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Abstract. In this paper, we propose a novel evolutionary Random Interval Fingerprint (RIF) for active RFID and ZigBee
systems. This new approach can enable more secure multi-party communication since, if the wireless packets are forged by
another wireless communication party, the interval fingerprint can provide another way to detect the spoofing packet. Moreover,
the random evolutionary algorithms, both genetic and memetic, are also proposed as a means to generate the random interval
fingerprint. Compared to the conventional random generator, our approach is flexible in generating uniform random and long
cycle numbers, and more robust for the anti-cracking. It is difficult for the forged party to produce the fake random intervals.
Finally, we provide an application example, a completed work survey, pseudo-code and analysis result to prove that our concept
is feasible for the Wireless communication.
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1. Introduction
1.1. The concept of random interval fingerprint in pervasive communication

With the local area wireless communication having become increasingly popular, Wi-Fi, ZigBee,
Bluetooth, RFID and relevant wireless networks technologies [1] have become more common in our
daily lives. Security issues [2] sometimes viewed as a standalone component, however, must be em-
phasized, since systems designed without security can become weakness. Security is one of the most
important issues in wireless communication given that data are transmitted through the air. Data can be
sniffed or modified by those people who have knowledge of the wireless techniques. Although multiple
encryption approaches can encrypt your data over the air, considering the complexity and heavy cost of
encryption operations, randomizing transmission interval can be an optimum solution. For example, if
the transmission interval is not the same as the default packet intervals, the receiver can detect the trans-
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Fig. 1. Application of random interval fingerprint.

mission error or forged data. Therefore, we propose a new research direction, namely Random Interval
Fingerprint (RIF), to assist the security of wireless communication.

1.2. The application example of RIF

We give an application of RIF which, as shown in Fig. 1, allows a more secure wireless commutation
that consists of a wireless local area network — Smart Personal Card (SPC) with active RFID, mobile
phone, Information Platform (IP) and Message Server (MS) to develop an anti-theft system with the
concept of fixed wireless network. This application can be widely used for personal belongings or au-
tomobiles, such as parking a car or leaving luggage in a public area. Users should firstly put their SPC
inside the luggage or car and then activate the anti-theft mode.

When the car or luggage is moved, SPC will notify the IP with a warning message to MS. After MS
receives it, it will send out the warning message to the users’ mobile phones. Besides, SPC will send
a regular beacon to the information platform to report its status. Signal interference can be prevented
by this intensive beacon signal and a more reliable communication can be achieved. The reason why
is that active RFID/ZigBee has lower power consumption than mobile phone communication, and is
connected to a reliable wire network connection, such as Ethernet for communication between IP and
MS. Compared to the existing GPRS anti-theft systems, this approach is more feasible.

In this application, SPC needs to send beacons back to the Information Platform. In addition to con-
ventional encryption, if the RIF is employed on this application, it can help the Information Platform to
indentify users in order to enhance their communication security.

1.3. Why we apply evolutionary approach for RIF

For the generation of RIF, we propose a new evolutionary approach. This provides a new way to gener-
ate the scope of the adjacent interval of random fingerprint. It starts with the external seed having some
primary random numbers, and then uses genetic/memetic algorithms to perform the digital crossover,
mutation, and finally comply with the specified scope with a series of random numbers.
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Our proposed evolutionary generator is a nonlinear random generator and, compared to conventional
linear random number generators such as LSFR, it is not easy to track and crack. So, this method can be
applied to prevent eavesdropping and forgery packets. Moreover, our proposed evolutionary generator
helps avoid packet collisions since it is flexible in providing the random sequence with uniform distri-
bution. In comparison to the later related work study, our proposed approach and its innovative features
should be a unique design.

The sections below are organized as follows: Section 2 involves related work whereas our proposed
design and evaluation are described in Sections 3 and 4 respectively. Finally, we state our conclusion in
Section 5.

2. Related work

For this section, we have made further investigation on some other topics, relevant to random intervals,
and methods of random sequence production, classification for random generator, and genetic/memetic
random works.

Firstly, we study the random interval of packet related investigations. So far, we haven’t found similar
research in this area. The random interval has appeared to research on mathematics [3]. In addition, we
found some application of the random interval, they are more common in the applications of applied
operations research [4,5], avoided packet collisions in the network [6], and studied the analysis of the
random interval in the attacked distribution network [7]. However, as we mentioned, the random interval
as the network fingerprint concept has not yet been found in this research area.

Also, in the second part of the survey and because our proposed method had to generate the sequence
of random intervals, we did further investigation on related applications and two classifications for the
random sequence generation. Traditionally, random sequence has many applications, such as on games,
the lottery and articles mentioned in biological genetic [8], security encryption [9], communication cod-
ing [10] and biological genetic study; they are DNA or RNA [11] series. In the survey, we should be the
first to apply the random sequence in the network interval generation as it has not been found in other
similar research.

In order to design our work, we also made some pre-study on some related work such as following
issues, binary or decimal, pseudo-random or real random. There are two common random sequences in
the classification: the numerical binary random sequence [12] and the decimal random sequence [13].
Because interval is a decimal value, our method should be a decimal-based random sequence.

Another classification for random sequence generation is related to the distinction between the pseudo-
random sequence and the real random sequence [14]. Since our random intervals are generated on a
server platform — a common personal computer- and in order to have a wide range of applications, we
will use pseudo-random sequence to design our approach.

A pseudorandom generator is also known as a deterministic random generator. The sequence is not
truly random but it is rather determined by a small set of initial values. Common classes of these algo-
rithms are linear random generators, such as linear congruential generators (LCG), multiply-with-carry
(MWC), Lagged Fibonacci generators and linear feedback shift registers (LFSR) and uniform distribu-
tion generators [15]. The weakness of the linear random generators is that their random numbers can be
tracked and predicted. For instance, LFSR- a popular pseudo-random generator which will be used for
later evaluation of our proposed approach- is characterized by a shift register with a linear function of its
previous state; the new inserted bit of shift register is given by the XOR of some bits of the shift register.
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Fig. 2. Concept of random interval fingerprint.

LFSR can be implemented on hardware and software. Since the register has a finite number of possible
states, it must eventually enter a repeating cycle.

Our proposed approach is a nonlinear random generator, which is related to evolutionary population-
based metaheuristic algorithms that use the genetic/memetic mechanisms inspired by biological evolu-
tion, reproduction, mutation, recombination, and selection. Our approach is based on such algorithms
as it is the evolutionary algorithms that create the genetic random number difficultly of tracking and
cracking. Genetic and memetic algorithms are common for optimization problems [16,17]. According
to our survey, the most related papers to mention about genetic and memetic algorithms with random
number generation are a few and they usually include research on improving randomization of num-
bers for genetic and memetic algorithms [18,19]. Thus, the specific genetic or memetic algorithms for
random number generation have not been found yet. We should be the first to use these algorithms to
generate random numbering in wireless applications.

In the algorithm applications compared [20,21] to our research, a memetic algorithm (MA) is an exten-
sion of the traditional genetic algorithm, which uses a local search technique to reduce the convergence
time of the genetic algorithm (GA). In this paper, in addition to the genetic algorithm, we apply local
search algorithm of memetic algorithm to reduce the time of random number generation.

3. Proposed design

3.1. How does random interval fingerprint work?

As we mentioned above, RIF technology is applied in the fixed wireless security. As shown in Fig. 2,
in the beginning, the user brings the SPC to IP to buy the anti-theft service. Then the setup operation and
the key exchange between SPC and IP are performed. The key exchange contains the encryption key
and a key of RIF. This RIF key is generated by the information platform. After SPC gets the key, it sends
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a sequence of beacons with intervals {¢1,%5 ... t,} in RIF behavior to notify IP, when the information
platform detecting the beacons is not in RIF mode. IP will inform the user through the MS when an
exception condition occurs.

To successfully produce the RIF, it should consist of Random Order Switching (ROS) and Genetic
Random Sequence (GRS) to achieve robust anti-cracking. Their detailed description follows.

3.2. Random order switching (ROS)

To make more changes in the random interval so as to make it more difficult to be guessed by a third
party, we plan to let SPC obtain a set of random sequences from the IP. SPC will perform the ROS to
select a new random sequence in the new round.

We can define this proposed solution formally as follows: F' representing a RIF matrix, which is a
collection of the random sequences t;, ,,.

The entire random interval fingerprint of SPC is defined as follows:

t171 tl,g tl,m
t t ot

F = 2,1 22 2m (1)
tn,l tn,2 tn,m

Where n is the length of random sequence, and m is the maximum number of supported smart per-
sonal cards in information platform. Besides, n also represents the value of the change cycle of random
sequences.

For the exchange of random sequence, we initially used a ROS method in which the random intervals
were exchanged in random order and in each round. The exchange system is also equivalent to the
number of rounds m value.
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Therefore, the time 7; is required for each round, where ¢ is the number of rounds, and in each round
T; is arandom sequence, where m is the maximum value, so ¢ represents the sending point in each round,
and t cannot be duplicated in each round.

T; = max [{ti1,ti1,. .-, tim}| &

For ROS, we apply a simple effective approach. The new random switching order j derives from the
sum of current random sequence and next random sequence. The sum can be carried on to send the ran-
dom sequence. As a result, even a less powerful processor can handle this process easily. Moreover, since
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Fig. 3. The flow of genetic/menetic random sequence.

current and next random sequences contain many high random values, simple additions are effective to
provide a good random value for the ROS as in the following equation.

i k=n . k=n .
j= (Zkzl tk,i+ Zk:l tk,i+1)%m+ 1, 4)

Where ¢ is the card number of SPC, after thet,, 1 interval, SPC starts the ROS. After the card number
is given, its next sequence is obtained by modulo operation with m.

3.3. Genetic/menetic random sequence (GRS)

Two versions of our random sequence generators are proposed: the memetic algorithm version is
a modified version of our genetic algorithm and improves the computation speed by a local search
algorithm.

The generation of random sequence {t; ...1,} requires the properties of a uniform distribution and
nonlinear uncertainty. As mentioned above, compared with LFSR, uniform distribution generators and
linear congruential generator, the genetic generator has more advantages. Therefore, we will apply the
genetic/memetic algorithms to design our RIF. In our proposal, the main flow is depicted in Fig. 3.

First, as in the operation flow shown in Fig. 3, the genetic and memetic algorithms are similar ex-
cept for the fact that the memetic ones perform local search algorithm to reduce the evolutionary time.
Evolutionary random algorithm (ERA) requires three main parameters to generate the random sequence.

It initializes the population from external seed SD, and incrementally generates random numbers from
zero to the maximum random value MAX within a given incremental range RG.

After the initialization, the algorithm takes a computing of genetic/memetic algorithm as shown in the
following steps:
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Fig. 4. The crossover and mutation operations.

Computing and selecting fitness for crossover. The fitness function can be defined as generating
different types of random distributions. For instance, our fitness function is designed to generate a
uniform distribution.

— Performing crossover operation to generate new random number by adding generated into random
sequence if they meet the fitness function. For details, please see the crossover operation in Fig. 4.

— Performing mutation operation if the crossover cannot generate the fitness random number. For
details, please see the mutation operation of Fig. 4.

— (For memetic algorithm only) Performing local search algorithm if the mutation operation cannot
obtain satisfactory random numbers. For details, please see the pesudo- code of memetic local
search.

— Checking the last generation, the algorithm performs specified iterations for crossover and muta-
tion operations to avoid infinite running. 30 iterations are given in the evaluation examples. More
iterations may have less non-fitness values, and they increase the computation time.

— The algorithm terminates the program when it has the last range; the maximum random range is

reached.

The crossover and mutation examples are given in Fig. 4. As shown in the left side diagram, the gene
parents P1 and P2 are compared (CMP operation) to distinguish between different bits in order to find
the start point and endpoint. Then, two substrings of P1 and P2 are obtained, reversed and exchanged
to generate the two final genes C'1 and C'2. The new random value is selected from the fitness of these
two values.

If the crossover operation cannot generate a satisfactory random value, it will perform the mutation
operation as depicted in the right side diagram of Fig. 4. In this operation, it first performs a comparison
(CMP) between the two genes S1 and S2 from left to right bit position. If two bits are different, the bit
inverse is performed. The above mutation operations are repeatedly performed until the bit comparisons
reach the rightmost bit. After two final mutation strings M1 and M2 are generated, the new random
value is selected from the fitness of these two values as well.

When both crossover and mutation operations fail to generate fitness values, we perform a local search
algorithm using a binary tree as shown in Fig. 5. Symbols are denoted as follows:
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Fig. 5. The pesudo algorithm of memetic local search.

First, it selects the root value R for binary search tree based on the best fitness function BF() with
unused population U. After R is selected, it computes the current changed bit CBP according to upper
bound UB and lower bound LB values. During the generation search tree G7{(), the left and right two
children values LC.V and RC.V are generated by the changed bit functions CBI() and CB2() respectively.
The next CBP is increased to select a neighbor bit of a previous CBP. Then, the GT() performs child
nodes generation recursively until the maximum tree level MTL parameter is reached.

In the search tree function S7Y(), it performs a left to right order searching. If the fitness ranking
function FR() of current node C' is higher than current fitness value CF, then it updates the value of
current node C.V. ST() perform in a recursive way as well; the next left child ST(C.L) and right ST(C.R)
are performed in a left to right order. It exits the search function when C is NULL.

4. Evaluation

In this evaluation section, we first compare our genetic and memetic algorithm and then compare our
algorithm with the conventional random generator.

4.1. The comparison between genetic and memetic random generator

Since we want to know the merit of memetic algorithm (MA) as in the last paragraph of Section 2, the
non-fitness, execution time, and different range three issues are studied for the genetic algorithm (GA)
and MA. In these experiments, we run the maximum range of GA and MA for 500, 1000, 10000 and
100000. This can show the differences between the maximum ranges.
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Fig. 6. The non-fitness comparison of range 5 for genetic/menetic random sequence.

Comparsion of Execution Time of Range 5

25000

20000

A . 15000
Execution Time

{ms)

10000 mGA
mMA

5000

500 1000 10000 100000

Maximum Value of Random Sequence

Fig. 7. The execution time comparison of range 5 for genetic/menetic random sequence.

Figures 6 and 7 depict the non-fitness comparison and execution time between MA and GA algorithms.
The results reveal that MA can reduce non-fitness values and execution time from GA. These results are
improved by the local search algorithm of MA.

A range 5 random interval is used in this comparison, which means the generation of random sequence
is increased by 5 from 0 to maximum values. Figure 6 is the non-fitness comparison of range 5 for both
genetic and memetic random sequences. This comparison demonstrates that MA is effective in reducing
non-fitness values.

The second comparison is the execution time for GA and MA of random algorithm. The result shows
MA reduce execution time from GA as in Fig. 7.

The next comparisons are non-fitness and execution time comparison between range 5 and 10. Fig-
ures 8 and 9 shown the non-fitness and execution time and be improved and reduced by relaxed the range
condition as in Fig. 3. Since the GA and MA algorithm are the non-linear evolutionary algorithms, if it



290 K.-K. Tseng et al. / The evolutionary random interval fingerprint for a more secure wireless communication

Comparsion of Non-Fitness of MA
1200

1000

800

Number of
Non-Fitness 600

Values B MA Range 5
400

B MA Range 10
200

0 T
500 1000 10000 100000

Maximum Value of Random Sequence

Fig. 8. The non-fitness comparison of range 5 and range 10 for menetic random sequence.

Comparsion of Execution Time of MA

8000
7000
6000
5000

4000
3000 m MA Range 5

Execution Time
{ms)

2000 B MA Range 10
1000

0 T
500 1000 10000 100000

Maximum Value of Random Sequence

Fig. 9. The execution time comparison of range 5 and range 10 for menetic random sequence.

is possible to limit their restrictions, then this will be helpful for their performance.

In the comparison between the two different ranges for the MA as Figs. 8 and 9, the result shows
range 10 as a less strict range which has better performance in reduced non-fitness values and reduced
execution time.

For instance, it generated 100 pseudo-random numbers from 0 to 999. One number in a span of 10
numbers is expected to fall on. The pseudo-random number should follow the distribution as follows:
the first should fall between 0 and 10, the second between 11 and 20, and the last between 990 and 999.
During the 100 pseudo-random, local search was applied for 32 pseudo-random. Similarly, for 1000
pseudo-random generated between 0 and 10000, local search was applied for 622 pseudo-random. For
10000 pseudo number between 0 and 100000, local search was applied for 7345 pseudo-random.

As the population of individual genes generating random numbers from the corresponding genes varies
widely, choosing the individual, if it is limited to the population, will result in local convergence, and
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after many generations it will not be able to evolve into the appropriate individual. If the best individuals
from the fitness area of outstanding representatives of the search are found in order to replace this
individual and if then the evolutionary process is run, the individual fitness in the local search process
will be improved. This local search mechanism of the population aims at improving the direction of
evolutionary efficiency.

The results prove that the proportion of suitable pseudo-random based on MA method has been greatly
improved. The MA-based local search method based on genetic algorithm efficiency is about 3 times the
genetic algorithm GA.

4.2. The comparison with the conventional random generators

During the generation of the random number of our GA/MA, the individual in the processes of
crossover and mutation operations is hard to be predicted. The reason for the crossover result is random.
After the crossover, if the number is not obtained within specified intervals, the mutation performed
based on this number is less than or greater than the upper limit. This can turn 0 to 1 or 1 to 0. The
purpose of this mutation is that it helps avoid the certainty of the genetic variation of the algorithm and
improve the efficiency of generating random numbers. Although the mutation results can be predicted,
the final numbers are more random than LFSR, linear congruential generator and uniform random gen-
erator as the following analysis.

4.2.1. LFSR

We intend to introduce the commonly used random number generator LFSR to compare with our
method. Comparing our methods to the conventional linear algorithm LFSR method of generating ran-
dom numbers, our generated random numbers exhibit better performance on the uncertainty, which is
harder to be derived by the generation method. Although the crossover and mutation operation of ge-
netic/memetic algorithms have the higher complexity, our methods of crossover and mutation have a
purpose to increase the uncertainty in the process, thus ensuring a new generation to meet the objectives
of the chromosome the direction of conversion.

LFSR is based on the X;—(AX;_1 + x) mod P, in this equation A and y are constant, and P = 25,
X, € [O, 1,..., 28 _ 1]. The quality of random number depends on A, i, P. We can derive 3, A, u,
and P according to the random numbers. For example, if {X; = 1Xy = 2X3 = 3X, = 0X5 = 1}, we
canobtain § = 2, and yu = 4a+ 1, A = 4b+ 1, where a and b are the integers. If we put these parameters
into the equation, we can predict the future random numbers. Thus we can conclude that the randomness
quality of LFSR random numbers is relatively poor.

The linear feedback shift register (LFRS) method is based on the states of the shift register and the
registers bitwise operation of XOR. Since it has a limited number of states, so after the state to state
change in a repeated loop. The generated random numbers of LFSR method can be determined by two
aspects: 1). Register state. 2). Feedback function. Shift register is to register the content from the current
location to the location adjacent to the last one will be out of register. The register is shifted from low
to high bits and then vice versa. The vacated bits will be out through the feedback function to calculate
the result of filling. Feedback function plays a key role because the final outcome can be computed from
this register status and feedback functions.

There is an example using the LFSR random number generation with the register of the initial state
being 001000. The role of feedback function in practice on the first 3 and 5 bits is to perform the XOR
operation on these two bits, as / XOR 0 = 1. Then it performs the rotation operations on the register.
So, the next state would be 100100. In the same approach, the next state is 010010. Beginning from the



292 K.-K. Tseng et al. / The evolutionary random interval fingerprint for a more secure wireless communication

001001 state, the shift of 26 — 1 = 63 time follows and then it goes back to the 001001 state. Since
the role of feedback function and the shift state transition are not changeable, and the state cannot be
000000. LFSR can determine its next state register with a 50% possibility of success. For example, the
next state of 001001 can only be 100100 or 000100. So the next state has a 50% chance to be 100100.
According to this analysis, LFSR produces the predictable random possibility of 50%. This quality of
the generated random number is not ideal.

LFSR is used in the example to generate pseudo-random numbers where the random number will
be repeated after a period of just a random number generated series. If the random number series is
001000,100100,010010, no matter what the LFSR method implementation details are, we can conclude
that after the random number 001000, the followed by random numbers will be 100100. In other words,
the two adjacent pseudo-random values have dependence.

4.2.2. Linear congruential generator

Linear congruential generator can be implemented as X, 11 = (aX,, + ¢)%b, where a, b, and c are
assumed to be constant. The disadvantage of this method is that the generator numbers can be derived
from the generated following two derivations.

For the first derivation, let b = max{X1, Xo, X3,...}, Xmax = max(X;, X;11) and Xy, =
min(X;, X;11). We designed two equations for X, 11 = (aX,, + ¢)%b as aX; 1 + ¢ = exb+ X; 12 and
aX;+ c= fxb+ X;11, where (e — f) are the nature numbers. With the first equation minus the second
equation, we can obtain a = ((e — f)xb+ X;11 — X;)/(Xmax — Xmin)-

In the second derivation, if a X;11+c¢ = exb+ X; 19, andlete = 1,2, ... until exb+ X; +2 > a*xX; 11,
we can get ¢ = exb — aX; 1.

From the deduction we apply for the above two derivations of the linear congruential generator. We can
assert that according to the series numbers generator by the two derivations above. To test 10 number
sequences {X;, X;11,...Xi19}, if all these numbers fit the equation, we consider the equation to be
correct. Otherwise, if the equation is not correct, we leave b = b + 1 and repeated processing two above
derivations until the correct answer is obtained.

4.2.3. Uniform random generator

A common method of generating uniform random number is number = low + (high — low) * random
() with the range of random numbers. This method of generating random numbers needs to rely on
another generated random number. If we overlook the random number, this function is not well to make
a well random number.

5. Conclusion

We proposed a new concept — evolutionary random interval fingerprint- to enhance security of wireless
communication. Besides the packet encryption, it is another way to provide a more secure communica-
tion. Moreover, the new nonlinear genetic/memetic algorithms are designed for the random interval
fingerprint which is more robust than conventional pseudo-random generators. In this paper, we also
provided an application example, completed related work survey, pseudo-code and analysis result to
prove that our concept is feasible for the wireless communication.
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