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Personalized behavior pattern recognition
and unusual event detection for mobile users

Junho Ahn∗ and Richard Han
Department of Computer Science, University of Colorado, Boulder, CO, USA

Abstract. Mobile phones have become widely used for obtaining help in emergencies, such as accidents, crimes, or health
emergencies. The smartphone is an essential device that can record emergency situations, which can be used for clues or
evidence, or as an alert system in such situations. In this paper, we focus on mobile-based identification of potentially unusual,
or abnormal events, occurring in a mobile user’s daily behavior patterns. For purposes of this research, we have classified events
as “unusual” for a mobile user when an event is an infrequently occurring one from the user’s normal behavior patterns – all
of which are collected and recorded on a user’s mobile phone. We build a general unusual event classification model to be
automated on the smartphone for use by any mobile phone users. To classify both normal and unusual events, we analyzed the
activity, location, and audio sensor data collected from 20 mobile phone users to identify these users’ personalized normal daily
behavior patterns and any unusual events occurring in their daily activity. We used binary fusion classification algorithms on
the subjects’ recorded experimental data and ultimately identified the most accurately performing fusion algorithm for unusual
event detection.
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1. Introduction

According to statistics [19] from a 1999 national survey reported on the Keep Schools Safe website,
more than one in three high school students had been in a physical fight within the previous year. In
the midst of such situations, students involved in physical fights may be seriously wounded and hurt,
without being able to get help.

People who find themselves in dangerous or emergency situations–such as victims of crimes, health
emergency situations or accidents, such as a car accident, will usually attempt to call 911 using their
smartphone to get help in these situations. The NENA (National Emergency Number Association) [26]
has estimated that there are 240 million emergency calls made to 911 in the U.S. every year and 70
percent of these calls reported by the FCC (Federal Communications Commission) [11] were placed
from smartphones. The smartphone is thus an essential device that can help people be rescued quickly
in emergency situations.

However, in an emergency situation, people are often too injured, or incapable, of calling 911 or a
relative to get help. For example, they might be involved in a fight, violent attack, health emergency, or
trapped in a vehicle or structure. In these cases, people will often yell, cry, or scream out loud to obtain
help [2]. If people in the vicinity hear these unusual human voice sounds, or cries for help, they can seek
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Fig. 1. Process for building an unusual event detection model using mobile sensor data.

help for the victims by calling 911 for them. However, if nobody can come to the victims’ rescue or
call 911 for them, they may be seriously wounded or continuously victimized or endangered and never
receive help.

The existing unusual sound detection algorithms [27,29] have been shown to detect human voice
sounds of screaming or yelling, but only within laboratory settings. These algorithms primarily focus on
simple loud sound detection in controlled environments, where there is no background noise. In real-life
environments, however, background noise sounds, such as traffic, music or movie/television sounds, are
sometimes very similar to unusual danger-alerting human voice sounds–such as the screaming or yelling
of a person involved in an actual emergency situation. First attempts to use these algorithms in such real-
life settings, often incorrectly detected an unusual danger-alerting human voice sound, when there was
none.

In this paper, we develop an unusual event classification model for real world mobile users, that is au-
tomated on the smartphone, and analyze various binary fusion classification algorithms to find the best
one for use with our system. To classify normal and abnormal events, we analyzed the activity, location,
and audio sensor data collected from 20 mobile phone users to identify these users’ personalized regular
daily behavior patterns and any unusual events occurring in their daily behavior patterns. We define “un-
usual/abnormal events” to be infrequently generated behaviors of mobile phone users, such as extreme
increased or decreased activity, infrequently visited locations, or unusual audio identified. For example,
the majority of the 20 subjects in our experiment confirmed that the places they visited less than 2%
of their one week’s time period were places visited that constituted “unusual events” in their normal
weekly schedule. Figure 1 shows the process used to identify unusual events, using mobile sensor data
(location, activity, and audio data). We built behavior classifiers to identify each mobile user’s daily ac-
tivity patterns (e.g., walking, stationary, running), audio patterns (e.g., low level sound, music, talking,
loud emotional voice), and location data that was collected from the mobile sensors of the 20 mobile
users. We analyzed the behavior data collected using the normal distribution algorithm to identify the
users’ normal daily patterns and any unusual events occurring in their daily activity. We built our unusual
event classification model using the most accurately performing classification algorithm identified from
among four popular binary fusion classification algorithms that we tested with our data. Our general
event classification model can be used to automatically determine mobile users’ unusual events, without
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requiring manual user feedback. For instance with our system, for a mobile user living alone, the audio
data automatically recorded would normally show as low level background noise, but if loud emotional
voice sounds, like screaming or loud crying, were suddenly recorded on the mobile phone, this would
automatically be identified as an unusual event.

In the Section 2, we begin by describing related works in this field. Section 3 then, describes how we
surveyed the 20 mobile phone users participating in our experiment, and then in Section 4 we provide
a description of the individual and fusion classifiers we used for detecting the users’ daily behavior
patterns. The fusion classification algorithms are explained in Section 5. Lastly in Section 6, we evaluate
the performance of four different binary fusion classification algorithms to find the best one to use in
building our model. The final Section 7 is the conclusion.

2. Related work

There are mobile-based applications, or systems [4,7,8,13,15,16,18,20,21,25,28,30] which are able to
predict users’ behaviors using mobile phone sensors. These applications use adaptive algorithms that
save the mobile’s battery power and are sometimes used to infer or predict mobile users’ future behavior
or behavior patterns. The mobile users’ behaviors (activity, movement, location, audio pattern, etc.) are
measured by the mobile’s sensors (accelerometer, GPS, Wi-Fi, audio, etc.). The accelerometer sensor on
the mobile phone can be used for identifying users’ activity and movement patterns. The GPS and Wi-Fi
sensors are used for locating users in outdoor or indoor areas. The audio sensor is used for classifying
sounds in a user’s immediate environment (e.g., talking, music, background noise, etc.) to help identify
a user’s location or behavior. Each sensor’s functionality in these applications is used to build optimal or
efficient algorithms that can predict mobile user’s behavior or save battery power on the mobile phone.
For our research presented here, we have further investigated how to design and implement a similar
mobile-based application in which multi-sensor data can be used to identify when unusual events occur
in a mobile user’s daily behavior patterns.

We classified audio data using existing audio classification algorithms that can measure combined
audio patterns (i.e., low level noise, talking voice, music, and loud emotional sounds). Some sound
detection applications [25,27–29] are capable of classifying sounds into general sound types, such as
a gunshot, a screaming voice sound, speaking voice sounds, etc. The popular algorithms used in these
applications to classify audio data are the MFCC(Mel-Frequency Cepstral Coefficients) [1,24] and GMM
(Gaussian Mixture Models) [14] algorithms. Our system also used the MFCC algorithm to extract sound
features and the GMM algorithm to find matches in the mobile users’ data to the trained features–for
identify the mobile users’ audio patterns. We describe in detail in this paper how we have used these
algorithms in our system.

In addition to individual classifiers used to identify user patterns for location, activity and audio data,
collected from users mobile phones, we also looked at other research that addresses pattern recognition
combining individual classifiers. We reviewed the research that has been done in this area, and found
a number of papers that make use of pattern recognition algorithms to predict human behavior. Some
research [5,6,22] develops association rules to analyze human behavior data to determine human activity
patterns. Individual human activity data collected is associated with other individual human activity data
to determine if there is a high correlation between the data measured. From these correlations a pattern
recognition algorithm to predict human activity behavior is built. Additionally, David Taniar et al. [5] has
found that negative and positive association rules among data can be used for essential decision making
to determine unusual versus usual (expected) human activities or events. In our research, we found that
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using association rules to predict unusual versus usual events was sometimes useful, but not always.
Therefore, we sought to find other algorithms that would be more suitable for handling our analysis of
combined audio, location and activity data for predicting unusual and usual events.

We investigated tree-based binary fusion classification algorithms that could be used to identify when
mobile users encounter an unusual situation or are involved in an unusual event (different from their
daily patterns). We compared four popular fusion classification algorithms: Bagging [23], Adaboost [31],
SVM(Support Vector Machine) [3], and CI (Confidence Interval) to find the best fusion algorithm for
use in our system. Bagging is a bootstrap aggregating algorithm that uses a machine learning ensemble
method to build an improved classification model, using average predictions or majority voting from
multiple models. The Adaboost algorithm is another algorithm that uses the ensemble method to build
a strong classification model with weak classifiers to improve the performance accuracy. SVM is a
supervised learning algorithm, which is used to build an optimal linear classification model. CI is an
algorithmic method, used to determine the optimal interval range in which the probability of a given
hypothesis can be said to be true or not. We built a classification model according to each of these
tree-based binary fusion algorithms and compared them to find the best fusion algorithm to use in our
system.

The existing unusual event detection applications [9,10] provides family members’ current location
or historical location to detect unusual location events. Family Locator Monitor [10] and Family Loca-
tor PRO [9] applications are able to share users’ locations among family members using the GPS on
the mobile phone. However, they require family members who use this application to monitor another
member, and to manually check that member’s location frequently. These mobile applications also only
use one dimension of the mobile’s sensor data.

3. Data collection from subjects

The goal of this data collection was to design a more efficient and practical unusual sound detection
algorithm that could be used in a real-life environment and to determine which other sensors could best
be used in conjunction with the audio sensor to build our adaptive algorithm. We collected mobile phone
sensor data from 20 subjects. The sensor data for each subject was collected automatically on the mobile
phone from its sensors, as each user carried the phone for one week during the data collection period.
We collected the data to see what the mobile’s sensor readings would look like, and to determine how
best to save mobile battery power, while increasing the accuracy of unusual sound detection.

For the data collection from the 20 different subjects, we used four mobile phones: two HTC Nexus
Ones and two HTC Inspires, with our application installed on them, that we lent to the participants to
carry with them for one week. We paid $10 for participation in this study and required the subjects
to carry the phone with them at all times in their pocket or purse, keeping it in the same place as their
mobile phone, during the data collection period. During the time when subjects were carrying the phone,
sensors installed on the mobile phone were also periodically recording external sounds and the users’
activity and locations. The data was collected and stored on the phone during the time they were actively
participating in the study, carrying the phone. This research is approved by Institutional Review Board
(IRB) [17].

We focused on detecting subjects’ locations and activities using the mobile phone during a normal
week in their daily life. We collected the user’s location, using GPS and WiFi on the phone, and also
recorded the user’s daily activities and behaviors, by using the phone’s sensors: accelerometer, orienta-
tion, proximity, audio, and light sensor as shown in Fig. 2. We tried to run the mobile sensors at all times
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Fig. 2. Phone survey: Displaying sensor data.

and save the data in the mobile database to detect users’ behavior in detail. However, the sensors were
power hungry and the storage space is limited on the mobile phone, so we adjusted their time length of
use. The program measured the average type of accelerometer-based activity (e.g., walking, jumping,
shaking phone, etc.) every three seconds and obtained and recorded subjects’ locations using GPS and
WiFi every 3 minutes. We also recorded all audio sounds in the user’s immediate area on the mobile
phone for 15 seconds, every 5 minutes, and stored the orientation, proximity, and light sensor data along
with these recorded sounds, to determine the user’s behavior related to the audio sounds. The battery
power of the mobile phone, when running this entire application, lasted for about 12 hours. This time
was enough to measure the user’s daily behavior patterns and activities, because the users were normally
back at home in the evenings and able to recharge the phone at the end of each day.

4. User behavior classifiers

We begin by developing individual classifiers to identify user behaviors in each of the three sensing
dimensions of audio, activity, and location. In the next section we investigate four different algorithms to
determine the best algorithm for classifying unusual behavior events, using these three sensing dimen-
sions.

4.1. Daily location-based unusual events

The location data is adaptively stored on the phone whenever the user moves from one location to
another, and this information is used to build a historical location-based map. The historical map is then
used to estimate whether or not the mobile user is in a new location, a place never visited before, in a
habitually visited place, or in an infrequently visited place.

AvgPercentage (rank) = Avg(TotalTime(location(userx))
(1)

/TotalTime(all locations(userx)), rank)
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We analyzed location data collected individually from each of the 20 subjects, using GPS or Wi-Fi
sensors, to determine the average proportion of total time each subject visited and stayed within each
different location within a one week period as shown in in Eq. (2). We individually measured a percent-
age of staying time in each of 10 locations for each of the 20 users, and ranked them in descending order
of length of staying time in each location. We calculated the average percentage of staying time for each
location in the same ranked position, 1 through 10, across all 20 subjects. We investigated the various
locations the survey subjects visited within a one-week period in order to log a record of locations users
visited. We defined “visited locations” to be any place in which the mobile users stayed within a 100
meter radius for more than 30 minutes. The most infrequently visited places, which were usually visited
for the shortest amount of time – either brand new locations or rarely visited locations – were likely to
be unusual events in the subjects’ lives. Figure 3 shows the average percentage of staying, or visiting,
time subjects spent in each of 10 different locations. We found that the subjects spent 92% of their one
week’s time period in four main repeatedly visited places. The 20 subjects spent two thirds (65%) of
their total week’s time in the first ranked location, 14% of their time in a second ranked location, and
8% and 5%, respectively in the third and fourth ranked top locations visited.

To determine the percentage cutoff for what constituted an unusual event in the subjects lives, we
hypothesized that 2% was a reasonable, general threshold for identifying an unusual event for a subject
(i.e., a place very infrequently visited or a brand new location visited in a one week period). Then we
queried each of the subjects about their assessment of these identified least frequently visited locations,
to determine the ground truth about the locations that were visited for less than 2% of the time. We
defined an infrequently visited location for purposes of our analysis, and for querying the subjects, as a
place that was visited less than once a week for a short period of time or a place the subjects had never
visited before. The majority of the 20 subjects confirmed that the places they visited less than 2% of the
time, as shown in the graph, were actual places visited that constituted “unusual events” in their normal
week schedule.

4.2. Audio classifiers

We sought to develop audio classifiers that could identify common, every-day sounds encountered
by users of mobile phones. We classified four types of sounds (low level noise, normal speaking voice,
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music, loud emotional voice (yelling, crying, screaming and loud angry voice sounds)) to detect and
analyze mobile users’ audio patterns generated or encountered in their daily lives. We used the audio
data collected from a mobile phone and paper survey of 20 subjects, described in the above section.

We classified the four types of sounds using existing audio classification algorithms. Sound detection
algorithms [25,27–29] are capable of classifying sounds into general sound types, such as a gunshot, a
screaming voice sound, speaking voice sounds, etc. These algorithms cannot detect specific meanings of
certain sounds in human speech, but they can detect and classify low level noise sounds such as explo-
sions, gunshots, screaming, and the human speaking voice. Recently, some of the algorithms have been
implemented on the mobile phone [25,28]. These algorithms have been shown to successfully identify
unusual human voice sounds, but have only primarily been tested and implemented in laboratory-type
settings. Our proposed model uses a combination of existing algorithms to develop a practical real-life
situation application. Our proposed audio-detection algorithm is designed to be more robust and to apply
to outdoor as well as indoor settings – including the ability to identify mixed low level noise sounds that
include such sounds as building construction noise, traffic noise, car horn sounds, etc.

We decided on four main classifications for our sound detection algorithm: low level noise, normal
talking speech, music–anything from rock to classical, and loud emotional voice sounds. We used two
algorithms, the MFCC(Mel-Frequency Cepstral Coefficients) [1,24] and GMM (Gaussian Mixture Mod-
els) [14]. The sound features extracted with the MFCC algorithm are compared with the existing models
of sound classifications based on the GMM algorithm, and if a match is found, one of the four classifi-
cation types is identified.

The MFCC and the GMM algorithms were implemented to run on each recorded audio file with
a 22050 sampling rate and stereo sound on the Android-based mobile phone. Every half second, the
GMM algorithm collected 12 data points of sound, using a 22050 sampling rate, and analyzed the 12
data points to classify the sound as one of the four types. Each data point consisted of 13 frequencies
extracted by the MFCC algorithm.

We used the GMM algorithm to build the audio training models, using the audio data collected from
our 20 survey subjects as well as music audio and Youtube audio data collected on the internet. To
create the low level noise and talking voice models, we used the recorded sounds collected from the 20
phone survey subjects and trained the models using the GMM algorithm with three probability states. We
used 50 low level noise sound samples, collected from each of the 20 mobile users phones, recorded in
different places such as home, school, sidewalks, markets, restaurants, etc. We also used 50 talking voice
sound samples, collected from the 20 survey subjects during periods when they were conversing with
friends, family, etc. For training the music model, we used 60 music sound samples that were created
by combining 10 samples from the recorded music sounds of the survey subjects and 50 music audio
samples downloaded from websites. It was necessary to supplement the subjects’ phone survey data with
web data, because the number of recorded background music sounds from the survey subjects was not
large enough to use for classifying a variety of music types for the music model. The total combined
phone and web music samples consisted of rock, rap, popular and classical music. For the loud emotional
voice model, we collected samples of audio data from 50 Youtube videos of people involved in actual
accidents, fighting scenarios, etc., who were screaming, crying, or shouting loudly. We used the GMM
algorithm to train these audio recordings to create the loud emotional voice model.

Figure 4 shows the frequencies extracted by the MFCC algorithm (Mel-Frequency Cepstral Coeffi-
cients) [1,24] from sounds collected during our experiment: low level noise, talking voice, music sound,
and loud (angry) emotional voice. The MFCC algorithm provides fine details on the frequency bands
that are used to define sound features extracted from the sounds. The figure illustrates that these four
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Fig. 4. Sound patterns detected by the MFCC algorithm (a) for low level noise, (b) talking voice, (c) music sound, (d) and angry
sound pattern frequencies.

sounds have their own unique frequencies. These unique frequencies can be used to detect the mobile
users’ self-generated or environmental sound patterns (their own or others’ speaking or angry voice,
music, low level noise, etc.).

Initially, we tried to identify and define loud emotional voice sounds as unusual events encountered
in the mobile phone user’s life. The emotional voice sounds, expressed by people involved in unusual
situations – such as yelling, crying, screaming and loud angry voice sounds [2] can be used as an unusual
event indicator. People frequently vocalize such sounds when they are involved in accidents or crime
situations, either as victims or perpetrators. We watched 50 Youtube videos related to actual dangerous
situations that included fighting, car accidents, angry threatening situations, etc. The people in these
videos were using vocal sounds and words that involved yelling or screaming at each other, loud crying,
or loud angry voices – shouting at each other. If the audio-detection algorithm on the mobile phone could
be designed to correctly classify these loud emotional voice sounds as distinct from other sounds (such
as speaking voice, low level noise), then we could identify uncommon, sometimes dangerous situations
encountered by mobile phone users.

However, although the GMM algorithm classified each recorded sound into four classifications, the
algorithm did not always correctly classify all of the sounds in our experiments. For example, the first
experiment of Table 1 shows results of the classification algorithm obtained from sounds recorded in a
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Table 1
Audio classifier’s mixed sound results

Visiting Loud voice Normal voice Music Low level noise
1st 4.34% 23.47% 6.95% 65.21%
2nd 2.38% 17.85% 14.28% 65.47%
3rd 3.12% 7.81% 20.31% 68.75%
4th 1.51% 7.57% 15.15% 75.75%
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Fig. 5. An example showing a similar percentage pattern of the four audio classifications for one subject’s repeated visits in one
location.

food court –“mixed sounds”– measured while the researcher walked around the food court area. This
recording of mixed sounds from the food court included loud emotional voice sounds 4.34 percent of
the time, voice sounds 23.47 percent, music 6.95 percent, and low level noise 65.21 percent of the time.
However, in actuality there were only talking voice sounds and low level noise being generated in this
environment. The 6.95 percent of music sounds and the 4.34% of loud voice sounds were incorrectly
identified by the algorithm, likely because of some of the high-pitched, loud kitchen equipment sounds
encountered in this food court. None of these high pitch sounds identified as loud emotional voice sounds
were actual human voice sounds.

To overcome the limitation of this audio classification algorithm, we used pattern recognition to im-
prove our classification model. We repeated the measurements of the noise in this same food court
multiple times and found that a similar percentage of mix of sounds occurred across all of the exper-
iments Table 1. We also analyzed the percentage pattern of the four audio classifications for each of
the 20 phone survey subjects when they repeatedly visited the same place. Figure 5 shows the results
of one subject’s recorded audio sounds when repeatedly visiting the same location. For each of the 10
times that the subject visited the same place, the mixed percentage of quiet, talking, music, and loud
emotional sounds was very similar. We also analyzed audio data collected from 20 survey subjects who
frequented one location repeatedly to see how much the percentage of audio sound classifications would
vary across all visits. Figure 6(a) shows, in two charts, the standard deviations for the four audio clas-
sifications measured for each of the 20 subjects’ audio data collected, calculated as shown in Fig. 6(b),
when they frequented two different locations. When the subjects frequented the first place (chart 1),
the standard deviations across each of the four audio types were quite small for all of the 20 subjects,
less than 10 standard deviation points for any one audio type, based on a maximum of 100 points for
the combined four audio classifications. Additionally, when the 20 subjects frequented the second place
(chart 2), a similar small standard deviation, less than 12 points, and a similar stable pattern mix of the
four audio types was found across each of their visits. Also in comparing the two charts, the standard
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deviation pattern mix of audio classifications within subjects varied for each subject according to the
locations visited. On average across all subjects, it appears that in location 2, there were more talking
audio classifications than in location 1. This could indicate that location 2 was their workplace for most
subjects and location 1 was their home.

By investigating the above mixed percentage patterns of audio classifications, we found that when
the mobile survey subjects repeatedly visited the same place, the percentage pattern mix of audio types
across all subjects were very similar. To determine how similar these patterns were, we used the Gaussian
(Normal) distribution to find the probability of how close each subject’s audio type was to the normal
audio classification probability. For this approach we assume that mixed percentage patterns of audio
classifications follow the normal distribution. In the section 6 we discuss how we analyzed these recorded
audio data and patterns of the subjects to determine which audio type within these personalized patterns
constituted an unusual event.

4.3. Activity classifier

People’s daily activity can also be used to predict the occurrence of an unusual event or situation.
Research related to human defensive behavior [2] provides information about how people act when they
are in a threatening situation. Human beings, when threatened, usually do one of the following: attack,
run, or freeze. These behaviors involve high impact activities or long stationary activity. Such dramatic,
abrupt, and high impact activity can be measured easily by the mobile phone’s sensors – the GPS, Wi-Fi,
and accelerometer sensors. We used these sensors on the mobile phone to survey a wide range of user
activities: from normal, every-day activities to uncommon, unusual events or activities.

We measured the user’s activities using the acceleromter. The acceleromter consists of sub-sensors
of three-axes: x-axis, y-axis, and z-axis. The impact strength is calculated by measuring the amplitude
between the positive peak point and the negative peak point on an accelerometer. We calculated the
average impact of the user’s activities from the data from the three axes, regardless of the orientation of
the phone, by using the following Eq. (3).

Strength(t) = Avg(Length(HighPeak
x
,LowPeakx,t)

,

Length(HighPeak
y
,LowPeaky,t)

, (2)

Length(HighPeak
z
,LowPeakz,t)

)
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In order to detect an individual’s activity, we first calculate the individual’s average normal walking
impact using the acceleromter (shown above) on the mobile phone. We measured the average of the
mobile phone user’s daily movement activities, using the GPS sensor when the user was walking in
outdoor areas. The above Eq. (3), running on the mobile phone, calculated various walking impact
activities over time and stored the average impact of the user’s daily walking impact activities.

Initially, we tried to identify and classify an event as an unusual event for the user whenever the
mobile phone detected a high impact activity with the phone’s accelerometer sensor. To then identify
what some types of high impact activities might look like when recorded by the accelerometer, we
artificially generated unusual types of activities with two people acting them out. Figure 7 shows the
varying amplitudes recorded by the phone’s accelerometer for the events of hitting, fighting, pushing
and falling, as compared to the accelerometer reading of a person’s normal walking. The amplitude
measurements for all of these activities are higher than that of normal walking activity.

However, this simple approach was not always suitable for detecting and classifying unusual events.
Figure 8 shows data collected from the 20 subjects of the mobile phone survey, in which the accelerome-
ter measured various normal human activities – i.e., jumping, lying down on a bed, running, sitting down
quickly, pressing a car brake pedal, pressing a bike’s hand brake, dancing, walking, shaking the phone,
dropping the phone, turning the phone over, and strongly pressing the phone’s screen. We compared
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Fig. 10. (a) Standard deviations of three impact activities measured for 20 subjects’ in two different locations: 1 and 2; (b) An
example for measuring standard deviations for each impact activity over 12 visits for one subject.

the accelerometer’s amplitude measurements for each of these activities to the amplitude of a person’s
normal walking activity. In reviewing the results from both these investigations, illustrated in the two
figures, we found that this simple approach for measuring and identifying a high impact activity as an
unusual event often yielded many false positives. Many normal activities generated impact amplitude
measurements higher than the average normal walking activity measurement.

To overcome the limitation of the impact activity classification algorithm, we also used pattern recog-
nition to help identify and classify unusual events. By further analyzing the collected activity data from
20 people, we found that the percentage breakdown of types of mobile users’ impact activities (station-
ary, walking, running) were often the same and often repeated in the same general areas.

We also analyzed the percentage pattern mix of the three most frequently observed normal impact
activities when each phone survey subject repeatedly visited the same location. Figure 9 shows an ex-
ample of when one subject frequented the same place 12 times. For each time the subject visited this
one location, the percentage mix of stationary, walking and running across these 12 times was similar. In
addition, we also analyzed this same normal activity data for all 20 survey subjects when they frequented
two different locations. Figure 10(a) shows, in two charts, the standard deviations for the three impact
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activities measured for each of the 20 subjects, calculated as shown in Fig. 10(b), when they frequented
two different locations. When the subjects frequented the first place (chart 1), the standard deviations
across each of the three impact activities were quite small for all of the 20 subjects, less than 5 standard
deviation points for any one impact activity type, based on a maximum of 100 points for the combined
three types. Additionally, when the 20 subjects frequented the second place (chart 2), a similar small
standard deviation of less than 10 points was observed. Also in comparing the two charts, the standard
deviation pattern mix of the three activity classifications within subjects varied for each subject accord-
ing to the locations visited. On average across all subjects, it appears that in location 2, there were more
movement activity classifications (i.e., running and walking) than in location 1. This might also indicate
that location 2 was their workplace for most subjects and location 1 was their home.

By investigating the above mixed percentage patterns of activity types, we found that when the mobile
survey subjects repeatedly visited the same place, the percentage pattern mix of activity types across
all subjects were very similar. To determine how similar these patterns were, we used the Gaussian
(Normal) distribution to find the probability of how close each subject’s activity type was to the normal
activity probability. For this approach we assume that mixed percentage patterns of activity types follow
the normal distribution. In the next section we discuss how we analyzed these recorded activities and
patterns of the subjects to determine which activity within these personalized patterns constituted an
unusual event.

5. Fusion algorithms

Thus far, we have described how we use the mobile sensors – the accelerometer, GPS, and the audio
sensor, to detect the mobile users’ daily patterns. We investigate binary classification algorithms to find
the best one that can be used to identify unusual events occurring within the seven different patterns of
audio and activity data collected from the subjects.

We evaluated four different fusion algorithms and compared their accuracy for unusual event detection
among the mobile users’ daily activity, audio, and location data we had collected on the mobile sensors
(accelerometer, audio, GPS, and Wi-Fi sensors). We limited our algorithmic evaluation to investigating
only that data which the location sensor data indicated included repeatedly visited locations of the mobile
users. The users’ audio data we analyzed with these algorithms was comprised of four audio patterns:
low level noise, talking voice, music, and loud emotional voice. The accelerometer data was comprised
of three different impact patterns: stationary, walking, and running. These seven patterns were evaluated
with the algorithms to determine whether a mobile user might be experiencing an unusual event – i.e.,
demonstrating unusual behavior or involved in an unusual situation. We investigated these classification
algorithms to find the best one to use in our system for determining unusual behavior events when
analyzing these seven patterns. We evaluated four popular fusion classification algorithms: Bagging [23],
Adaboost [31], SVM(Support Vector Machine) [3], and CI (Confidence Interval).

– Bagging: Bagging is a bootstrap aggregating algorithm that uses a machine learning ensemble
method that creates classifications for its ensemble by training each classifier individually (e.g.,
audio-talking voice, accelerometer-walking impact, etc.) with a random redistribution of the train-
ing set to improve machine learning of the statistical classification. It creates different models ob-
tained from bootstrap samples of training data. The bagging algorithm builds an improved classifi-
cation model by using average predictions and majority voting from multiple models.
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Table 2
Audio classifier’s test sample results and classifications

Sounds (%) Loud voice Normal voice Music Low level
Loud Voice 65.84 27.55 4.59 2.03
Normal Voice 1.88 90.42 3.93 3.77
Music 5.66 37.59 50.08 6.68
Low level 0.00 3.19 0.00 96.81

– Adaboost: Adaboost is a boosting algorithm that uses a machine learning ensemble method that
is used to improve the performance of individual weak classifiers (e.g., audio-talking voice,
accelerometer-walking impact, etc.). It is a widely used boosting algorithm that weights a set of
weak classifiers according to a function of the classification error. Each weak classifier will have a
different performance accuracy and the Adaboost algorithm weights each of these classifiers accord-
ingly to achieve a stronger classification. It constructs a stronger classifier as a linear combination
of the weaker classifiers h(x) as shown in Eq. (3).

f(x) =

T∑
t=1

αt ∗ ht(x) (3)

In the equation above, AdaBoost generates a new classifier for each of a series of rounds t = 1,
2, . . . , T. A distribution α of weights is updated in the data set for the new classification. On each
round, the algorithm applies weights according to each of the individual weak classifiers and creates
a stronger classification.

– SVM (Support Vector Machine): SVM (support vector machines) is another supervised learning
algorithm, that uses associated classification and regression. SVM is a binary classification algo-
rithm [3] which is a margin classifier. Given data in multidimensional feature space (i.e., the seven
different patterns of audio and accelerometer classifiers), it draws an optimal linear hyper-plane that
defines a boundary line as a proposed threshold to classify normal versus unusual event data. The
algorithm finds a maximum margin within which the hyper-plane is optimal.

– CI (Confidence Interval): The confidence interval method uses a normal distribution to determine
a given probability that data evaluated is either above or below a specific threshold. It is used to
indicate the reliability of an estimate, such as whether the data falls above the normal expected
result (e.g., above a 95% confidence interval, etc.). The CI is a range of values, above and below a
hypothesized finding. The method can be used as a binary classification algorithm whether or not
an input value is in the range.

We compared the performances of these four binary fusion classification algorithms to find the best
fusion algorithm to use in evaluating our training data and testing data. Figure 11 shows a classifica-
tion design using the four binary fusion algorithms. We used a period of four days of training audio
and activity data collected from the 20 phone survey subjects to build each algorithm’s unusual event
classification model. We analyzed the performance of each algorithm’s classification model using the
remaining three days of data collected from the survey subjects as the testing data. Comparing four
algorithms performance accuracy, we then found the best algorithm of the four to use as the optimal
classification model for our system. We describe the results in the Section .

6. Evaluation

We evaluate the audio classifier to show our audio training performance first before analyzing the
fusion algorithm.
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Fig. 11. Classification design using the four binary algorithms.

6.1. Results of the audio classifiers

We begin by considering the effectiveness of our audio classification subsystem. As described earlier,
we used training data to develop the GMM models for low level noise, talking voice, music, and loud
emotional voice. These four models of sound patterns were developed using the collected frequencies
from the MFCC algorithm, which were then classified by the GMM algorithm. We then used 40 test
sound samples that are separate from our training data for analyzing each of the four classification
groups. Each sound sample lasted from 30 sec to 1 min and was segmented into half-second snippets.

We measured the accuracy of our model that includes the four sound pattern classifications: low level
noise, talking voice, music, and loud emotional voice sound patterns. Table 2 shows the accuracy of our
model for classifying unusual voice sound, talking voice, music, and background sound patterns. The
accuracy of loud emotional voice sound pattern detection was 65.84 percent, with the error in detection
consisting of 27.55 percent talking voice, 4.59 percent music, and 2.03 percent background sound pat-
terns. The accuracy of normal voice sound pattern detection was 90.42 percent and the algorithm only
incorrectly detected other sound patterns 9.58 percent of the time. The accuracy of music sound pattern
detection was 50.08 percent and the algorithm incorrectly detected other sound patterns 49.92 percent of
the time. The misclassification of loud emotional voice sounds occurred from the music samples, which
produced 5.66 percent unusual voice sound patterns. This was because some of the singers’ voices in
the music having high-pitched, screaming voices – e.g., within loud rock music sound samples. The
accuracy of the background noise sound pattern detection was 96.81 percent.

Carrying position-based accuracy: The mobile phone’s carrying location can affect the accuracy of
our loud emotional voice classification algorithm because a sound will sometimes only partially reach
the mobile audio sensor. We measured the accuracy of our audio classification algorithm according to
the user’s mobile carrying location on the body. According to a survey [12] about the mobile phone’s
carrying location, the mobile phone is usually carried in a trouser pocket, upper-body pocket, shoulder
bag, a backpack, or a belt enhancement. We located the mobile phone in a user’s hand, pocket, purse, and
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Table 3
Audio classification results according to the mobile’s carrying location

Location Name Loud voice classification Percentage
A Hand 835 100%
B Purse 639 76%
C Trouser pocket 723 86%
D upper-body pocket 752 91%
E Backpack 730 87%

D 

B 

C 

A E 

Fig. 12. Accuracy variation of unusual voice classification depending on mobile placement on human body.

backpack as shown in Fig. 12. We generated 20 actual emotional human voice sounds (i.e., screaming,
yelling, loud angry voice) downloaded from YouTube and the mobile phone recorded these sounds. The
mobile phone application classified the recorded sounds and the accuracy of these classifications for
different mobile carrying positions were compared. The accuracy of the emotional sound classification
measurements varied according to the carrying location of the phone: 100% for hand-carrying, and
varying levels of accuracy for the other positions.

Table 3 shows the accuracy of loud emotional voice classification according to the mobile phone’s
location. We located the mobile phone in 5 places – (A: hand, B: purse, C: trouser pocket, D: upper-
body pocket, E: backpack). All of the loud emotional voice events were accurately detected for 835 of
the sound events when the user carried the mobile phone by hand. The hand-based events was compared
with other positions. The number of events detected varied according to the different phone carrying
locations. Other than hand-carrying, the highest classification accuracy was 91 percent when the phone
was carried in a upper-body pocket and the lowest accuracy was 76 percent, when carried in a purse.
The purse consisted of leather, so the experiment-generated sounds had difficulty penetrating though the
leather. Although the accuracy of the classification was reduced to 76 percent in the case of the leather
purse, the mobile phone still accurately classified three quarters of the sound snippets as the emotional
human voice sounds. According to a survey [12] about the mobile phone’s carrying location, the mobile
users usually carry the phone in the same location with 93%. The mobile carrying position affected the
accuracy of audio classification, but the classified patterns are not much changed because the mobile
phone is usually carried in the same position.

6.2. Results for the fusion algorithms

We investigated the seven behavior patterns of our mobile users (low level noise, talking voice, music,
loud emotional voice, stationary status, walking activity and running activity), measured by the audio
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Fig. 13. Precision, recall, and accuracy of four classification algorithms for detecting normal events.

and activity classifiers, with our four fusion algorithms to determine the best algorithm for identifying
whether a mobile user is involved in an unusual situation. We used a four-day period of training data
and a three-day period of testing data to analyze a 30-minute segment of the seven days’ pooled data
for the 20 mobile user subjects. The 20 subjects’ training data were used to train four classification
models designed to detect unusual events. We used four algorithms (Bagging, Adaboost, CI 95 percent,
SVM) for our unusual event classification model development. For Each algorithm in our model, we first
used the training data (comprised of ground truth data and the four days of the 20 subject’s collected
behavior patterns) to build our four classification models. We used these models as the baseline from
which to analyze the testing data to see which of the four algorithms predicted the best overall combined
performance for recall, precision and accuracy measurements of the audio and activity data. For the
Bagging and Adaboost algorithms, which required some input parameters for their iteration cycles, we
found that the fourth stage iteration of these algorithms yielded the best results, so we used this stage to
obtain the performance measurements with these two algorithms. The confidence interval of 95 percent
yielded the best results in our previous investigation, so we used this cutoff for the CI algorithm.

We analyzed recall, precision, and accuracy measurements of the four classification models: Bagging,
Adaboost, CI and SVM, to find the best performing one for identifying both normal and abnormal events.
Figure 13 shows the performance measurements of the four classification algorithms when using them
to detect normal events. We found the best algorithm for detecting normal events was the Bagging al-
gorithm, with combined performance measurements highest of any of the other three algorithms – with
0.97 recall, 0.98 precision, and 0.96 accuracy measurements. The least proficient performing algorithm
of the four was the Adaboost algorithm, with a 0.98 recall, a 0.93 precision, and a 0.92 accuracy mea-
surement. Figure 14 shows the performance measurements of the four classification algorithms when
using them to detect abnormal/unusual events. Once again, the Bagging algorithm was found to be the
best performing of the four algorithms for detecting unusual events with the highest accuracy of 0.87
recall, 0.84 precision, and 0.96 accuracy measurements. The least proficient performing algorithm of the
four was the Adaboost algorithm, with a 0.81 recall, a 0.56 precision, and a 0.92 accuracy measurement.

One of the reasons we believe the Bagging algorithm performed the best, compared to the other three
algorithms, was its iterative process of finding the best average cutoff for the variance in the pool of
the subjects’ performance measurements. The ground truth data, collected from the 20 subjects, about
which events they considered to be unusual events, contained a lot of variance, since the subjects often
defined unusual and usual events differently. The training data included this data and was also based
upon this data, thus our training data model’s performance measurements also contained this variance.
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Fig. 14. Precision, recall, and accuracy of four classification algorithms for detecting unusual events.
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The Bagging algorithm is the least sensitive algorithm to high variance or deviation in the data. The
Adaboost algorithm, however, is one of the worst algorithms when dealing with high variance in the
data, since it is very sensitive to high variance and uses an iterative weighting process that is based
upon the variance across the data points in the data set. In this experiment, Adaboost was found to be
the poorest performing one of the four algorithms. The CI algorithm, with a 95 percent CI, provided
the second highest results for our model, but it was less optimal than the Bagging algorithm. The SVM
algorithm classified unusual events with a line-based threshold. This approach was also less efficient
than the Bagging algorithm, and less efficient than the CI algorithm.

We also applied the four classification models to the testing data at the individual subject level for the
20 mobile user subjects, comparing each user’s accuracy measurement to the other. We evaluated each
of these models across all 20 subjects’ data to identify which classification model, and which algorithm,
was the most optimal one for predicting unusual events on average for individual subjects. Figure 15
shows the accuracy measurements obtained from each of the four classification models according for
each subject. Once more, we found the best performing algorithm to be the Bagging algorithm, which
accurately predicted the occurrence of unusual events for 38 percent of the users. The CI, SVM, and
Adaboost algorithms’ were less efficient in predicting the occurrence of unusual events for the users:
32, 17, and 11 percent, respectively. The average accuracy measurements across all 20 users for the
four algorithms – Bagging, Adaboost, CI, and SVM – were 0.97, 0.92, 0.95, and 0.93, respectively.
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Fig. 16. Precision, recall, and accuracy according to a period for detecting normal events (a) activity data (b) audio data.

Considering these findings across individuals and the results from the pooled testing data of the 20
users, we found the Bagging algorithm to be the best algorithm overall for classifying unusual events.
We thus chose the Bagging algorithm for our trained classification model for our system.

6.3. Determining fusion parameters

We investigated the audio and activity pattern data collected from the 20 subjects (limited to the pool
of repeatedly visited location data) to find an optimal measurement time period, an reasonable size for
the training data, and an optimal confidence interval for the analysis for our system. We split the one
week’s worth of data collected from the subjects into a period of four days for the training data and
three days for the testing data. Previously we had collected ground-truth data on what constituted a
true unusual event in the subjects’ seven day survey period, by querying them during that week as to
which events they considered unusual. We used this ground truth data to build our training model and
to measure the performance accuracy of each classification algorithm in accurately predicting unusual
events in the data.

6.3.1. Results for an optimal classification period
We sought to find an optimal time period in which we could identify and classify unusual events. We

analyzed four different time periods of 15, 30, 60, and 90 minute intervals, using the default CI of 95
percent as the classifier for investigating these time intervals. We measured the accuracy, precision and
recall in two cases: 1) for normal event detection, when the hypothesized normal event was defined as the
true event; and 2) for abnormal event detection, when the hypothesized abnormal event was defined as
the true event. Figure 16 shows the precision, recall, and accuracy for detecting normal events, measured
during the four different time periods. We found that the 30 minute period had the best accuracy with
the performance measurements of 0.98 for the activity data and 0.97 for the audio data when detecting
normal events. The precision and recall measurements were also very high, with 0.99 and 0.98 for the
activity data, and 0.98 and 0.99 for the audio data. All of the performance measurements – accuracy,
precision and recall – were quite high, with a very small standard deviation, for every single time period,
especially given that there were many normal events with true positive results. We then applied these
same performance measurements to the process of detecting abnormal/unusual events that might occur
within these time periods, to see which time period had the highest accuracy for detecting abnormal
events. Figure 17 shows precision, recall, and accuracy measurements for detecting abnormal events
observed across each of these time periods. The accuracy remained at the same high level as detected
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Fig. 17. Precision, recall, and accuracy according to a period for detecting unusual events (a) activity data (b) audio data.
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Fig. 18. Precision, recall, and accuracy of the confidence interval in detecting normal events (a) activity data (b) audio data.

when measuring performance for detecting abnormal events as it was when detecting normal events. The
combined performance pattern of accuracy, precision and recall, however, was highest for the 30 minute
period, for abnormal event detection. For the activity data of the abnormal events, precision and recall
measurements were 0.94 and 0.67, respectively, and for the audio data, 0.85 and 0.91, respectively. The
15 minute period method correctly detected abnormal events, but it more frequently falsely identified
usual events as abnormal events. The 60 and 90 minute period methods more often failed to identify
unusual events because the time period was long enough to normalize unusual events to normal events.

6.3.2. Results for an optimal CI
We sought to find an optimal confidence interval for identifying each audio and activity classifier. We

assembled a 30-minute period each of the activity and audio data collected from the 20 phone survey
subjects into two separate files of seven days worth of data to be analyzed. We divided the one week
period of data into a four- day period for the training data, which was used for determining the normal
distribution of the subjects’ audio and activity data, and a three-day period, which was used for the
testing data. We analyzed precision, recall, and accuracy of the testing data with a CI of 90 percent,
95 percent, and 99 percent. We measured the accuracy, precision and recall in two cases: 1) for normal
event detection, when the hypothesized normal event was defined as the true event; and 2) for abnormal
event detection, when the hypothesized abnormal event was defined as the true event. Figure 18 shows
the confidence intervals of the precision, recall, and accuracy measurements when detecting normal
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Fig. 19. Precision, recall, and accuracy of the confidence interval in detecting unusual events (a) activity data (b) audio data.
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Fig. 20. Precision, recall, and accuracy according to the number of training data for detecting normal events (a) activity data (b)
audio data.

events. All three accuracy, precision and recall confidence intervals were quite high, more than 0.97
measurement for each for the activity data, and more than 0.96 measurement for each for the audio
data. The CI of 95 percent yielded the best performance result, for detecting normal events with a 0.98
performance measurement for the activity data and a 0.97 measurement for the audio data. The 95
CI was best because the combined pattern of the accuracy, recall and precision measurements was the
highest overall at that level. We then analyzed this same segment of data with the same method to find
the optimal CI for detecting unusual events. Figure 19 shows the confidence intervals of the precision,
recall, and accuracy measurements when detecting abnormal events. This analysis also showed that the
CI of 95 percent was the best for abnormal event detection. Although we found at the 90 CI, that the
precision was highest because the unusual event detection range was wider and true positive results were
increased, the recall measurement was lower at this level because of increased false negatives. At the
99 percent CI the precision was decreased due to increased false positives. Therefore, the combined
performance measurement totals of accuracy, precision and recall, yielded the most optimal result at the
95 percent CI.

6.3.3. Feasibility of training data
We analyzed the audio and activity sensor data to find the most optimal number of days within which

to evaluate the training data and build our model for event detection. We used the three-day pool of test-
ing data, with the 30-minute segmentation from the 20 mobile phone subjects and analyzed the data with
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Fig. 21. Precision, recall, and accuracy according to the number of training data for detecting unusual events (a) activity data
(b) audio data.

the CI of 95 percent. Figure 20 shows the precision, recall, and accuracy for detecting normal events for
up to four days of training data evaluated. We found that the performance measurements for the activity
and audio training data were consistently high at day one, for each day up to day four, for normal event
detection. Even at the lowest measurement performance (day one), the precision, recall, and accuracy
measurements for the activity data were 0.99, 0.97, and 0.96, and for the audio data were 0.93, 0.96,
and 0.91, respectively. However, day four measurements for the normal training data yields the highest
performance level of any of the four days: the increased performance measurements taken at day four
for the activity data were 0.99, 0.98, and 0.98 and were 0.98, 0.99, and 0.97 for the audio data, respec-
tively. For unusual event detection, we analyzed the sensor data and obtained the following performance
measurements for days one through four, as in shown in Fig. 21. The precision and recall measurements
for day one’s training data were 0.76 and 0.50 for the activity data, and 0.52 and 0.69 for the audio
data, respectively. These performance and recall results were quite low in contrast to those obtained at
day one for normal event detection. However, by day four, the measurements for precision and recall
for unusual event detection had increased substantially to readings of 0.94 and 0.67, respectively for the
activity data, and 0.85 and 0.91 for the audio data. Noting these results, and that day four provided the
highest performance readings of precision and recall across all four days for both normal and abnormal
event detection, we felt confident in using a four-day pool of the subjects training data for our analysis,
and retaining the remaining three days of the subjects’ mobile survey data for our testing data.

7. Conclusions

We have demonstrated how we successfully developed an unusual event classification model to be
generalized to users of mobile phones for detection of unusual events in their daily life behavior pat-
terns. Our classification model was the result of testing various binary fusion classification algorithms
(Bagging, Adaboost, SVM, and CI) to find the most optimal performing one for our model. The Bagging
algorithm was shown to perform the best of all of these algorithms that fuse three-dimension modality
mobile sensor data, and to accurately detect unusual events in the mobile users’ personalized daily be-
havior patterns. We built the behavior classifiers, using daily data collected from the accelerometer,
GPS, Wi-Fi, and audio sensors, as well as mobile phone survey data that we collected separately from
the users. We foresee that our unusual event classification model could be generalized and expanded for
use on the smartphone to detect not only unusual events, but also potentially for automatic alert systems
or applications.
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