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Copyright © 2020 Felipe A. Cruz-Pérez et al. .is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cell dwell time (DT) and unencumbered interruption time (IT) are fundamental time interval variables in the teletraffic analysis for
the performance evaluation of mobile cellular networks. Although a diverse set of general distributions has been proposed to model
these time interval variables, the effect of their moments higher than the expected value on system performance has not been reported
in the literature. In this paper, sensitivity of teletraffic performance metrics of mobile cellular networks to the first three standardized
moments of bothDTand ITis investigated in a comprehensivemanner.Mathematical analysis is developed considering that bothDT
and ITare phase-type distributed random variables. .is work includes substantial numerical results for quantifying the dependence
of system level performance metrics to the values of the first three standardized moments of both DTand IT. For instance, for a high
mobility scenario where DT is modeled by a hyper-Erlang distribution, we found that call forced termination probability decreases
around 60% as the coefficient of variation (CoV) and skewness of DT simultaneously change from 1 to 20 and from 60 to 2,
respectively. Also, numerical results confirm that as link unreliability increases the forced termination probability increases while
both new call blocking and handoff failure probabilities decrease. Numerical results also indicate that for low values of skewness,
performance metrics are highly sensitive to changes in the CoV of either the IT or DT. In general, it is observed that system
performance is more sensitive to the statistics of the IT than to those of the DT. Such understanding of teletraffic engineering issues is
vital for planning, designing, dimensioning, and optimizing mobile cellular networks.

1. Introduction

Cell residence/dwell time (DT), unencumbered interruption
time (IT), and unencumbered call-holding/service time (ST)
are fundamental time interval variables for the mathematical
analysis of cellular networks (CNs). .ese telecommuni-
cation time variables allow us to compute key parameters of
CNs (i.e., channel holding time, new session blocking,
unsuccessful handoff, forced session termination probabil-
ities, handoff rate, and Erlang capacity, among others).
For analytical/computational tractability of CNs, the ex-
ponential-negative probability distribution function (pdf)
was traditionally employed for modeling DT, IT, and ST
telecommunication time variables. Under this pdf, only the

expected value of these telecommunications time variables is
needed for system performance evaluation [1]. Nonetheless,
experimental studies have shown that these considerations
are not valid for real cellular networks [2–6]. Recently, it has
been found that the global effect of cellular size/shape,
mobility characteristics of users, link unreliability, handoff
mechanisms, and behavior of new type of services can be
best captured if these time variables are modeled as random
variables (RVs) with general probability distribution func-
tions (pdfs) [2–9]. In this sense, some researchers have
employed the gamma, log-normal, Pareto, and Weibull pdfs
to model cell residence time [10]. Correspondingly, it has
being shown that theWeibull pdf represents a goodmodel for
bothmultimedia applications [11] and session holding time in
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hierarchical CNs [12]. It has been also shown that the log-
normal pdf represents an excellent model for data session
holding time in real networks. Nonetheless, the authors in
[11, 12] noticed that the Laplace transform of gamma, log-
normal, Pareto, and Weibull pdfs cannot be written into a
rational form, and thus the Markovian properties of the
teletraffic model are lost when these pdfs are employed [3, 5].
It is well known that Markovian properties are indispensable
in producing tractable teletraffic models for CNs [2, 13]. To
overcome this problem, phase-type pdfs were proposed in [2]
for modeling telecommunication time variables. .e rele-
vance of phase-type pdfs is two-fold: they offer accurate
models for the different telecommunication time variables in
CNs and at the same time, the Markovian properties of the
teletraffic model are preserved. Furthermore, there exists
relevant research work related to fit phase-type pdfs to data
collected in real networks (see, for instance, [5] and the
references therein). In these research directions, the hyper-
Erlang pdf [2, 9] is of distinctive interest due to its universality
property (i.e., it can be employed to approximate with an
arbitrary degree of precision the comportment of any non-
negative RV). Also, some important phase-type distributions
(i.e., negative-exponential, Erlang, hyperexponential, and
Coxian) are particular cases of the hyper-Erlang distribution.
When experimental data (that represent certain telecom-
munication time variable) are best fitted with a general pdf, it
is of paramount importance to comprehensively study the
influence of moments higher than the expected value of this
telecommunication time variable on the system performance
[14]. .is is the topic of research of the present work.

.ere exist many procedures proposed in the literature
regarding fitting known pdfs (such as phase-type ones) to
data collected from real networks [5]. Nevertheless, this is
not the focus of our present work; instead, we are concerned
in studying the impact on system performance of moments
higher than the first one when general phase-type pdfs are
employed to model DT and IT variables. In a related work
[14], several experiments were performed by means of a G/
G/1 simulation model to investigate the impact of moments
of interarrival and service time RVs on queue waiting time.
In [14], the gamma, log-normal, Weibull, and Person type 5
pdfs were employed to model service and interarrival time
interval variables. .e general conclusion obtained in [14] is
that pdfs that are completed characterized with two pa-
rameters (i.e., mean value and coefficient of variation) are
not suitable for modeling these time variables. .ey notice
that even though moments of lower order dominate system
performance, it is needed to capture moments of higher
order to improve accuracy of numerical results. Under this
context, we have identified that a comprehensive study of the
impact of moments higher than the mean value on per-
formance of CNs has not been carried out in the literature.
.e reason of this can be explained as follows: (1) the use of
pdfs different to the negative-exponential one to model tele-
communication time variables has been just recently proposed
and (2) the related research work has beenmainly concentrated
on developingmathematical paradigms rather than performing
numerical evaluations to investigate system performance.
Exception of this is our previous work [15, 16]. In [15], it is

investigated the effect of DT and IT statistics on forced call-
termination probability while in [16], it is investigated the effect
of mean value, coefficient of variation, and skewness of both
DT and IT on new call blocking probability, forced call ter-
mination probability, and carried traffic of CNs. Contrary to
[15, 16], in this paper, the impact of DTand ITstatistics on the
expected value of channel holding time (for handed off and new
sessions) is also comprehensively analyzed. Also, in our related
research work [10, 17], the functional relationship between DT
statistics and channel holding time statistics is investigated.
Nonetheless, the effect of both link unreliability and DT sta-
tistics on the performance of CNs is not addressed in [10, 17].

In this paper, using phase-type pdfs for modeling cell
dwell time and unencumbered interruption time random
variables, a comprehensive sensitivity study of performance
of cellular networks to the first three standardized moments
(i.e., mean value, coefficient of variation, and skewness) of
both cell dwell time and unencumbered interruption time is
carried out. In particular, in this work, hyper-Erlang and
hyperexponential pdfs are employed tomodel cell dwell time
and unencumbered interruption time. Even though the
concepts presented in this work are essentially well known,
the sensitivity analysis to moments higher than the first one
is a novel contribution that gives interesting insights into the
behavior of cellular networks. On the other hand, from the
perspective of mathematical analysis, our contribution is to
derive general expressions for several performance metrics
(new call blocking probability, handoff failure probability,
call forced termination probability, mean channel holding
times, handoff rate, and carried traffic) as function of the first
three standardized moments of cell dwell time and unen-
cumbered interruption time in cellular networks. As
explained in [18], blocking probability is still a useful per-
formance metric in current cellular networks for real-time
mobile applications (i.e., video streaming, mobile gaming,
and video conferencing). .e developed analysis in this
paper can be extended for the performance evaluation of
other cellular-based systems (i.e., green cellular networks (in
[18], a robust and computationally efficient analytical ap-
proximation method is proposed to evaluate call blocking
probability in green cellular networks considering different
base station (BS) sleeping patterns; specifically, the Erlang
fixed-point approximation technique is used to provide an
accurate and computationally feasible analytical approxi-
mation to calculate call blocking probability in cellular
networks with or without BS sleeping; contrary to this paper,
in [18], both call service time and call sojourn (cell dwell)
times are considered to be independent and exponentially
distributed random variables) [18] and cognitive cellular
networks [19]).

.e rest of this article is structured as follows. Methods
are addressed in Section 2, while the system model is de-
scribed in Section 3. .e queuing analysis for the perfor-
mance evaluation of cellular networks is developed in
Section 4. Also, expressions for forced session termination
probability and mean channel holding time (for both new
and handed off sessions) are obtained in Section 4. In Section
5, numerical results are presented and discussed. Finally, in
Section 6, conclusions are exposed.
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2. Methods

2.1. Analytical Method. In this paper, we followed the
methods of [15, 16] to analyze sensitivity of DT and IT
statistics on system performance of CNs. .ese methods are
summarized as follows.

Cell dwell time, unencumbered interruption time, and
unencumbered service time are modeled as phase-type
distributed random variables. Residual cell dwell time is
derived using the excess life theorem [1] (it is shown that the
pdf of this time variable is phase type when the cell dwell
time is hyper-Erlang distributed).

A multicellular system is considered. It is assumed that all
cells in the service area are statistically identical; thus, the
overall system performance can be analyzed by focusing on
only one given cell. .e servers represent the channels of the
given cell, whereas the clients represent the mobile terminals.
Each cell is modeled as a queuing system where new and
handoff call arrivals correspond to service requests and the
departures correspond to service termination due to either
successful call termination, forced termination due to wireless
link unreliability, or cell leaving. For this queuing system, the
different transition rates and transitions rules are derived as
functions of the different system parameters (new call arrival
rate, hand-off call arrival rate, mean service time, mean inter-
arrival time, and mean unencumbered interruption time,
among others). .us, the steady-state balance equations are
obtained by equating rate out to rate in for each state of the
system [20]. Finally, based on the steady-state balance
equations, the different system performance metrics are de-
rived; in particular, the handoff call rate is calculated using the
fixed-point iteration method, as explained in [1].

On the other hand, call forced termination probability is
derived using the total probability theorem and applying the
residue theorem as explained in [15, 16]. Also, the channel
holding time for new and for handed off calls is derived using
elemental probabilistic functions such as the minimum of a
set of independent random variables.

2.2. Simulation Method. .e analytical teletraffic model
developed in Section 4 is validated by a wide set of discrete-
event computer simulation results for a variety of evaluation
scenarios. To simulate a large cellular network in which the
boundary effect is eliminated and each cell within the cel-
lular-layout has exactly six neighboring cells, a wraparound
hexagonal mesh (H-mesh) topology is used [13]. In this
paper, a wrapped H-mesh topology with four cells per pe-
ripheral edge of the mesh is considered (i.e., the simulation
model comprises 37 total cells) [13]. A macroscopic mobility
model is used to capture user mobility. Under this mobility
model, a user terminal stays in the coverage area of a base
station for a period of time that has the selected phase-type
distribution used to model DT (for ongoing calls) or RDT (for
new call arrivals). It is assumed that a handed off terminal
moves to any of the current cell’s neighbors with equal
probability. .e developed discrete event-driven computer
simulator considers the following basic events: arrival of a new
call requests, handoff attempts of ongoing call to a neighbor

cell, transition of the stage of the DT (or RDT), successful call
completion, and call termination due to either resource in-
sufficiency or link unreliability. Every event is associated with
an event-time stamp representing the instant when the event
occurs [21]. All unprocessed events are inserted in an ordered
list of future events. Events are processed in chronological
order according to their event-time stamps. Once an event is
executed, it is removed from the list of pending events and
system statistics are collected. For obtaining good estimates of
the different performance metrics, each simulation study was
run for more than one million of new calls. Simulation results
have shown perfect agreement with analytical results.

3. System Model

Next, the system model assumptions and definitions of the
different time interval variables involved in the teletraffic
analysis are presented. Notations and symbols employed in
the rest of the paper are summarized in Table 1.

3.1. LinkUnreliability. Call forced termination probability is
one of the most important quality of service (QoS) metrics
for the performance evaluation of mobile communication
networks (in packet switched mobile communication net-
works, call forced termination probability is especially im-
portant for the performance evaluation of real-time services
(i.e., voice, audio, music, videophone, videoconference, etc.)
[15, 22, 23]). In cellular networks, resource insufficiency and
link unreliability are the two fundamental causes of call
forced termination (link unreliability occurs when signal to
interference ratio (SIR) is lower than a minimum required
value for more than a certain time interval; for an ongoing
call, the physical link between access point and user’s
equipment may suffer link unreliability due to propagation
impairments such as multipath fading, shadowing, path loss,
and interference [7]). Nevertheless, in cellular networks in
operation, handoff failure can be an insignificant event [24].
In contrast, link unreliability has been shown to be the main
reason of call forced termination [24–26]. .e model pro-
posed in [7] to characterize the effect of link unreliability on
the system level performance is employed in this work. In
[7], the effect of link unreliability is captured by the so called
“unencumbered call interruption time.” .is time variable is
defined in the next section.

3.2. Assumptions and Definitions. A homogeneous multi-
cellular system with omnidirectional antennas and a fixed
number S of radio channels per cell is considered. .en, all
cells are statistically identical (i.e., the underlying processes
and parameters for all cells are the same).N channels in each
cell are reserved to prioritize handoff call attempts over new
call requests. Typical assumptions in the related literature [4]
that both new call arrivals and handoff call attempts follow
independent Poisson processes with arrival rate, respec-
tively, λn and λh per cell, are here adopted. Some other
relevant assumptions and definitions are specified below.

Unencumbered service time xs (a.k.a. requested call
holding time [5] or call holding duration [6]) is the amount of
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time that a call would remain in progress if it is not forced
to terminate. In the literature, it has been widely accepted
that the unencumbered service time for voice service is
properly modeled by a random variable exponentially
distributed [1]. .e random variable used to represent the
unencumbered service time is Xs, and it has mean value E
{Xs} � 1/μ.

On the other hand, cell dwell time or cell residence time
x

(j)

d is the time that a user is within the coverage area of the j-
th (for j� 0, 1, . . .) handed off cell irrespective of whether he
has an ongoing call (or session) or not. Let X(j)

d (for j� 0, 1,
. . .) be independent and identically distributed random
variables used to represent these times. For homogeneous
multicellular networks, this is a typical assumption in the
literature [1, 4–6]. In this paper, the random variables X(j)

d

(for j� 0, 1, . . .) are considered to be independent phase-type
identically distributed with mean value 1/η.

Moreover, residual cell dwell time xr is the time between
the moment that a new call of a user is initiated in a given cell
and the moment that the user leaves the cell. Note that
residual cell dwell time is associated only to users with new
calls. .e random variable Xr is used to represent the re-
sidual cell dwell time. According to the excess life theorem
[1], the probability density function (pdf) of the residual cell
dwell time Xr, denoted by fXr

(t) can be obtained in terms of
the probability distribution of the cell dwell time Xd by

fXr
(t) �

1
E Xd􏼂 􏼃

1 − FXd
(t)􏽨 􏽩. (1)

.e mean and cumulative probability distribution
function (CDF) of the cell dwell time Xd are given by E[Xd]

and FXd
(t), respectively.

Besides, unencumbered call interruption time x
(j)
i is the

amount of time from the moment a user begins to be served

Table 1: Symbols and notation used throughout the paper.

Variable Description

α(h)
i

Probability of choosing the phase i (for i � 1, 2, . . . , m(h)) of the hyper-Erlang distribution of m(n) phases used to
characterize the cell dwell time.

α(n)
i

Probability of choosing the phase i (for i � 1, 2, . . . , m(n)) of the hyper-Erlang distribution of m(n) phases used to
characterize the residual cell dwell time.

η(h)
i

Inverse of the mean sojourn time in every stage of the i-th phase of the hyper-Erlang distribution used to characterize the
cell dwell time.

η(n)
i

Inverse of the mean sojourn time in every stage of the i-th phase of the hyper-Erlang distribution used to characterize the
residual cell dwell time.

1/η Mean value of X(j)

d .
λn (λh) Mean arrival rate for new calls (handoff attempts).
1/μ Mean value of unencumbered service time.
ΣU(h) Total number of stages of the hyper-Erlang distribution used to characterize the cell dwell time.
ΣU(n) Total number of stages of the hyper-Erlang distribution used to characterize the residual cell dwell time.
ac Carried traffic.
CDF Cumulative distribution function.
DT Cell dwell time.
CH. Channel holding time for handed off calls.
CHTn Channel holding time for new calls.
fXr

(t) Probability density function of Xr.
FXd

(t) Cumulative probability distribution function (CDF) of Xd
K � [K(n),K(h)] State variables vector.
pdf Probability density function.
N Total number of reserved channels per cell for handoff prioritization.
P(h) Handoff failure probability.
P(n) New call blocking probability.
P

(j)

ft Forced call termination probability in cell j.
Pft Global forced call termination probability.
RDT Residual cell dwell time.
S Total number of channels per cell in the system.
u

(h)
i Number of stages of the i-th phase of the hyper-Erlang distribution used to characterize the cell dwell time.

u
(n)
i Number of stages of the i-th phase of the hyper-Erlang distribution used to characterize the residual cell dwell time.

IT Unencumbered interruption time.
x

(j)
c Channel holding time in the j-th handed off cell (for j� 0, 1, . . .).

x
(j)

d Cell dwell time in the j-th handed off cell (for j� 0, 1, . . .) irrespective of whether it is engaged in a call or not.
X(j)

d Random variables used to represent the cell dwell time.
x

(j)

i Unencumbered call interruption time.
X(j)

i Random variables used to represent the unencumbered call interruption time.
xr Residual cell dwell time.
Xr Random variable used to represent the residual cell dwell time.
xs Call holding time per call.
Xs .e random variable used to represent the call holding time.
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by the base station of the j-th handed off cell (for j� 0, 1, 2,
. . .) to the moment his call would be dropped due to link
unreliability if both the unencumbered service time and cell
dwell time were large enough [7]. .e random variables X(j)

i

(for j� 0, 1, 2, . . .) are used to represent the unencumbered
call interruption times, and they are assumed to be inde-
pendent and phase-type distributed [7].

Lastly, channel holding time x
(j)
c is the amount of time a

user with an ongoing call occupies a radio channel in the j-th
(for j� 0, 1, . . .) handed off cell before his call is either
successfully completed, successfully handed off to another
cell, or interrupted due to either wireless channel unreli-
ability or handoff failure.

.e general architecture of the considered multicellular
communication network is shown in Figure 1. Figure 1 also
illustrates the relationship among the different time variables
defined in this section.

3.3. Teletraffic Model. Teletraffic analysis in Section 4 is
developed by following the approach proposed in [8, 9] to
capture the general distributions of both DT and IT.

For the sake of space and to facilitate the understanding
of the mathematical analysis, the teletraffic analyses devel-
oped in Section 4 consider the next case: (1) DT is hyper-
Erlang distributed and IT is exponentially distributed.
Nonetheless, teletraffic analyses are also developed consid-
ering the following cases: (2) DT is hyperexponentially
distributed and IT is hyperexponentially distributed and (3)
DT is exponentially distributed and IT is hyper-Erlang
distributed. Notice that the evaluation scenario when DT is
exponentially distributed and IT is hyperexponentially
distributed represents a subcase of both the case (2) and case
(3). Furthermore, the evaluation scenario when DT is
hyperexponentially distributed and IT is exponentially
distributed is a subcase of both the case (1) and case (2).
Evidently, the evaluation scenario when both DT and IT are
exponentially distributed is obtained from any of the pre-
vious cases. Nonetheless, to simplify interpretation of the
numerical results and to evaluate the effect of each time
variable (i.e., DT and IT) on the system performance, only
some evaluation scenarios are considered. In particular,
numerical results for the evaluation scenarios, (a) DT is
exponentially distributed and IT is either hyperexponentially

distributed or hyper-Erlang distributed and (b) DT is either
hyperexponentially distributed or hyper-Erlang distributed
and IT is exponentially distributed, are shown and analyzed.

3.4. Residual Cell Dwell Time Characterization. Due to the
fact that DTis considered to be hyper-Erlang distributed, it is
necessary to derive the distribution of the residual cell dwell
time (RDT). .is is obtained in this section.

Assume DT follows an m(h)-th order hyper-Erlang dis-
tribution with shape and rate parameters u

(h)
i and η(h)

i (for
i� 1, 2, . . ., m(h)). .e rate parameters η(h)

i are related to the
inverse of the mean DT (η) as follows: η(h)

i � ηu
(h)
i [2].

Considering that α(h)
i represents the probability of choosing

the phase i of the hyper-Erlang distribution (for
i � 1, 2, . . . , m(h)), the pdf of Xd can be expressed as

fXd
(t) � 􏽘

m(h)

i�1
α(h)

i

η(h)
i􏼐 􏼑

u
(h)

i tu
(h)

i
− 1

u
(h)
i − 1􏼐 􏼑!

e
− η(h)

i
t
;

η(h)
i > 0, t≥ 0, 0≤ α(h)

i ≤ 1, 􏽘
m(h)

i�1
α(h)

i � 1,

(2)

where u
(h)
i is a positive integer and η(h)

i is a positive constant.
Note that the hyper-Erlang distribution is a mixture of m(h)

different Erlang distributions, and each of them has a shape
parameter u

(h)
i and a rate parameter η(h)

i . .e value α(h)
i

represents the weight of each Erlang distribution. Using (1),
the pdf of RDT is given by

fXr
(t) �

1

􏽐
m(h)

i�1 α(h)
i u

(h)
i /η(h)

i

􏽘

m(h)

i�1
􏽘

u
(h)

i
− 1

j�0
α(h)

j

η(h)
i t􏼐 􏼑

j

j!
e

− η(h)

i
t
.

(3)

.is pdf can be rewritten as

fXr
(t) � 􏽘

m(n)

i�1
α(n)

i

η(n)
i􏼐 􏼑

u
(n)

i tu
(n)

i
− 1

u
(n)
i − 1􏼐 􏼑!

e
− η(n)

i
t
, (4)

where

α(n)

􏽐
i− 1
x�1u

(h)
x +j

�
α(h)

i 􏽑
m(h)

l�1∩l≠iη
(h)
l

􏽐
m(h)

k�1 α(h)
k u

(h)
k 􏽑

m(h)

l�1∩l≠kη
(h)
l􏼐 􏼑

,

u
(n)

􏽐
i− 1
x�1u

(h)
x +j

� j,

η(n)

􏽐
i− 1
x�1u

(h)
x +j

� η(h)
i ,

m
(n)

� 􏽘
m(h)

i�1
u

(h)
i ,

(5)
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for i � 1, 2, . . . , m(h), j � 1, 2, . . . , u
(h)
i .

From (4), it is noticed that RDT has an m(n)-th order
hyper-Erlang distribution with shape and rate parameters,
respectively, u

(n)
i and η(n)

i (for i� 1, 2, . . ., m(n)). .e
probability of choosing the phase i of the hyper-Erlang
distribution is represented by α(n)

i (for i� 1, 2, . . .,m(n)). .e
diagrams of phases of the hyper-Erlang distributed random
variables Xd and Xr are shown in Figure 2. In Figure 2, when
y� n, it represents the diagram for Xr, while when y� h, it
represents the diagram for Xd.

4. Teletraffic Analysis

In this section, the teletraffic analysis for the system-level
performance evaluation of the multicellular cellular network
described in Section 3 is presented. From the mathematical
analysis point of view, our merit is to derive general ex-
pressions for a number of performance metrics as function
of the first three standardized moments of DT and IT in
mobile cellular networks. .is in turn has allowed us to
investigate in detail the sensitivity of system performance to
statistics of both DT and IT. In this way, we found rather
important insights into the behavior of mobile cellular
networks not previously reported in the literature.

As stated in Section 3.3 and without loss of generality, in
this section, the special case when IT is exponential dis-
tributed and DT is hyper-Erlang distributed is considered.
.e mean value of IT is denoted by 1/c. A total number of
􏽐

m(n)

x�1 u(n)
x + 􏽐

m(h)

x�1 u(h)
x state variables are needed to model this

system by means of a multidimensional birth and death
process. Let us define k

(y)

􏽐
i− 1
x�1u

(y)
x +j

as the number of users in

stage i and phase j of residual cell dwell time (y� n) and cell
dwell time (y� h).

To simplify mathematical notation, the following vectors
and parameters are defined. Vector K(y) is defined as follows:

K
(y)

� k
(y)
1 , k

(y)
2 , . . . , k

(y)

􏽐
m(y)

i�1 u
(y)

i

⎡⎣ ⎤⎦. (6)

Note that y= n or y= h when new calls or handoff calls
are involved, respectively. Let e(y)

i be a unit vector of sizem(y)

whose all entries are 0 except i-th entry which is 1 (for
i � 1, 2, . . . , 􏽐

m(y)

i�1 u
(y)
i ) . Finally, the parametersN(n) andN(h)

are defined as follows: N(n) �N and N(h) � 0.
Vector K � [K(n),K(h)] represents the state of the ana-

lyzed cell. Table 2 shows the transition rates from the current
reference state to the different successor states and the
transition rules. As stated before, we assume that all the cells
are probabilistically equivalent. .at is, the new call arrival
rate is the same in each cell, and the rate at which mobiles
enter a given cell is equal to the rate at which they interrupt
its connection (due to either a handed off call event or link
unreliability) in that cell. .us, equating rate out to rate in
for each state, the steady-state balance equations are given
by [20]

xr
xS

xd(0)

xd(3)

xd(2)

xd(1)

Call
end

Call
start

(a)

xd(0)

xd(1)

xd(2)
xi(2)

xi(2)

Call
start

Call
interruption

(b)

Figure 1: General architecture of the system and time variables involved in the teletraffic analysis: (a) scenario of a successfully terminated
call; (b) scenario of a forced call termination due to link unreliability.
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Figure 2: General phase and stage diagram for the probability
distribution function of residual cell residence time (y� n) and cell
residence time (y� h).
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P(K) �
g(n)

a + g
(n)
b + g(n)

c + g
(n)
d + g(h)

a + g
(h)
b + g(h)

c + g
(h)
d

􏽐
m(n)

i�1 a
(n)
i (K) + 􏽐

m(n)

i�1 􏽐
u

(n)
i

− 1
j�1 b

(n)

􏽢u
(n)

x

(K) + 􏽐
m(n)

i�1 c
(n)
i (K) + 􏽐

m(n)

i�1 􏽐
u

(n)
i

− 1
j�1 d

(n)

􏽢u
(n)

x

(K) + 􏽐
m(h)

i�1 􏽐
u

(h)
i

− 1
j�1 b

(h)

􏽢u
(h)

x

(K) + 􏽐
m(h)

i�1 a
(h)
i (K) + 􏽐

m(h)

i�1 c
(h)
i (K) + 􏽐

m(h)

i�1 􏽐
u

(h)
i

− 1
j�1 d

(h)

􏽢u
(h)

x

(K)

,

(7)

where

􏽢u
(n)
x � 􏽘

i− 1

x�1
u

(n)
x − 1􏼐 􏼑 + j,

􏽢u
(h)
x � 􏽘

i− 1

x�1
u

(h)
x − 1􏼐 􏼑 + j.

(8)

.e conditional incoming state transition rate from the
states [K(n) − e(n)

􏽐
i− 1
x�1u

(n)
x +1

, K(h)] (for i� 1, ..., m(n)) to the

reference state K, due to arrival of new call requests, is given
by

g
(n)
a � 􏽘

m(n)

i�1
a

(n)
i K(n)

− e(n)

􏽐
i− 1
x�1u

(n)
x +1

, K(h)
􏼢 􏼣􏼠 􏼡􏼢

· P K(n)
− e(n)

􏽐
i− 1
x�1u

(n)
x +1

, K(h)
􏼢 􏼣􏼠 􏼡􏼣.

(9)

.e conditional incoming state transition rate from the
states [K(n)+e(n)

􏽐
i− 1
x�1u

(n)
x +j

− e(n)

􏽐
i− 1
x�1u

(n)
x +j+1

,K(h)] (for i� 1, ...,m(n)

and j � 1, . . . u
(n)
i − 1) to the reference state K, due to the

interstage transitions in every phase of the hyper-Erlang
distribution used to characterize the residual cell dwell time,
is given by

g
(n)
b � 􏽘

m(n)

i�1
􏽘

u
(n)

i
− 1

j�1
b

(n)

􏽐
i− 1
x�1 u

(n)
x − 1( )+j

K(n)
+ e(n)

􏽐
i− 1
x�1u

(n)
x − 1+j

􏼢􏼠􏼢

− e(n)

􏽐
i− 1
x�1u

(n)
x +j+1

,K(h)
􏼣􏼡P K(n)

+ e(n)

􏽐
i− 1
x�1u

(n)
x +j

􏼢􏼠

− e(n)

􏽐
i− 1
x�1u

(n)
x +j+1

,K(h)
􏼣􏼡􏼣.

(10)

.e conditional incoming state transition rate from the
states [K(n) + e(n)

􏽐
i

x�1u
(n)
x

,K(h)] (for i� 1, ..., m(n)) to the ref-

erence state K, due to channel release because of either call
completion, call interruption due to link unreliability, or cell
leaving, is given by

g
(n)
c � 􏽘

m(n)

i�1
c

(n)
i K(n)

+ e(n)

􏽐
i

x�1u
(n)
x

,K(h)
􏼢 􏼣􏼠 􏼡􏼢

· P K(n)
+ e(n)

􏽐
i

x�1u
(n)
x

,K(h)
􏼢 􏼣􏼠 􏼡􏼣.

(11)

.e conditional incoming state transition rate from the
states [K(n) + e(n)

􏽐
i− 1
x�1u

(n)
x +j

,K(h)] (for i� 1, ..., m(n) and

j � 1, . . . , u
(n)
i − 1) to the reference state K, due to channel

release because of either call completion or call interruption
due to link unreliability, is given by

Table 2: Transition rates and transition rules for the case when the DT is hyper-Erlang distributed and IT is negative exponentially
distributed.

Event Successor state Rate
A new call enters first stage of phase i of Xr (i� 1, 2, ..., m(n)) [K(n) + e(n)

􏽐
i− 1
x�1u

(n)
x +1

,K(h)] a
(n)
i ([K(n),K(h)])

A new call leaves stage j of phase i and enters stage j+ 1 of phase i ofXr
(i� 1, 2,..,m(n)), (j � 1, . . . u

(n)
i − 1) [K(n) − e(n)

􏽐
i− 1
x�1u

(n)
x +j

+ e(n)

􏽐
i− 1
x�1u

(n)
x +j+1

,K(h)] b
(n)

􏽐
i− 1
x�1(u

(n)
x − 1)+j

([K(n),K(h)])

A new call leaves last stage of phase i of Xr (i� 1, 2, ..., m(n)) [K(n) − e(n)

􏽐
i

x�1u
(n)
x

,K(h)] c
(n)
i ([K(n),K(h)])

A new call leaves stage of phase i of Xr (i� 1, 2, ..., m(n)) [K(n) − e(n)

􏽐
i

x�1u
(n)
x +j

,K(h)] d
(n)

􏽐
i− 1
x�1(u

(n)
x − 1)+j

([K(n),K(h)])

A handed off call enters first stage of phase i of Xd (i� 1, 2, ..., m(h)) [K(n),K(h) + e(h)

􏽐
i− 1
x�1u

(h)
x +1

] a
(h)
i ([K(n),K(h)])

A handed off call leaves stage j of phase i and enters stage j+ 1 of phase
i of Xd (i� 1, 2, ..., m(h)) (j � 1, . . . , u

(h)
i − 1) [K(n),K(h) − e(h)

􏽐
i− 1
x�1u

(h)
x +j

+ e(h)

􏽐
i− 1
x�1u

(h)
x +j+1

] b
(h)

􏽐
i− 1
x�1(u

(h)
x − 1)+j

([K(n),K(h)])

A handed off call leaves last stage of phase i of Xd (i� 1, 2, ..., m(h)) [K(n),K(h) − e(h)

􏽐
i

x�1u
(h)
x

] c
(h)
i ([K(n),K(h)])

A handed off call leaves stage of phase i of Xd (i� 1, 2, ..., m(n)) [K(n),K(h) − e(h)

􏽐
i

x�1u
(h)
x +j

] d
(h)

􏽐
i− 1
x�1(u

(h)
x − 1)+j

([K(n),K(h)])
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g
(n)
d � 􏽘

m(n)

i�1
􏽘

u
(n)

i
− 1

j�1
d

(n)

􏽐
i− 1
x�1 u

(n)
x − 1( )+j

K(n)
+ e(n)

􏽐
i− 1
x�1u

(n)
x +j

,K(h)
􏼢 􏼣􏼠 􏼡􏼢

· P K(n)
+ e(n)

􏽐
i− 1
x�1u

(n)
x +j

,K(h)
􏼢 􏼣􏼠 􏼡􏼣.

(12)

.e conditional incoming state transition rate from the
states [K(n),K(h) − e(h)

􏽐
i− 1
x�1u

(h)
x +1

] (for i� 1, ..., m(h)) to the ref-

erence stateK, due to arrival of handoff call attempts, is given by

g
(h)
a � 􏽘

m(h)

i�1
a

(h)
i K(n)

,K(h)
− e(h)

􏽐
i− 1
x�1u

(h)
x +1

􏼢 􏼣􏼠 􏼡􏼢

· P K(n)
,K(h)

− e(h)

􏽐
i− 1
x�1u

(h)
x +1

􏼢 􏼣􏼠 􏼡􏼣.

(13)

.e conditional incoming state transition rate from the
states [K(n),K(h)+e(h)

􏽐
i− 1
x�1u

(h)
x +j

− e(h)

􏽐
i− 1
x�1u

(h)
x +j+1

] (for i� 1, ..., m(h)

and j � 1, . . . , u
(h)
i − 1) to the reference state K, due to the

interstage transitions in every phase of the hyper-Erlang dis-
tribution used to characterize the cell dwell time, is given by

g
(h)
b � 􏽘

m(h)

i�1
􏽘

u
(h)

i
− 1

j�1
b

(h)

􏽐
i− 1
x�1 u

(h)
x − 1( )+j

K(n)
,K(h)

+e(h)

􏽐
i− 1
x�1u

(h)
x +j

􏼢􏼠􏼢

− e(h)

􏽐
i− 1
x�1u

(h)
x +j+1

􏼣􏼡P K(n)
,K(h)

+e(h)

􏽐
i− 1
x�1u

(h)
x +j

􏼢􏼠

− e(h)

􏽐
i− 1
x�1u

(h)
x +j+1

􏼣􏼡􏼣.

(14)

.e conditional incoming state transition rate from the
states [K(n),K(h)+e(h)

􏽐
i− 1
x�1u

(h)
x

] (for i� 1, ..., m(h)) to the refer-

ence state K, due to channel release because of either call
completion, call interruption due to link unreliability, or cell
leaving, is given by

g
(h)
c � 􏽘

m(h)

i�1
c

(h)
i K(n)

,K(h)
+ e(h)

􏽐
i

x�1u
(h)
x

􏼢 􏼣􏼠 􏼡􏼢

· P K(n)
,K(h)

+ e(h)

􏽐
i

x�1u
(h)
x

􏼢 􏼣􏼠 􏼡􏼣.

(15)

.e conditional incoming state transition rate from the
states [K(n),K(h)+e(h)

􏽐
i− 1
x�1u

(h)
x +j

] (for i� 1, ..., m(h) and

j � 1, . . . , u
(h)
i − 1) to the reference state K, due to channel

release because of either call completion or call interruption
due to link unreliability, is given by

g
(h)
d � 􏽘

m(h)

i�1
􏽘

u
(h)

i
− 1

j�1
d

(h)

􏽐
i− 1
x�1 u

(h)
x − 1( )+j

K(n)
,K(h)

􏼢􏼠􏼢

+ e(h)

􏽐
i− 1
x�1u

(h)
x +j

􏼣􏼡P K(n)
,K(h)

+ e(h)

􏽐
i− 1
x�1u

(h)
x +j

􏼢 􏼣􏼠 􏼡􏼣.

(16)

.e state transition rates a
(n)
i and c

(n)
i (i� 1, ...,m(n)), a(h)

i

and c
(h)
i (i� 1, ..., m(h)), b

(n)

􏽐
i− 1
x�1(u

(n)
x − 1)+j

and d
(n)

􏽐
i− 1
x�1(u

(n)
x − 1)+j

(for

i� 1, ..., m(n) and j � 1, . . . , u
(n)
i − 1), and b

(h)

􏽐
i− 1
x�1(u

(h)
x − 1)+j

and

d
(h)

􏽐
i− 1
x�1(u

(h)
x − 1)+j

(for i� 1, ..., m(h) and j � 1, . . . , u
(h)
i − 1) are

detailed below.
Of course, the state probabilities must satisfy the nor-

malization equation given by

􏽘

S− N

k
(n)

1 �0

· · · 􏽘
S− N

k
(n)

ΣU(n)
�0

􏽘

S

k
(h)

1 �0

· · · 􏽘
S

k
(h)

ΣU(h)
�0

P(K) � 1

K |K∈Ω{ }

,
(17)

where ΣU(n) � 􏽐
m(n)

x�1 u(n)
x and ΣU(h) � 􏽐

m(h)

x�1 u(h)
x are, re-

spectively, the total number of stages of the hyper-Erlang
distributions used to characterize the residual cell dwell time
and the cell dwell time and Ω is the valid states space given
by

Ω � K 􏽘

ΣU(n)

i�1
k

(n)
i + 􏽘

ΣU(h)

i�1
k

(h)
i ≤ S⎛⎝ ⎞⎠∩ 􏽘

ΣU(n)

i�1
k

(n)
i ≤ S − N⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎧⎨

⎩

⎫⎬

⎭.

(18)

All states involved in (7) and (17) must be valid states.
.e corresponding steady-state probabilities are calculated
by means of the well-known Gauss–Seidel relaxation
method [20].

It is straightforward to show that the transition rates
defined in Table 2 can be mathematically expressed as fol-
lows (notice that y� n when new calls are involved and y� h
when handed off calls are involved). .e state transition rate
from the reference state K to the state [K(n)+ e(n)

􏽐
i− 1
x�1u

(n)
x +1

,

K(h)] (or [K(n),K(h) + e(h)

􏽐
i− 1
x�1u

(h)
x +1

]) (for i� 1, ..., m(y)), due to

arrival of new (or handoff) call requests in the i-th phase of
the hyper-Erlang distribution used to characterize the re-
sidual cell dwell time (or cell dwell time), is given by

a
(y)
i (K) � α(y)

i λ(y); 􏽘

􏽐
m(n)

x�1 u
(n)
x

l�1
k

(n)
l + 􏽘

􏽐
m(h)

x�1 u
(h)
x

l�1
k

(h)
l < S − N

(y) ∩ k
(y)

􏽐
i− 1
x�1u

(y)
x +1
≥ 0,

0; otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)
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.e state transition rate from the reference state K to the
state [K(n) − e(n)

􏽐
i− 1
x�1u

(n)
x +j

+ e(n)

􏽐
i− 1
x�1u

(n)
x +j+1

,K(h)] (or [K(n),

K(h) − e(h)

􏽐
i− 1
x�1u

(h)
x +j

+ e(h)

􏽐
i− 1
x�1u

(h)
x +j+1

]) (for i� 1, ..., m(y) and j� 1,

..., ui(y)-1), due to the transition from the stage j to the stage

j+1 of the i-th phase of the hyper-Erlang distribution used to
characterize the residual cell dwell time (or cell dwell time),
is given by

b
(y)

􏽐
i− 1
x�1 u

(y)
x − 1( 􏼁+j

(K) �
k

(y)

􏽐
i− 1

x�1
u

(y)
x +j

η(y)
i ; 􏽘

􏽐
m(n)

x�1 u
(n)
x

l�1
k

(n)
l + 􏽘

􏽐
m(h)

x�1 u
(h)
x

l�1
k

(h)
l ≤ S∩ k

(y)

􏽐
i− 1
x�1u

(y)
x +j
> 0∩ k

(y)

􏽐
i− 1
x�1u

(y)
x +j+1
≥ 0,

0; otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

.e state transition rate from the reference state K to the
state [K(n) − e(n)

􏽐
i

x�1u
(n)
x

,K(h)] (or [K(n) − e(h)

􏽐
i

x�1u
(h)
x

,K(h)] (for

i� 1, ..., m(y)), due to channel release because of either call
completion, call interruption due to link unreliability, or cell

leaving with the i-th phase of the hyper-Erlang distribution
used to characterize the residual cell dwell time (or cell dwell
time), is given by

c
(y)

i (K) � k
(y)

􏽐
i

x�1u
(y)
x

μ + η(y)
i + c􏼐 􏼑; 􏽐

􏽐
m(n)

x�1 u
(n)
x

l�1
k

(n)
l + 􏽐

􏽐
m(h)

x�1 u
(h)
x

l�1
k

(h)
l ≤ S∩ k

(y)

􏽐
i

x�1u
(y)
x

> 0,

0; otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

.e transition rate from the reference state K to the state
[K(n) − e(n)

􏽐
i

x�1u
(n)
x +j

,K(h)] (or [K(n),K(h) − e(h)

􏽐
i

x�1u
(h)
x +j

]) (for

i� 1, ..., m(y) and j � 1, . . . , u
(y)
i − 1), due to channel release

because of either call completion or call interruption due to

link unreliability when the user is in the j-th stage of the
i-th phase of the hyper-Erlang distribution used to
characterize the residual cell dwell time (or cell dwell
time), is given by

d
(y)

􏽐
i− 1
x�1 u

(y)
x − 1( 􏼁+j

(K) � k
(y)

􏽐
i− 1
x�1u

(y)
x +j

(μ + c); 􏽐
􏽐

m(n)

x�1 u
(n)
x

l�1
k

(n)
l + 􏽐

􏽐
m(h)

x�1 u
(h)
x

l�1
k

(h)
l ≤ S∩ k

(y)

􏽐
i− 1
x�1u

(y)
x +j
> 0∩ k

(y)

􏽐
i− 1
x�1u

(y)
x +j+1
≥ 0,

0; otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(22)

New call blocking probability, P(n), is the sum of the
probabilities of states that cannot accommodate more new
arrival requests, and handoff failure probability, P(h), is the
sum of the probabilities of states that cannot accommodate
more handed off call requests. .ese probabilities can be
computed using

P
(y)

� 􏽘
S− N(y)

k
(n)
1 �0

· · · 􏽘
S− N(y)

k
(n)

ΣU(n)
�0

􏽘

S

k
(h)
1 �0

· · · 􏽘
S

k
(h)

ΣU(h)
�0

P(K); fory � n, h{ },

· K S − N
(y) ≤ 􏽘

ΣU(n)

i�1
k

(n)
i + 􏽘

ΣU(h)

i�1
k

(h)
i ≤ S

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎧⎨

⎩

⎫⎬

⎭.

(23)

Carried traffic (ac) is given by

ac � 􏽘
S− N(y)

k
(n)

1 �0

· · · 􏽘
S− N(y)

k
(n)

ΣU(n)
�0

􏽘

S

k
(h)

1 �0

· · · 􏽘
S

k
(h)

ΣU(h)
�0

· 􏽘

ΣU(n)

l�1
k

(n)
l + 􏽘

ΣU(h)

l�1
k

(h)
l

⎡⎣ ⎤⎦P(K)
⎧⎨

⎩

⎫⎬

⎭,

· K 􏽘

ΣU(n)

i�1
k

(n)
i + 􏽘

ΣU(h)

i�1
k

(h)
i ≤ S

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎧⎨

⎩

⎫⎬

⎭.

(24)

.e handoff call rate is calculated using the fixed point
iterationmethod, as explained in [1]. Call forced termination
probability and channel holding time are derived in Sections
4.1 and 4.2, respectively.
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4.1. Forced Termination Probability. Call forced termination
may result due to either wireless link unreliability or handoff
failure (resource insufficiency). In general, a dropped call
experiences j (j� 0, 1, 2, . . .) successful handoffs previously

to be interrupted (due to either a handoff failure or link
unreliability). .us, call forced termination probability after
j successful handoffs is given by

P
(j)

ft �

P Xr ≤min Xs,Xr( 􏼁( 􏼁 + P Xr ≤min Xs,Xi( 􏼁( 􏼁P(h); j � 0,

P Xr ≤min Xs,Xi( 􏼁( 􏼁 1 − P(h)( 􏼁 × P Xi ≤min Xs,Xd( 􏼁( 􏼁 + P Xd ≤min Xs,Xi( 􏼁( 􏼁P(h)􏽨 􏽩; j � 1,

P Xr ≤min Xs,Xr( 􏼁( 􏼁P Xd ≤min Xs,Xi( 􏼁( 􏼁
j− 1 1 − P(h)( 􏼁

j
× P Xi ≤min Xs,Xd( 􏼁( 􏼁 + P Xd ≤min Xs,Xi( 􏼁( 􏼁; j< 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

where P(Xi ≤min(Xs,Xr)) and P(Xi ≤min(Xs,Xd)) rep-
resent interruption probabilities due to link unreliability for
new and handed off calls, respectively. Function min(·, ·)

returns the smallest random variable.
Call forced termination occurs after a random number of

successful handoffs..en, by employing the total probability
theorem, call forced termination probability can be
expressed as follows:

Pft � 􏽘
∞

j�0
P

(j)

ft � P Xi ≤min Xs,Xr( 􏼁( 􏼁

+ P Xr ≤min Xs,Xi( 􏼁( 􏼁P
(h)

+

P Xr ≤min Xs,Xi( 􏼁( 􏼁 1 − P
(h)

􏼐 􏼑

·
P Xi ≤min Xs,Xd( 􏼁( 􏼁 + P Xd ≤min Xs,Xi( 􏼁( 􏼁P(h)

1 − P Xd ≤min Xs,Xi( 􏼁( 􏼁 1 − P(h)( 􏼁
􏼢 􏼣.

(26)

By letting Z(w)
s � min(Xs,Xw) with w � {r, i, d} and using

the residue theorem, the different probabilities in (26) can
be calculated by using the following relationship for the
nonnegative independent random variables Xw and Z(w)

s

(see [3]):

P Xw ≤Z
(w)
s􏼐 􏼑 �

1
2πi

􏽚
σ+i∞

σ− i∞

f∗Xw
(s)

s
f
∗
Z(w)

s
(− s)ds

� − 􏽘
p∈σP

Res
s�p

f∗X(s)

s
f
∗
Z(w)

s
(− s)􏼢 􏼣,

(27)

where f∗Xw
(s) and f∗Z(w)

s
(s) represent the Laplace transform

of Xw and Z(w)
s , respectively, with w � {r, i, d}. σP is the set of

poles of f∗Z(w)
s

(− s). Equation (27) is valid when the proba-

bility density functions of Xw and Z(w)
s are proper rational

functions [3]. For the different considered evaluation sce-
narios in this paper, the probability density functions of Xw

and Z(w)
s are proper rational functions.

4.2. Channel Holding Time. In order to model channel
holding time, it is necessary to express it as a function of the
unencumbered service, cell dwell, and unencumbered call

interruption time variables..e random variableX(j)
c , which

models channel holding time in the j-th handed off cell, is
defined as follows:

X(j)
c �

min X(j)
i ,Xs,Xr􏼐 􏼑; j � 0,

min X(j)
i ,Xs,X

(j)

d􏼐 􏼑; j> 0.

⎧⎪⎨

⎪⎩
(28)

.us, channel holding time should be defined for the
following type of calls: new calls [j� 0 in (28)] and handed off
calls [j> 0 in (28)]. Let us denote by X(n)

c and X(h)
c the

channel holding time for new calls and handed off calls,
respectively.

Assuming that the different involved time variables are
independent, the cumulative distribution function (CDF) of
the channel holding time for new and handed off calls is,
respectively, given by

FX(n)
c

(t) � 1 − 1 − FXi
(t)􏽨 􏽩 1 − FXs

(t)􏽨 􏽩 1 − FXr
(t)􏽨 􏽩;

FX(h)
c

(t) � 1 − 1 − FXi
(t)􏽨 􏽩 1 − FXs

(t)􏽨 􏽩 1 − FXd
(t)􏽨 􏽩.

(29)

Table 3 provides the CDF of channel holding time for
new and handed off calls for the cases when both DTand IT
are negative-exponential, hyperexponential, or hyper-Erlang
distributed. Notice that all the cases considered in this paper
are special cases of the third entry of Table 3 (that is, when
both DTand ITare modeled by a hyper-Erlang distribution).
In [17], we perform a comprehensive study on the functional
relationship between cell dwell time and channel holding
time statistics. Nonetheless, the impact of the wireless
channel unreliability is ignored in [17]. Finally, given the
mathematical expressions for the CDF of channel holding
time for new and handed off calls, it is straightforward to
obtain the mean value of these time variables.

5. Results and Discussion

In this section, the impact of mean value, coefficient of
variation, and skewness of cell dwell/residence time (DT)
and unencumbered interruption time (IT) on performance
of a cellular network (CN) is presented. Numerical results
presented in this section demonstrate the applicability, ro-
bustness, and accuracy of the mathematical paradigm de-
veloped in Section 4. In order to attain good understandings
on the sensitivity study carried out in this section, a hyper-
Erlang pdf with two phases and two stages and a 2nd order
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hyperexponential pdf are employed. Note that the label
“HErl-2” denotes the hyper-Erlang pdf with two phases and
two stages and the label “HExp-2” represents the 2nd order
hyperexponential pdf. .e following parameters are con-
sidered in this section: mean service time (1/μ) is equal to
180 s, total number of channels per cell (S) is equal to 8,
offered traffic per cell is equal to 4.4 Erlangs, and total
number of channels reserved for handoff prioritization
(N(n)) is equal to 1.

Figures 3–7 illustrate, respectively, forced termination,
new session blocking, handoff failure probabilities, handoff
rate, and carried traffic versus coefficient of variation and
skewness of IT. On the other hand, Figures 8–12 plot, re-
spectively, forced call termination, new session blocking
probabilities, carried traffic, mean channel holding time for
new calls, and mean channel holding time for handoff calls
versus coefficient of variation and skewness of DT. A par-
ticular case is presented in Figures 3–7 when IT is modeled
with either hyper-Erlang pdf with two phases and two stages
or 2nd order hyperexponentially pdf and DT is negative-
exponentially distributed. In contrast, Figures 8–12 present
numerical results for the particular case when DT is modeled
with either hyper-Erlang pdf with two phases and two stages
or 2nd order hyperexponential pdf and IT is negative-ex-
ponentially distributed. In Figures 3–7, two different values
of the mean IT time are considered and compared, say 1500 s
(which represents a low reliability scenario) and 5000 s
(which represents a high reliability scenario) (note that both
considered values of the mean IT are significantly greater
than the mean DT; this is due to the fact that telecom-
munication systems are designed to be reliable; to this end,
mean IT should be typically greater than both mean un-
encumbered service time and mean cell residence/dwell
time). Moreover, in Figures 8–12, two different values of the
mean DT are evaluated, say 100 s (which represents a high
mobility scenario) and 900 s (which represents a low mo-
bility scenario).

5.1. Influence of Unencumbered Interruption Time Statistics.
.e influence of the expected value, coefficient of variation,
and skewness of unencumbered interruption time on the
performance of a CN is studied in this section.

Table 3: Examples of corresponding distributions for x(n)
c and x(h)

c .

Cell dwell/unencumbered call interruption time probability density pdf of channel holding time for new and handed off calls
Both DT and IT are negative exponential distributed:
fXd

(t) � ηe− ηt

fXi
(t) � ce− ct

FX(n)
c

(t) � 1 − e− (μ+η+c)t

FX(h)
c

(t) � 1 − e− (μ+η+c)t

Both DT and IT are hyperexponentially distributed:
fXd

(t) � 􏽐
m
k�1αkηke− ηkt

fXi
(t) � 􏽐

n
l�1βlcle

− clt

FX(n)
c

(t) � 1 − (1/􏽐m
k�1αk/ηk)

·􏽐
m
k�1􏽐

n
l�1(αk/ηk)βle

− (μ+ηk+cl)t

FX(h)
c

(t) � 1 − 􏽐
m
k�1􏽐

n
l�1αkβle

− (μ+ηk+cl)t

Both DT and IT are hyper-Erlang distributed:
fXd

(t) � 􏽐
m
k�1αk(ηuk

k tuk − 1/(uk − 1)!)e− ηkt

fXi
(t) � 􏽐

n
l�1βl(c

vl

l tvl − 1/(vl − 1)!)e− clt

FX(n)
c

(t) � 1 − (1/􏽐m
k�1(αkuk/ηk))

·􏽐
m
k�1􏽐

n
l�1􏽐

uk − 1
i�0 􏽐

vl − 1
j�0 􏽐

i
q�0(αk/ηk)βl

((ηkt)q/q!)((clt)
j/j!)e− (μ+ηk+cl)t

FX(n)
c

(t) � 1 − 􏽐
m
k�1􏽐

n
l�1􏽐

uk − 1
i�0

􏽐
vl − 1
j�0 (αkβl(ηkt)q/i!(clt)

j/j!e− (μ+ηk+cl)t)

HExp-2 with
E[Xi] = 1500s
HErl-2 with
E[Xi] = 1500s

HExp-2 with
E[Xi] = 5000s
HErl-2 with
E[Xi] = 5000s

Pft

0
5

10
15

20
60

20
40

0

0

0.2

0.4

0.6

0.8

1

Skewness
Coefficient of variation

Figure 3: Forced session termination probability against skewness
and coefficient of variation of unencumbered interruption time,
with the probability density function type and expected value of
unencumbered interruption time as parameters.
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Figure 4: New session blocking probability against skewness and
coefficient of variation of unencumbered interruption time, with
the probability density function type and expected value of un-
encumbered interruption time as parameters.

Mobile Information Systems 11



Figure 3 illustrates that while the mean value of the IT
decreases, the forced session termination probability in-
creases. .is fact indicates an adverse effect of link unreli-
ability on the performance of CNs (remember that
physically, the mean value of IT represents a direct measure
of link reliability). In contrast, from Figures 4 and 5, it is
perceived that as link unreliability grows (i.e., when the
mean unencumbered call interruption time decreases), both
new session blocking and handoff failure probabilities de-
crease, indicating a positive impact of channel unreliability
(from the perspective of radio resource insufficiency) on the
performance of CNs. .is is due to the fact that as link
unreliability increases, more ongoing calls are forced to
terminate due to wireless channel impairments. .is fact
contributes to reducing the handoff rate as it is illustrated in
Figure 6. Consequently, more radio resources are available
for new and handed off sessions, reducing in this way both
new session blocking and handoff failure probabilities.

Figures 3–5 also show that the forced session termination
probability increases and both new call blocking and handoff
failure probabilities decrease as CoV of IT augments. Let us
explain this comportment. Firstly, observe that as the CoV
augments, the probability that IT takes smaller values aug-
ments. Consequently, more sessions are forced to terminate
due to link unreliability. Simultaneously, as more ongoing
sessions are forced to terminate due to link unreliability, the
handoff rate diminishes and, as a consequence, the handoff
failure probability decreases as well..e overall effect of these
facts is to increase the forced call termination probability and,
at the same time, both new call blocking and handoff failure
probabilities decrease. Furthermore, from Figures 3 and 4,
the following interesting result can be extracted: for the
scenarios where skewness takes values less than 20, it is
observed that forced session termination probability due to
resource insufficiency is significantly augmented and new
session blocking probability is decreased as the CoV is raised.
For instance, Figures 3 and 4 show that for scenarios of low
reliability where skewness is equal to 2 and the IT is hyper-
Erlang distributed, forced termination probability due to
resource insufficiency increases around 700% and blocking
probability decreases 67% as the CoV of ITmoves from 1 to
20. .e scenario where skewness is equal to 2 and CoV is
equal to 1 corresponds to the case when IT is negative-ex-
ponentially distributed. Figures 3 and 4 show that forced call
termination probability due to resource insufficiency is a
monotonically decreasing function of skewness, while the
opposite behavior is observed for the new call blocking
probability.

Alternatively, Figure 7 shows that the carried traffic is an
increasing function of both the skewness and mean value of
IT. Also, Figure 7 shows that for values of skewness smaller
than around 30, carried traffic decreases as CoV of IT
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Figure 5: Handoff failure probability against skewness and coef-
ficient of variation of unencumbered interruption time, with the
probability density function type and expected value of unen-
cumbered interruption time as parameters.
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Figure 6: Handoff rate against skewness and coefficient of variation
of unencumbered interruption time, with the probability density
function type and expected value of unencumbered interruption
time as parameters.
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density function type and expected value of unencumbered in-
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increases. .ese observations indicate a detrimental effect of
link unreliability on carried traffic. Moreover, it is noted that
for values of skewness greater than around 30 and for the
same mean value and type of distribution of IT, the carried
traffic is almost insensitive to the CoV of IT. .e reason is as
follows. Consider that themean value, CoV, and distribution
type of IT remain without change. .en, as the skewness of
IT increases, the tail on the right side of the IT distribution
function becomes longer (that is, the probability that IT
takes higher values increases and, consequently, less calls are
interrupted due to link unreliability)..at is, the influence of
skewness on forced termination probability becomes neg-
ligible. At the same time, because link unreliability is not
considered to accept a call, the blocking probability is not
sensitive to changes on neither skewness nor CoV of IT
statistics. As the carried traffic directly depends on both
blocking and forced call termination probabilities, the
combined effect of these two facts is observed in Figure 7.

An interesting study of the results illustrated in
Figures 3–7 is that for a given scenario with the same
skewness and CoV, a nonnegligible difference is observed
between the values taken by the different performance
metrics when IT is modeled by the hyper-Erlang pdf and the
corresponding values when IT is modeled by the hyper-
exponential pdf. .us, it is apparent that moments higher
than the first one used to characterize IT have a relevant
impact on the performance of CNs.

5.2. Influence of Cell Dwell Time Statistics. In this section, it
is investigated the influence of the expected value, coefficient
of variation, and skewness of cell dwell time on system
performance. Figure 8 illustrates that the forced session
termination probability is augmented as the mean value of
the DT is decreased, indicating a negative impact of user
mobility on the performance of CNs..is fact is explained as
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Figure 8: Forced session termination probability against skewness and coefficient of variation of cell residence time, with the probability
density function type and mean value of cell residence time as parameters.
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follows. When the mean value of DT is diminished, the
average number of handoffs per call is augmented; conse-
quently, the forced termination probability due to resource
insufficiency is increased. On the other hand, Figure 9 shows
that the blocking probability increases as the mean value of
DT increases. .is is because as the mean DT becomes
larger, users with ongoing calls remain for a longer period of
time inside the cell. Consequently, the rate at which radio
resources are released decreases, causing a detrimental effect
on blocking probability.

Figure 8 also shows that forced session termination
probability is practically insensitive to skewness and CoV of
DTfor the low mobility scenario. .e reason of this conduct
is explained by the fact that under scenarios with low
mobility, most of the ongoing sessions are successfully
completed in the cell where those sessions were originated;
consequently, the expected number of handoffs per call is
small in benefit of forced session termination probability.
Additionally, from Figure 8 it is noted that for scenarios with
high mobility and regardless of skewness, forced session
termination probability diminished as CoV of DTaugments.
.is behavior can be explained by the fact that as the CoV of
DT rises, the variability of the DT augments, that is, the
values of cell residence time spread out over a larger range.
.e overall effect is controlled by larger values of DT, that is,
a diminution of mobility takes place. Consequently, the
expected number of handoffs per call is reduced, which has a
beneficial impact on forced session termination probability.

Additionally, from Figure 8, it is interesting to note that
under scenarios with high mobility and values of skewness
less than 20, forced session termination probability is
considerably reduced as CoV of DT rises. For example,
Figure 8 shows that under the scenario with high mobility
and cell dwell time hyper-Erlang distributed, forced session
termination probability is reduced 60% as the CoV and
skewness of DTmove, respectively, from 1 to 20 and from 60
to 2. Observe that the scenario where CoV is equal to 1 and
skewness is equal to 2 resembles the case when DT is
negative-exponentially distributed.

On the other hand, Figures 8 and 9 reveal that for
scenarios with high mobility, both forced session termina-
tion and blocking probabilities are monotonically increasing
functions of skewness of DT. .e reason is as follows.
Consider that the mean value, CoV, and distribution type of
DT remain without change. .en, as the skewness of DT
rises, the tail on the right side of the DTpdf becomes longer
(that is, the probability that cell dwell time takes higher
values augments and, consequently, less active sessions
move to another cell). In this manner, the rate at which
channels are used by handed off calls diminishes in benefit of
both blocking and handoff failure probabilities. .is be-
havior contributes to augment carried traffic in concordance
with the results presented in Figure 10. Figure 10 reveals that
carried traffic is a decreasing function of skewness of DT.
Figure 10 also shows that carried traffic rises as CoV of DT
augments. .ese remarks indicate a beneficial effect of the
variability of DT on carried traffic.

Figures 11 and 12 reveal that the qualitative behavior of
the mean value of both channel holding time for new calls
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Figure 10: Carried traffic against skewness and coefficient of
variation of cell residence time, with the probability density
function type and expected value of cell residence time as
parameters.
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(CHTn) and channel holding time for handed off calls
(CH.) is very similar for the cases where cell dwell time is
modeled by either hyper-Erlang or hyperexponential dis-
tributions. .e small quantitative difference among them is
attributed to moments higher than the third one.

It is important to remark that the situation when cell
residence time is negative-exponential distributed is rep-
resented for a single point in all the plots presented in
Section 4. .at is, the situation when the coefficient of
variation equals 1 and skewness equals 2 corresponds to the
case when either IT or DT is modeled by the negative-ex-
ponential pdf. .us, as far as real distributions of tele-
communication time interval variables are best modeled by
general distributions, numerical results presented in Section
4 evidence the inefficiency of the negative-exponential
model and emphasize the relevance of considering the
impact of moments higher than the expected value.

Finally, the results illustrated in Figures 8–12 reveal that
for the same scenario and same mean value, skewness, and
CoV of DT, there exists a small but nonnegligible difference
between the values taken by the different performance
metrics whenDTis modeled by the hyper-Erlang pdf and the
corresponding values when DT is modeled by the hyper-
exponential one. Evidently, these differences are due to the
certainly dissimilar values betweenmoments higher than the
third one of hyper-Erlang and hyperexponential distribution
models..erefore, it is important to investigate the influence
of moments higher than the third one (of both DT and IT)
on the performance of mobile cellular networks. .is im-
portant task represents a topic of our current research.

6. Conclusions

Relevant insights into the performance sensitivity of mobile
cellular systems to the first three standardized moments of
both cell dwell time (DT) and unencumbered interruption
time (IT) were found in this paper. Despite the fact that the
numerical results presented in this work were obtained from
particular situations with certain set of system parameter
values, these results reveal that there exist important sen-
sitive questions concerning moments higher than the ex-
pected value of both DT and IT. It was found that cellular
system performance is more sensitive to the statistics of the
IT than to those of the DT. Numerical results demonstrate
that performance metrics are greatly influenced by smaller
values of the skewness of either the IT or DT. Also of im-
portance, it was found that, for the same mobility/unreli-
ability scenario and matching the first three standardized
moments, there exists significant differences among the
values taken by the different system performance metrics
when IT is modeled by the hyperexponential distribution
and the corresponding values when IT is modeled by the
hyper-Erlang distribution (a similar behavior was observed
when DTwas considered.) .e small quantitative difference
between the hyper-Erlang and hyperexponential cases is due
to moments higher than the third one. Analyzing the impact
of moments of both DTand ITdistributions higher than the
third one on system performance metrics represents a topic
of our current research.
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Valdez, “Channel holding time in mobile cellular networks
with heavy-tailed distributed cell dwell time,” in Proceedings
of the IEEE 2011 Wireless Communications and Networking
Conference (WCNC’2011), pp. 28–31, Cancun, Quintana-Roo,
Mexico, March 2011.

[11] J. Ferreira and F. J. Velez, “Enhanced UMTS service and
applications characterization,” Telektronikk, vol. 1, pp. 113–
131, 2005.

Mobile Information Systems 15



[12] M. A. Marsan, G. Ginella, R. Maglione, and M. Meo, “Per-
formance analysis of hierarchical cellular networks with
generally distributed call holding times and dwell times,” IEEE
Transactions on Wireless Communications, vol. 3, no. 1, 2004.

[13] Y.-B. Lin and V. W. Mak, “Eliminating the boundary effect of
a large-scale personal communication service network sim-
ulation,” ACM Transactions on Modeling and Computer
Simulation, vol. 4, no. 2, pp. 165–190, 1994.

[14] D. Gross and M. Juttijudata, “Sensitivity of output perfor-
mance measures to input distributions in queuing simulation
modeling,” in Proceedings of the Of the 1997 Winter Simu-
lation Conference (WSC 1997), Atlanta, GA, USA, December
1997.
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