uses the se-
mantic information of the query modality to project the data
into the semantic space of the query modality. It considers
not only the direct correlation between different modalities
but also the low-level features that do not combine well with
the nonlinear association. Although this method cannot
fully describe the complex correlation between different
modalities data, inspired by this method, we can use graph
regularization to further analyze the potential correlation of
data. Compared with the abovementioned methods, we
maintain the correlation between data structure information
and semantic information by integrating modal data in-
formation into a semantic graph and learning different
projection matrices and semantic spaces for different re-
trieval tasks. Readers can learn more about our methods
from the following explanation of how we have achieved
good retrieval results.

*e paper is organized as follows. Section 2 briefly in-
troduces the relevant methods of cross-modal retrieval. In
Section 3, the method we propose is described in detail.
Section 4 presents our experimental results and the analysis
of a comparison with other methods. Section 5 concludes
this paper.

3. Modality-Dependent Cross-Modal Retrieval
Based on Graph Regularization

In this section, we first introduce the notation and problem
definitions associated with the objective function and then
propose the overall cross-modal learning framework for
GRMD. Finally, an effective iterative approach is proposed
to complete this framework.

3.1. Notation and Problem Definition. Let X � [X1,

X2, . . . , Xn] ∈ Rp×n and Y � [Y1, Y2, . . . , Yn] ∈ Rq×n de-
note the feature matrices of image data and text data, re-
spectively. S � [S1, S2, . . . , Sn] ∈ Rc×n represents a semantic
matrix with a number of labels C. *e i-th row of the se-
mantic matrix is the semantic vector corresponding to Xi

and Yi, S(i, j) � 1; otherwise, S(i, j) � 0. *e image pro-
jection matrix and the text projection matrix in I2T are
represented by U ∈ Rp×c and V ∈ Rq×c. *e descriptions of
important notations frequently used in this paper are listed
in Table 1.

3.2. Objective Function. Our goal is to keep the semantic
consistency of multimodal data in the process of mapping
different patterns of data to a common potential space. In
different retrieval tasks, there are three important factors,

semantic information, data correlation, and data structure
distribution, each of which interacts on the other two.
*erefore, semantic subspace is used as a common potential
space in this paper. *rough the association of potential
space and semantic space, semantic information enables
samples of the same category to be mapped to nearby
locations:

F(U, V) � λL(U, V) +(1 − λ)S(U, V) + αH(U, V)

+ R(U, V),
(1)

where F(U, V) consists of four terms. L(U, V) is a corre-
lation analysis term that keeps samples of the same class
close to each other. S(U, V) is a linear regression that maps
data of different modalities into the semantic space. H(U, V)

is a graph regularization term that uses the modal graph to
enhance the intramodal similarity. R(U, V) is a regulari-
zation term that preserves the stability of projection
matrices.

3.2.1. -e First Term. *e first term is a correlation analysis
term that minimizes the difference between multimodal
data in a potential subspace. Different modality data need
to remain close to each other in potential subspaces. *e
representations of the paired heterogeneous data in the
common subspace should be as similar as possible, and
thus, the distance between the two should be as small as
possible:

L(U, V) � U
T
X − V

T
Y

����
����
2
F
. (2)

*is term reduces the distance between multimodal data
of the same label, thus improving the correlation between
them.

3.2.2. -e Second Term. *e second term is a linear re-
gression, which transforms the feature space of query
modality into semantic space.*is term only considers the
query modality semantic, which is more pertinent and
effective than that of considering both the query modality
semantics and the retrieval modality semantics. *e im-
provement in the accuracy of the mapping of query
modality data can ensure the accuracy of subsequent
retrieval. Once the label of the query modality data has
been incorrectly predicted, it is difficult to ensure that
other related modalities data are retrieved in subsequent
steps:

Table 1: Summary of notation.

Notation Description
n Number of training samples
S Semantic matrix of image and text
p and q Dimensions of image and text
X � [X1, X2, . . . , Xn] ∈ Rp×n Feature matrix of image
Y � [Y1, Y2, . . . , Yn] ∈ Rq×n Feature matrix of text
U � [U1, U2, . . . , Un] ∈ Rp×c Projection matrix of image
V � [V1, V2, . . . , Vn] ∈ Rq×c Projection matrix of text
λ, α, β1, and β2 Balance parameters
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S(U, V) � U
T
X − S

����
����
2
F
, (3)

S(U, V) � V
T
Y − S

����
����
2
F
. (4)

*is term focuses on the differences between different
retrieval tasks and learns two different projection matrices
for different retrieval tasks. It transforms the query modality
data from the original feature space into the corresponding
semantic space, and similar data are centrally distributed in
the semantic subspace.

3.2.3. -e -ird Term. Here, we preserve the original dis-
tribution of different modalities data in the common sub-
space as much as possible by adding a graph regularization
term in the objective function. *e neighboring data points
are as close as possible to each other in the common sub-
space. We define an undirected symmetric graph
H � (Vx, Wx), where Vx is the set of data in X and Wx is the
similarity matrix. Element Wij of Wx is defined as follows:

Wij �
1, if xi ∈ Nk, Xj􏼐 􏼑 or xj ∈ Nk Xi( 􏼁

0, otherwise,

⎧⎨

⎩ (5)

where Nk(Xj) represents k neighbors of Xj that are ob-
tained by calculating the distance between data pairs in the
original space and selecting the nearest k neighbors.

L � E − D
− 1/2

WD
− 1/2

, (6)

where L is a symmetric semidefinite matrix, D is a diagonal
matrix, and the diagonal elements are dii � 􏽐jwij.

By constructing a local label graph for each modality
through semantic information, the structure of the feature
space can be made consistent with that of the label space. In
the shift between different modalities, the internal structure
of modalities is preserved so that different modalities data in
the same label should as near as possible after mapping:

H U1, V1( 􏼁 �
1
2

􏽘

n

i,j�1
Wij

UT
1 Xi��
dii

􏽰 −
UT

1 Xj
���
djj

􏽱

������������

������������

2

2

−
1
2

􏽘

n

i,j�1
Wij

Si��
dii

􏽰 −
Sj
���
djj

􏽱

������������

������������

2

2

� tr U1X
T
L1XU

T
1 − S

T
L1S􏼐 􏼑.

(7)

Similarly, we calculate the similarity matrix W, the
symmetric matrix D, and the Laplacian matrix L of the text,
and the regularization terms of the text are defined as
follows:

H U2, V2( 􏼁 � tr V2Y
T
L2YV

T
2 − S

T
L2S􏼐 􏼑. (8)

3.2.4. -e Forth Term. *e fourth term is the regularization
term that controls the complexity of the projection matrix
and prevents overfitting. *erefore, the constraints of the

term can control the stability of the obtained values. Pa-
rameters β1 and β2 balance the regularization term:

R(U, V) � β1‖U‖
2
F + β2‖V‖

2
F. (9)

For I2T:
*e algorithm we present learns a pair of projection
matrices U1 and V1 through the image query text (I2T),
and our final objective function is specifically expressed
as follows:

F U1, V1( 􏼁 � λ U
T
1 X − V

T
1 Y

����
����
2
F

+(1 − λ) U
T
1 X − S

����
����
2
F

+ αtr U1X
T
L1XU

T
1 − S

T
L1S􏼐 􏼑 + β1 U1

����
����
2
F

+ β2 V1
����

����
2
F
.

(10)

For T2I:
Similarly, the objective function of T2I is expressed as
follows:

F U2, V2( 􏼁 � λ U
T
2 X − V

T
2 Y

����
����
2
F

+(1 − λ) V
T
2 Y − S

����
����
2
F

+ αtr V2Y
T
L2YV

T
2 − S

T
L2S􏼐 􏼑

+ β1 U2
����

����
2
F

+ β2 V2
����

����
2
F
.

(11)

As expressed by (11), a cross-modal retrieval problem
retrieves related image modalities based on the text mo-
dality. In contrast to (3), our linear regression term is a text
feature space conversion to a semantic text space, rather than
a semantic image space in I2T. *e image projection matrix
and the text projection matrix in T2I are represented by
U2 ∈ Rc×p and V2 ∈ Rc×q.

3.3. IterativeOptimization for theProposedAlgorithm. In this
section, both (10) and (11) are nonconvex optimization
problems, so we design an algorithm to find fixed points. We
observe that if another item is fixed, equation (10) is convex
to the other item. Similarly, equation (11) is fixed while the
other item is fixed, and the other item is also convex.
*erefore, by using the gradient descent method, we can
achieve the minimization of the other term by fixing one of
U1(U2) or V1(V2).

First, we compute the partial derivative of F(U1, V1)

with respect to U1 and set it to 0:
zF U1V1( 􏼁

zU1
� λ XX

T
U1 − XY

T
V1􏼐 􏼑 +(1 − λ) XX

T
U1 − XS

T
􏼐 􏼑

+ β1U1 + αX
T
L1XU1.

(12)

Similarly, we compute the partial derivative of F(U1V1)

with respect to V1 and set it to 0:

zF U1V1( 􏼁

zV1
� λ YY

T
V1 − YX

T
U1􏼐 􏼑 + β2V1. (13)
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According to the above formula, the resulting solutions
are, respectively, as follows:

U1 � XX
T

+ β1I + αX
T
L1X􏼐 􏼑

− 1

· XS
T

+ λXY
T
V1 − λXS

T
􏼐 􏼑,

(14)

V1 � λYX
T
U1 λYY

T
+ β2I􏼐 􏼑

− 1
. (15)

Similarly, for T2I, F(U2V2) is biased for U2 and V2,
respectively. U2 and V2 are updated iteratively until the
results converge:

U2 � λXY
T
V2 λXX

T
+ β1I􏼐 􏼑

− 1
,

V2 � YY
T

+ β2I + αY
T
L2Y􏼐 􏼑

− 1
YS

T
+ λYX

T
V2 − λYS

T
􏼐 􏼑.

(16)

*e main optimization procedure of the method we
present for I2T is given in Algorithm 1, and the T2I task is
similar to the I2T task.

4. Experiments

*e methods we present in this section are tested experi-
mentally on three datasets. We evaluate our proposed
method by comparison with other advanced methods.

4.1. Datasets. *ree datasets detailed below are chosen for
the experiment.

4.1.1. Wikipedia. *eWikipedia dataset [22] consists of 2,866
different image-text pairs belonging to 10 semantic categories
selected from 2,700 “feature articles.” *is dataset is randomly
divided into a training set with 2,173 image-text pairs and a test
set with 693 image-text pairs, and these two sets are marked by
10 semantic class words. Image features are represented by
4096-dimensional CNN visual features, while the representa-
tion of text features is 100-dimensional LDA text features.

4.1.2. Pascal Sentence. *e Pascal sentence dataset [26]
consists of 1000 image-text pairs from 20 semantic cate-
gories. In each semantic category, there are 50 image-text
pairs, 30 of which are selected as training pairs, and the rest
are used as test pairs for each class. We represent image
features by extracting 4096-dimensional CNN visual fea-
tures and represent text features by 100-dimensional LDA
text features.

4.1.3. INRIA-Websearch. *e INRIA-Websearch dataset
[41] has 71478 image-text pairs from 353 semantic cate-
gories, formed with 14698 image-text pairs built by selecting
the largest 100 categories. *is dataset is randomly divided
into 70% of pairs used as a training set and 30% used as a test
set. Each image and text are represented by a 4096-di-
mensional CNN visual feature and a 1000-dimensional LDA
feature, respectively.

4.2. Experimental Settings. We assume that the Euclidean
distance is used to compute the similarity of data features
when multimedia data are projected into a common sub-
space. In this part, to evaluate the results of cross-modal
retrieval, we consider the widely used mean average pre-
cision (MAP) [22] scores and precision recall (PR) curves.
Specifically, the average precision (AP) of each query is
obtained, and their average values are calculated to obtain a
MAP score:

AP �
1
R

􏽘

n

R�1

Rk

k
× relk, (17)

where n is the size of the test set and R is the number of
related items. Condition relk � 1 means that the item with
level k is relevant. Otherwise, relk � 0; Rk is the number of
related items in the top k returns. To evaluate the perfor-
mance of the proposed GRMD retrieval method, we com-
pare GRMD with the canonical correlation analysis (CCA)
[22], kernel canonical correlation analysis (KCCA) [19],
semantic matching (SM) [22], semantic correlation
matching (SCM) [22], three-view canonical correlation
analysis (T-V CCA) [42], generalized multiview linear
discriminant analysis (GMLDA) [29], generalized multiview
canonical correlation analysis (GMMFA) [29], modality-
dependent cross-media retrieval (MDCR) [40], joint feature
selection and subspace learning (JFSSL) [43], joint latent
subspace learning and regression (JLSLR) [44], generalized
semisupervised structured subspace learning (GSSSL) [45], a
cross-media retrieval algorithm based on the consistency of
collaborative representation (CRCMR) [46], cross-media
retrieval based on linear discriminant analysis (CRLDA)
[47], and cross-modal online low-rank similarity (CMOLRS)
function learning method [48]. *e descriptions and
characteristics of the above comparison methods used in the
whole experiment are summarized in Table 2.

4.3. Experimental Results. *e experiment is a cross-media
retrieval of two subtasks: I2T and T2I. *e traditional dis-
tance metrics are used to measure the similarity of different
modalities’ objects. *e experiment was carried out on three

Input: training image datasets
X � [x1, x2, . . . , xn] ∈ Rp×n;
Training text datasets Y � [y1, y2, . . . , yn] ∈ Rq×n;
Semantic sets S � [s1, s2, . . . , sn] ∈ Rn×c

Balancing parameters λ, α, β1, β2
Output: projection matrices U1 and V1.
1: calculate the graph Laplacian matrix L1;
2: initialize U1 and V1 to be identity matrices;
3: repeat
4: fix V1 and update U1 according to (14);
5: fix U1 and update V1 according to (15);
6: until convergence
7: end for

ALGORITHM 1: Modality-dependent cross-modal retrieval based
on graph regularization in I2T.
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datasets. Tables 3–5 show the experimental results of dif-
ferent datasets. Later, we will study the effects of different
parameter settings on the performance of GRMD.

In the experiment on the Wikipedia dataset, we set
various parameters as follows: for I2T, λ � 0.3, α � 0.2,
β1 � 0.8, and β2 � 0.5; for T2I, λ � 0.4, α � 0.1, β1 � 1.0, and
β2 � 0.2. MAP scores we obtained on I2T and T2I tasks are
shown in Table 3. Figures 2(a) and 2(b) show theMAP scores
on the Wikipedia dataset for different retrieval tasks, and
Figure 2(c) shows the MAP scores for different labels as an
indication of average performance. Figures 3(a) and 3(b)
show the precision-recall curves for two retrieval tasks, I2T
and T2I. *e results show that CCA and KCCA do not use
semantic information, and its retrieval performance is poor.
SM only consider the semantic information and does not
consider the related data. Our approach combines data
correlation and semantic information to learn heteroge-
neous data problems so that good retrieval performance can
be achieved.

In the experiment on the Pascal Sentence dataset, we set
various parameters as follows: for I2T, λ � 0.4, α � 0.2,
β1 � 0.3, and β2 � 1.0; for T2I, λ � 0.4, α � 0.1, β1 � 0.4,
and β2 � 0.1. *e MAP scores that we obtained on I2T tasks
and T2I tasks are shown in Table 4. Figures 2(d) and 2(e)
show the MAP scores on the Pascal sentence dataset for

different retrieval tasks, and Figure 2(f ) shows the MAP
scores for different labels as an indication of average per-
formance. Figures 3(c) and 3(d) show the precision-recall
curves for two retrieval tasks, I2T and T2I. It can be con-
cluded from the experimental results of SCM, T-V CCA,
GMLDA, GMMFA, CMOLRS, and MDCR that although
they all consider data correlation and semantic information,
the MAP scores of MDCR are higher because it learns
different semantic subspaces for different retrieval tasks.
*ese methods do not fully understand the complex cor-
relation of heterogeneous data. *erefore, our method is
projected not only in different semantic subspaces but also
the similarity between heterogeneous data projected can be
well maintained by constructing adjacent graphs.*e results
show that our approach is necessary for considering dif-
ferent retrieval tasks and maintaining the similarity of
heterogeneous data.

In the experiment on the INRIA-Websearch dataset, we
set various parameters as follows: for I2T, λ � 0.4, α � 0.2,
β1 � 0.3, and β2 � 1.0; for T2I, λ � 0.3, α � 0.2, β1 � 1.0, and
β2 � 0.1. *e MAP scores that we obtained on I2T tasks and
T2I tasks are shown in Table 5. After the semantic category is
increased, the retrieval performance of our method is still
very good. CRLDA only considers the discriminability of
text features. JFSSL, JLSLR, and GSSSL validate the validity

Table 2: *e summarization of all compared methods.

Descriptions of comparison methods Characteristics of comparison
methods

CCA is a classic subspace method that projects different modalities into a common subspace to
maximize the correlation between the paired information items.

Correlation analysis
Unsupervised learning

KCCA obtains the correlation between image and text through cross-view retrieval in a high-
dimensional feature space.

Kernel correlation analysis
Unsupervised learning

SM projects image-text pairs into the semantic space to retrieve data from different modalities. Semantic information
SCM projects an image-text pair to the semantic space in which learning is performed by CCA. SCM
uses a combination of CCA and SM to improve retrieval performance.

Correlation analysis
Semantic information

GMLDA seeks the best projection direction so that the similar samples are as close as possible, and
different classes of samples are as far as possible.

Generalized multiview analysis
Linear discriminant analysis

Semantic information

GMMFA combines semantic information, and CCA constraints to learn a common subspace through
the combination of GMA and MFA.

Generalized multiview analysis
Canonical correlation analysis

Semantic information

MDCR performs different retrieval tasks for different query objects. Different projection matrices are
learned to optimize each retrieval result.

Different retrieval tasks
Correlation analysis
Semantic information

JFSSL uses graph regularization to maintain similarity between intermodality and intramodality and
performs feature selection for different feature spaces, thereby improving performance.

Graph regularization
Semantic information

JLSLR uses label graphs to learn the latent space and maintains a high correlation of multimodality
features. *e local relationships are maintained when different modal features are projected onto a
common space.

Graph regularization
Semantic information

GSSSL learns a discriminative common subspace by combining the relevance of samples for different
modalities with the semantic information.

Graph regularization
Semantic information

CRCMR not only uses dictionary learning to obtain collaborative representation for multimodal data
but also takes into account the same semantic information of multimodal data.

Collaborative representation
Semantic information

CRLDA improves retrieval performance by considering the pairwise correlation between image features
and text features and improving the discriminative characteristic of textual modality.

Different retrieval tasks
Correlation analysis
Semantic information

Linear discriminant analysis
CMOLRS adapts the margin of hinge loss for each triple, effectively utilizes sample features and
semantic information and thus achieves a low-rank bilinear similarity measurement on data.

Relative similarities
Semantic information

Mobile Information Systems 7



of adjacent graphs by considering the complex similarity of
heterogeneous data. Our method not only considered the
semantic information when constructing the adjacent

graphs but also constructed the corresponding semantic
graphs for different query objects. We observe that the MAP
scores on T2I tasks of JFSSL is higher than that of our

Table 5: MAP scores on the INRIA-websearch dataset.

Method I2T T2I Average
CCA 0.274 0.392 0.333
KCCA 0.517 0.526 0.522
SM 0.439 0.517 0.478
SCM 0.403 0.372 0.387
T-V CCA 0.329 0.500 0.415
GMLDA 0.505 0.522 0.514
GMMFA 0.492 0.510 0.501
MDCR 0.520 0.551 0.535
JFSSL 0.533 0.562 0.548
JLSLR 0.525 0.545 0.535
GSSSL 0.530 0.552 0.541
CRCMR 0.532 0.555 0.544
CRLDA 0.531 0.552 0.542
CMOLRS 0.358 0.374 0.366
GRMD 0.539 0.558 0.549

Table 3: MAP scores on the Wikipedia dataset.

Method I2T T2I Average
CCA 0.226 0.246 0.236
KCCA 0.332 0.351 0.342
SM 0.403 0.357 0.380
SCM 0.351 0.324 0.337
T-V CCA 0.310 0.316 0.313
GMLDA 0.372 0.322 0.347
GMMFA 0.371 0.322 0.346
MDCR 0.419 0.382 0.401
JFSSL 0.392 0.381 0.387
JLSLR 0.394 0.369 0.382
GSSSL 0.413 0.376 0.395
CRCMR 0.408 0.395 0.402
CRLDA 0.425 0.388 0.407
CMOLRS 0.424 0.382 0.403
GRMD 0.438 0.399 0.419

Table 4: MAP scores on the Pascal sentence dataset.

Method I2T T2I Average
CCA 0.261 0.356 0.309
KCCA 0.401 0.398 0.399
SM 0.426 0.467 0.446
SCM 0.369 0.375 0.372
T-V CCA 0.337 0.439 0.388
GMLDA 0.456 0.448 0.451
GMMFA 0.455 0.447 0.452
MDCR 0.449 0.475 0.462
JFSSL 0.407 0.402 0.404
JLSLR 0.454 0.455 0.455
GSSSL 0.468 0.464 0.466
CRCMR 0.471 0.480 0.476
CRLDA 0.471 0.478 0.474
CMOLRS 0.415 0.423 0.419
GRMD 0.484 0.491 0.488
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Figure 2: Continued.
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Figure 2: Continued.
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method. *is result may be due to feature selection for
heterogeneous data. Figures 3(e) and 3(f) show the preci-
sion-recall curves for two retrieval tasks I2T and T2I. A
comparison with other methods shows that our method has
a certain stability and performs well on retrieval tasks.

All the tables and figures below show our experimental
results. We introduce two aspects of effectiveness of our
method. On the one hand, the relationship between the
image texts is taken into account, and only the semantics of
the query object are considered. On the other hand, the
semantic correlation improves retrieval precision by uti-
lizing the local correlation of the feature map. Additionally,
semantic constraints make better use of the local correlation
of the feature graph and thus improve the retrieval accuracy.

4.4.Parameter Sensitivity. In this subsection, we evaluate the
robustness of our approach. Our approach consists of four
parameters: λ and α are balance parameters, while β1 and β2
are regularization parameters. In the experiment, it is ob-
served that, with the variation in parameter λ, the retrieval
performance of different retrieval tasks is stable within a
wide range. Considering the results on the Pascal sentence
dataset as an example, we set parameters α, β1, and β2 to
different values during different retrieval tasks to test the
sensitivity to parameter values. We tune three parameters,
considering values of 0.0001, 0.001, 0.01, 0.1{ }. In the ex-
periment, one parameter is fixed to observe the performance
variations with other two parameters. Figures 4(a), 4(c),
and 4(e) show the performance variations for I2T, and
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Figure 2: MAP scores for each class on two datasets: (a) I2Ton theWikipedia dataset; (b) T2I on theWikipedia dataset; (c) average MAP on the
Wikipedia dataset; (d) I2Ton the Pascal sentence dataset; (e) T2I on the Pascal sentence dataset; (f) average MAP on the Pascal sentence dataset.
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Figure 3: Continued.
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Figure 3: Precision-recall curves of all compared methods on three datasets: (a) I2T on the Wikipedia dataset; (b) T2I on the Wikipedia
dataset; (c) I2Ton the Pascal sentence dataset; (d) T2I on the Pascal sentence dataset; (e) I2Ton the INRIA-Websearch dataset; (f ) T2I on the
INRIA-Websearch dataset.
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Figures 4(b), 4(d), and 4(f ) show the performance variations
for T2I. *e figures show that our method is insensitive to
these three parameters, and its performance is relatively
stable.

4.5. Convergence Experiment. In this subsection, we propose
an iterative optimization approach for the objective func-
tion. It is important to test its convergence during iterations.
Figures 5(a) and 5(b) show convergence curves for the Pascal
sentence dataset for I2T and T2I, respectively. *e corre-
sponding MAP scores tend to be stable as the number of
iterations increases. *e proposed approach can achieve
nearly stable values within approximately seven iterations.
*erefore, our approach can converge effectively and offers a
stable performance.

4.6. Ablation Experiment. In Table 6, method “A” removes
the graph regularization term in our approach. It means that
the method uses only correlation analysis and linear re-
gression for the features of image data and text data. *e
samples of different modalities are mapped to a common
semantic subspace so that themultimodal data with the same

label can be aggregated. Method “B” removes the correlation
analysis term in our approach. It means that the paired data
without a sufficient consideration of the same label should be
close in a potential space. *is method maintains the in-
ternal structure information of heterogeneous features.

*e experimental results show the effectiveness of our
method. First, to determine the corresponding projection,
the data of different modalities are correlated by using the
correlation between such modalities. Second, the con-
struction of label graphs can preserve the internal structural
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Figure 4: Performance variations with the key parameters on the Pascal sentence dataset: (a) α� 0.1; (b) α� 0.1; (c) β1 � 1; (d) β1 � 1; (e)
β2 �1; (f ) β2 �1.
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Figure 5: Convergence curves during iterations for the Pascal sentence dataset: (a) I2T; (b) T2I.

Table 6: MAP scores in ablation experiments.

Dataset Method I2T T2I Average

Wikipedia dataset
Our approach 0.438 0.399 0.419

A 0.409 0.374 0.391
B 0.398 0.364 0.381

Pascal sentence dataset
Our approach 0.484 0.491 0.488

A 0.445 0.456 0.451
B 0.403 0.405 0.404

INRIA-websearch
dataset

Our approach 0.539 0.558 0.549
A 0.476 0.495 0.486
B 0.436 0.510 0.473
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information of the original data very well. *e heteroge-
neous features of multimodal data are projected into a
common subspace, and the multimodal data of the same
label are aggregated.

5. Conclusions

In this paper, we propose a cross-modal retrieval method
based on graph regularization (GRMD). *is method
combines the internal structure of feature space and se-
mantic space to construct label graphs of heterogeneous
data, which makes the features of different modalities closer
to real labels, thus enriching the semantic information of
similar data features. In addition, our method learns dif-
ferent projection matrices for different query tasks and also
takes into account the feature correlation and semantic
correlation between isomorphic and heterogeneous data
features. *e experimental results show that GRMD per-
forms better than other advanced methods for cross-modal
retrieval tasks. In the future, we devote to focus on the local
and global structure of heterogeneous data feature distri-
bution and to improve the retrieval framework
continuously.
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