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Abstract. Mobile and wireless networks are the integrant infrastructure of mobile and pervasive computing that aims at
providing transparent and preferred information and services for people anytime anywhere. In such environments, end-to-end
network bandwidth is crucial to improve user’s transparent experience when providing on-demand services such as mobile
video playing. As a result, powerful computing power is required for networked nodes, especially for routers. General-purpose
processors cannot meet such requirements due to their limited processing ability, and poor programmability and scalability.
Intel’s network processor I1XP is specially designed for fast packet processing to achieve a broad bandwidth. IXP provides
a large number of registers to reduce the number of memory accesses. Registers in an IXP are physically partitioned as two
banks so that two source operands in an instruction have to come from the two banks respectively, which makes the IXP register
allocation tricky and different from conventional ones. In this paper, we investigate an approach for efficiently generating
balanced bipartite graph and register allocation algorithms for the dual-bank register allocation in IXPs. The paper presents
a graph uniform 2-way partition algorithm (FPT), which provides an optimal solution to the graph partition, and a heuristic
algorithm for generating balanced bipartite graph. Finally, we design a framework for IXP register allocation. Experimental
results demonstrate the framework and the algorithms are efficient in register allocation for IXP network processors.
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1. Introduction

Mobile and pervasive computing (MPC) is an exciting new paradigm that provides “disappeared”
services for people even while moving around, where mobile and wireless networks with powerful
computing and communication abilities are the integrant infrastructure to make this vision a reality.
More and more applications, for example, mobile video playing, require a high end-to-end network
bandwidth to ensure the specified QoS requirements in such environments [2,30].

Powerful computation ability is requisite to high bandwidth in order to meet on-demand basic network
services, e.g. packet classification and forwarding, as well as intrusion detection and firewalls. Routers
are the core components of high-speed networks [10,14,23]. In general, packets are received and sent
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though input and output buffer which reside in on-chip memory that is characterized by large capacity
and long access latency. A router should process packets at line rates of high speed, and at the same
time be sufficiently programmable and flexible to support current and potential services. Traditional
ASIC processors cannot meet such requirements because of their limited processing ability, and poor
programmability and scalability.

Network processors (NP) emerge to address such high-speed challenges that are beyond the ability of
general-purpose processors, while providing flexibility and programmability. It is a new breed of packet
forwarding engine that is designed to meet the simultaneous demands of high speed and great flexibility
of today’s network equipments [35]. The goals are to provide the performance of traditional ASICs and
the programmability of general-purpose processors [16].

Keeping up with external line rate without losing packets makes it imperative that all latencies be kept
to a minimum. For this purpose, network processors, for example, Intel IXP [4,25], in general contain
a large number of registers to decrease the number of memory accesses [26]. In such a circumstance,
efficient register allocation plays an extremely important role for the network applications to achieve
high throughput.

Reqgister allocation is the process of multiplexing a large number of target program variables onto a
small number of CPU registers. The goal is to keep as many operands as possible in registers to maximize
the execution speed of application programs. The register file of Intel” IXP is built using two-ported
register files: one read port and one write port. The area efficiency of two-ported registers relative to
multiport registers is important in allowing the large number of registers to fit in the allocated silicon
area. On the other hand, the use of two-port registers places some restrictions on which combinations of
registers source operands can use legally for an instruction [21]. These restrictions make the IXP register
allocator tricky and different from conventional ones. Two main differences are band conflict and bank
imbalance.

This paper focuses on how to effectively allocate registers for IXP network processors to reduce the
bank conflict and balance the bank loads as much as possible, based on the balanced bipartite graph. Our
motivation is to increase routing speed through allocating tasks on registers of the 1XP-based network
process efficiently to improve the performance of mobile and wireless networks.

The rest of the paper is organized as follows. In the next section, we review related work carefully.
Section 3 briefly describes the register file and register allocation problems on two banks based IXP. In
Section 4, we present a fixed-parameter tractable algorithm (FPT) for uniform graph bipartite problem
and a heuristic algorithm for balanced bipartite graph. The algorithms will be used in the register
allocation framework presented in Section 5. Experiments and evaluation are reported in Section 6.
Section 7 concludes our paper with the discussion on the future work.

2. Related work

Many significant results on register allocation have been reported. In this section, we carefully review
related work on register allocation algorithm and architecture, as well as related proposals for IXP
network processors.

Register allocation algorithms. Most schemes on the register allocation used the graph coloring
algorithm, which was proposed by Chaitin [9] in 1982. In the graph coloring algorithm, a graph vertex
represents a variable that will be assigned a register; a line between two vertexes means a conflict between
the two variables so that the two variables can not be assigned to the same register. Such a graph is called
the conflict graph. The graph coloring algorithm converts the register allocation into the graph coloring
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problem and becomes the base of register allocation. Briggs et al. [24] improved Chaitin’s work by an
optimistic graph coloring algorithm. The basic idea is to put the conflicted variable to a temp stack when
the conflict graph cannot be simplified. Optimistically, the conflict may be solved a little later. Chow
and Hennessy used a frequency-sensitive heuristic graph coloring algorithm, which assigns the priority
based on the usage frequency. This method is very effective to programs with loops. Lueh [11] proposed
a fusion-based register allocation approach, assigning registers in units of basic blocks, where potential
conflicts are limited in individual basic blocks. Appel et al. [3] divided the register allocation into two
sub-problems: optimization of the insert of overflowed codes and optimization of the register merging.
They solved the first sub-problem using integer linear programming (ILP) to achieve the optimal scheme
of register allocation.

Zhuang’ proposal [33] is the most relevant to our work. They proposed three heuristic approaches,
which differ in the order of register allocation (RA) and bank assignment. The first one is Pre-RA Bank
Allocation Approach, simplified Pre-RA. This approach assigns banks before registers. It breaks odd
cycles through live range splitting rather than deleting edges to make the graph bipartite. An algorithm is
invoked to near-balance the vertexes into two banks. The well-know RA algorithm [9] is used to allocate
registers for each bank in Pre-RA. However, it suffers from difficulty to judge physical register pressure
in the two banks before RA and often results in imbalance and large spilling cost. The second one is
Post-RA Bank allocation Approach, simplified Post-RA. This approach firstly allocates registers with
conventional RA algorithms. Post-RA is similar to the approach that IXXP products often employ. The rest
parts are almost the same as Pre-RA. Finally, the third approach is the mixed register allocation. Their
experimental results show that Post-RA has better runtime performance but inserts the more instructions
to resolve bank conflicts and balance bank load. Nevertheless, it splits vertexes regardless of how it will
affect the rest of the graph and incurs unnecessary move instructions between banks. Unfortunately,
these approaches only considered the register allocation for general processors, without involving the
features of registers in IXP. Moreover, Monreal et al. [32] presented a novel physical register management
scheme that allows for a late allocation (at the end of execution) of registers to reduce the time accessing
to register files, which significantly saves the number of registers and shortens the access time to register
files. The approach used the virtual-physical registers, together with an on-demand register allocation
policy and a stealing mechanism that prevents older instruction from being delayed by younger ones.
The main idea is to allocate physical registers at the end of the execution stage, rather than at decode
time.

Register allocation architectures. Jang et al. [31] studies banked register file under VLIW architecture,
where register banks are partitioned such that one bank is associated with each functional unit or by
associating a cluster of functional units with each bank. Abella and Gonzalez [13] proposed an adaptive
micro-architecture that achieves significant dynamic and static power savings in the register file, at the
expense of a very small performance loss. The proposed mechanism dynamically limits the number
of in-flight instructions in order to save dynamic and static power in register files or rename buffers,
and reduces register pressure, based on monitoring how much time instructions spend in both the issue
gueue and the reorder buffer and limit their occupancy, and taking resizing decisions based on these
observations. Wagner et al. [20] proposes a special register allocation technique, where the register
allocator maintains two sets of virtual registers: one for scalar values and one for register arrays. All
virtual registers are indexed by a unique number. Any element of a register array can be accessed in
two different ways: first by direct addressing or indirectly by the use of a bit-packet pointer. In case
of insufficient physical registers using indirect access, spill code is generated for all virtual registers
within a register array; otherwise, only the particular virtual register is spilled. Park et al. [19] studies
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dual bank allocation problem. Nevertheless, they don’t have the bank constraint like ours. Collins et
al. [26] proposes a dynamic register allocation algorithm on IXP, but it requires modification to the
hardware. Very Wide Register [29] is an asymmetric register file architecture, which has single ported
cells and asymmetric interfaces to the memory and to the datapath, for low power embedded processors.
The basic components in this organization are the interface to the memory, single ported cells and the
interface to the datapath. The interface of this foreground memory organization is asymmetric: wide
towards the memory and narrower towards the datapath. This foreground memory is similar to a register
file which is incorporated in the datapath pipeline cycles. The wide interface enables to exploit the
locality of access of applications through wide loads from the memory to the foreground memories
(registers). At the same time the datapath is able to access words of a smaller width for the actual
computations. ParShield [28] is a register architecture that provides cost-effective protection for register
files against soft errors, which selectively protects a subset of the registers by generating, storing, and
checking the ECCs of only the most vulnerable registers while they contain useful data. ParShield also
adds a parity bit for all the registers and re-uses the ECC circuitry for parity generation and checking
as well. In particular, ParShield has no performance impact and little area requirements. Kolson et
al. [6] proposed a register allocation architecture to loop in multiple register files, where the available
registers have been partitioned into multiple banks. A distinguishing characteristic of the approach is
that the register assignment may span multiple iterations of the original loop. Hiser et al. [18] proposed a
register assignment method for code generation for instruction-level parallelism (ILP) architectures with
partitioned register banks, through the register component graph that abstracts away machine specifics
within a single representation, especially for instruction-level parallelism architectures. The approach
can produce good code, which increases the parallelism of operations, by separating partitioning from
scheduling and register assignment.

Register allocation for IXP network processors. There also have been reports on register allocation
for Intel IXP network processors. Shangri-La compiler [22] used a C-like high-level programming
language developed by Intel, and provides the functions of optimal register allocation. George et al. [17]
researched the single thread-based register allocation for IXP. They took many features of IXP into
account, however, did not consider the important feature of IXP—multiple threads. Zhuang et al. [34]
studies register allocation across threads on IXP and doesn’t deal with the bank conflicts problem.
Zhou [8] proposed a framework for allocation of registers of IXP, improving the work in [33] to some
extent.

3. ThelXP register allocation problems

The General Purpose Registers (GPRs) in an IXP network processor are physically split into two
banks: Bank A and Bank B. The dual banks cause bank conflict and bank imbalance problems that have
to been considered in register allocation for IXPs.

3.1. Bank conflict

For each instruction with two GPR source operands, one must come from Bank A and another from
Bank B. The destination is not constrained. Certain allocation of GPR source operands may cause a
conflict. For example, consider the three instructions sequence in Fig. 1(a). The first instruction above
requires that A and B must be on different banks. The second instruction requires that A and C must also
be on different banks. The above two allocations constrain that B and C must be allocated to the same
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Fig. 2. Bank Imbalance in IXP.
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bank since they are both in a bank different from that of A. However, the third instruction conflicts with
this since it requires B and C to be allocated on different banks. Two variables are said to conflict with
each other if they are specified in the same instruction as source operands.

These allocation problems can be understood and solved by some simple graphical analysis. An
example of such agraph, called bank allocation graph (BAG) [12], is shown in the Fig. 1(b), corresponding
to instruction sequence in Fig. 1(a). The edges in BAG indicate that the variables conflict with each
other. These edges are called conflict edges. Whenever a cycle is formed with an odd number of edges,
dual bank allocation is impossible [12], like in Fig. 1(a). It means that we have to resolve some bank
conflicts. If the BAG is odd-cycle-free, we say it’s conflict-free.

A simple solution provided in the IXP assembler is to inserts an instruction to copy one of the registers
to a temporary register and replaces the register reference with a reference to the temporary register. The
assembler attempts to minimize the number of inserted instructions, but it is error-prone and ineffective.
A compiler solution is more efficient.

3.2. Bank imbalance

Another issue of register allocation in IXP is how to balance register workload in the two banks. The
graph in Fig. 2(b) is the conflict graph of code segment in Fig. 2(a). The bold lines represent a conflict
edge, while the normal solid lines represent that the two variables it connects merely interference with
each other but do not conflict with each other. The BAG consists of the bold lines and the vertices
incident with them. Obviously, BAG is a subgraph of the 1G.

Assume there be two registers in each bank and B, C and D interfere with each other. The instruction
sequence in Fig. 2(a) requires A in one bank and B, C and D in another. Nevertheless, the clique formed
by B, C and D is not 2-colorable. So they cannot be allocated in the same bank with only 2 registers.
This may make the assembler to issue a “no enough registers” error message although there may be a
register available in the opposite bank. To deal with this, a compiler solution is preferred as well.
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4. Fixed-parameter uniform 2-way graph partition
4.1. Bipartite graph and balanced bipartite graph

A Dbipartite graph is a basic conception in various register allocation algorithms. A bipartite graph is
described as follows.

Bipartite Graph:

Given an undirected graph G = (V, E). G is a bipartite graph if the set of vertexes E can be cut into
two disjoint subsets A and B, and two vertexes, connected by each edge, locate at the subsets A and B
respectively.

Bipartite graph prevents register allocation from bank conflicts because conflicted variables are as-
signed in different banks. To balance tasks in different banks, however, register allocation for IXP needs
to find the balanced bipartite graph, which minimizes the tasks’ difference between two subsets of a
graph. A balanced bipartite graph is described below.

Balanced bipartite graph:

Given a partite graph G = (V, E)) with two subset G1CG and G2CG such that G1UG2=G. Let |V1|
and |V2] be the numbers of vertexes in G1 and G2, respectively. We call G is a balanced bipartite graph
if and only if ||[V1]| — |V2|| < 1.

4.2. Fixed-parameter tractable graph bipartition

Many problems in compiler technique are NP-complete, e.g. register allocation via graph coloring.
Approximate solutions are given by heuristic algorithms. Known algorithms for these problems to
achieve an optimal solution require exponential time related to the size of input. Existence of efficient
and exact algorithms is considered unlikely. However, this view has been challenged by parameterized
complexity [27]. Some problems can be solved by algorithms that are exponential only in the size of a
fixed parameter while polynomial to the input size. Such algorithms are called fixed-parameter tractable
algorithms. These algorithms are of high practical interest for they are able to provide optimal solutions
within small runtime for small parameter values.

The classic problem, graph bipartition, is NP-complete. Guo et al. [15] in 2005 provided an algorithm
solving the graph bipartition problem by deleting vertices edge deletion version that runs in O (2% - m?)
time, where m, n and k& is the number of edges, vertices and number of edges to delete respectively. It
means that graph bipartite problem is FPT. Their result show that the algorithm finishes within minutes
for some graph instances with n = 300, m = 1500 and & = 40. The graph bipartition problem can be
formally described as below:

Graph Bipartition:

Given an undirected graph G = (V, E') and a nonnegative integer &, find a subset C' C E of edges (or
vertexes) with |C'| < k such that after removal of C, the resulting subgraph G’ C G is bipartite. C is
called cut set.

The Guo’s algorithm gives a C with |C| < k or proves that such a sub set C does not exist. The idea
is to use a routine to compress the know solution iteratively. Given a size-(k+ 1) solution, the routine
either computes a size-k solution or proves that there is no size-k solution.

We present a graph uniform 2-way partition algorithm by improving Guo’s algorithm so that it can
deal with a weighted graph and give a minimum weighted cut set, which is the total weights of edges
in it is minimal, with size not more than k. The resulting graph is called maximal bipartite graph. We
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call the algorithm as FPT because it is a fixed-parameter tractable graph bipartition, where the key idea
is how to maximize the uniform 2-way graph partition.

Maximal uniform 2-way graph partition:

Givenagraph G = (V, E) with weights on its edges and the number of vertexes, partition the vertexes
of G into two subsets of equal size (or the difference is within 1) that the sum of weights of edges
connecting different subset is maximal. We call the process for finding a balanced bipartite graph as
maximum uniform 2-way graph partition.

It is equivalent to make the graph bipartite into two equal size with minimal cost since the remaining
weights of edges will be maximal. The proof is trivial and we ignore it here. We just show how to get
uniform 2-way partite graph from a maximal bipartite graph.

As for a bipartite graph, it has the property that its vertexes can be divided into 2 disjoint subsets
such that all its edges have one endpoint in one set and another endpoint in the other set. Assume the
maximum bipartite graph we get in last subsection is divided into such 2 disjoint subset, say LEFT =
{Li,Lo,...,L;} and RIGHT = { Ry, Ry,...,R;} as shown in Fig. 3. The bold lines represent edges inE’,
which called connecting set, and the normal solid lines represent edges in C'. Note that C' is not part of
the maximum bipartite graph. Then we have the following definitions and claim:

Definitions:

A flipis a movement of a vertex from LEFT to RIGHT or vice versa.

W{L,, {L*}} is the sum of weights of edges between L, and all the nodes in set LEFT.

W{L,, {R*}}, W{R,, {L*}} and W{R,, {R* }} is defined similarly.

W{E} is the sum of weights of edges in set E.

Claim: vV L, €eLEFTand R, € RIGHT, we have

W{L,, {R*} }-W{L,, {L*} }>0and

W R,, {L*} }-W{R,, {R* }} >0.

Proof: Suppose for an L, in Left, W{L,, {R*} }-W{ L, {L*} }< 0, then if we flip L, to Right, the
edges {L., {R*}} become part of the new cut set C’ and { L, {L*} } become part of the connecting set,
E' = FE—C'" Wehave W{C'} = W{C} + W{ L, {R*} }-W{ L., {L*} } < W{C}. It contradicts with
the fact W{C} is the minimum cut set. W{ R,, {L*} }-W{ R;, {R*} } >0 can be proved similarly.

This means that any flip will not decrease the weight of the new cut set.

Assume | LEFT | <| RIGHT |. To balance the two sets, i.e. to make || RIGHT | — | LEFT || minimal,
we have to flip ¢ =(| RIGHT | — | LEFT [)/2 vertexes from RIGHT to LEFT.

We can only choose the ¢ vertexes {N; Na... ... , Ny} such that

{W{R;, {L*}}-W(R,, {R*}} < W{R,, {L*}}-W{R,, {R*}} | x € [L, g], y& [¢ + 1, |[RIGHT]] }
because every flip will no decrease the weight of new cut set. This approach assures the weight of new
cut set to be minimal. This operation takes O(q) < O(|V]) time.

4.3. Aheuristic algorithmfor balanced bipartite graph

The FPT algorithm presented in the last subsection can get optimal solutions, however, it will spend
much more time if values of input parameters become large because the uniform 2-way graph partition
is a NP-complete problem. So, we also design a heuristic algorithm for efficiently generating bipartite
graph by modifying the K-way balanced graph algorithm proposed by Lee [5]. The key idea is to how to
convert the balanced bipartite graph into the maximal cut set, which can be reduced to balanced bipartite
graph with ease. We formally define the maximal cut set as follows.

Maximal cut set:
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Fig. 3. A bipartite graph.

Given a undirected graph G = (V, E) and weights of all edges. We partition the set of vertexes into
two disjoint subsets A and B to maximize the sum of weights of edges such that two vertexes of each
edge are in different subset, i.e.,

Maximal cut set C' = {E;j|max Y, w;;}, where W;; is the weight of the edge between vertexes i

i€A,jeB
and j. !

The heuristic algorithm uses the conception gain. Let a graph G be partitioned into two subsets S
and Sy, and W(V;, V;) be the weight of the edge between vertexes V; and V;. The gain that vertex V;
moves from S; to S, is formally defined as:

g(v,S2) = > W(v,v)— Y W(v,v;),Vv € Sy 1)

v; €S ”UjGSQ

The heuristic algorithm is illustrated in Fig. 4. At the beginning, states of all vertexes in S, and S»
are empty. The algorithm runs in a number of passes. In each pass, we take the result of last pass as the
input, and move a vertex to Ss such that the movement will increase the cut set. The selected candidate
is the vertex with the maximal gain. A pass finishes if all vertexes are tried. Then, we take the result
with the maximal cut set as the input of the next pass. The algorithm repeats until no new gain can get.
Whenever a vertex V,. is moved, we need to recalculate the gains of all non-moved vertexes. The time
complexity of each pass is O(2|V|?).

9(vq, S2) = g(vg, S2) — 2W (vg, vy.), Vv, € St

2
g(vp, S1) = g(vp, S1) + 2W (v, v,.), YU € S

4.4. Graph separation

At this point, we get a maximal uniform 2-way graph partition algorithm that runs in O(2% - |V'|?) +
O(|V|) = O(2% - |[V|?) time, where & is the most number of edges need to be deleted to make the graph
bipartite. However, there remains one more issue. Generally, the input graphs are large and may not be
able to be made bipartite with a small value of k. Fortunately, network processing programs are relative
small. Moreover, the BAGs are typically sparse so there is good chance that we can apply the algorithm
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input: G={V,E}
output:Part[|V |],ie,vertex set of bipartite graph
variable: Part[|V|]: integer
Gain[|V |1[2]: real / /Gain[i][ /1= g(v.,V,}
State[|V |]: bool / / false = unused, true = used
History[| V [][2]:int eger
Temp[| V' |]:integer
Algorithm:
1.Part[i]=10
2.fori = 0to |VF|-1do
State[i]=0;
jorj = 0toldo
Gainlil[j] = g(v,.V,)
od
od
3.fori =0t |V]| -1do

3.1 select unused v, such that g(v,,V,)=max  (Gain[jl[p]D;//1€{0,1}v, €V,

Jop
3.2 State[d] = 1;
3.3 Part[d] = I;
3.4 Historyli][0] = d;
History[i][1] = m;
3.5 Temp[i] = Gain[d][I];
36forj =010 |V]| -1ldo
if State[j] =1
continue;
if Part[j] = m
Gain[ jllI] = Gain[j][I] - 2W (v,,v,);
else if Part[jl =1
Gain[ j1[m] = Gain[ j1[m] + 2W (v,,v,);
od
4. select t to maximize G = Z’/ _Templj}
5.4(G > 0)
forj =t + 1to |V|
Part[History| j1[0]] = History[J][1];
goto 2;

Fig. 4. Heuristic balanced bipartite graph algorithm.

73

on them after pruning the input graph according to the properties of bipartite graph. The basic idea is
that we delete an edge e if deleting the edge e separates the graph into 2 disconnected components. For
example, deleting the edge e in Fig. 5 will divide the graph into 2 disconnected components G1 and G2.
These edges are called edge separators. Such edges certainly may not induce an odd cycle. The optimal

solution of the original graph will be the union of those of G1 and G2.

The graph separation is very useful to get balanced bipartite graph because smaller graphs will have
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Fig. 5. Example of a graph separator.

a smaller size of cut set so that our FPT algorithm will possibly may used. At the same time, the
runtime spent on separated graphs will be significantly reduced. Supposed the graph is equally divided,
the runtime will decrease by 50% of the original time, i.e., from O(2* - |[E|*)to O(2 - 2% - (|E|/2)?) =
O(2F=1 . |E|?). Moreover, the subgraphs may contain less edges than the k& we predefine, which further
reduces the runtime.

To find such separators, we choose an edge, delete it from the graph and then use a depth-first-search
(DFS) algorithm to test if there is a path from its one end to another. If there is no such a path, the edge
is a separator. It takes O(|E?|) time to test all the edges. We color the graph with 2 colors during the
DFS process. If we find a bipartite connected subgraph, we delete it from G since it is conflict-free. This
can decrease the size of the graph. If the graph is still too big that there may be little chance we can
make it bipartite by a small number of & edges, we will perform more complex pruning proposed in [7].
At the worst, if a cut set of size smaller than & cannot be found, we use the heuristic [1] to provide an
approximate solution at polynomial time instead.

5. Balanced bipartite graph based register allocation for | XP

The algorithms presented in Section 4 can generate balanced bipartite graphs for the register allocation.
The FPT algorithm is able to work out an optimal solution but spends more time. Therefore, the FPT
can work well only for programs with small sizes. For large programs, instead, we may use the heuristic
algorithm. In this section, we investigate how to assign registers for IXPs.

Register allocation for IXPs needs to consider not only assigning registers but also assigning banks. In
summary, there are three kinds of methods: first registers next banks (FRNB), first banks next registers
(FBNR) and mixed registers and banks (MRB). FBNR is easy to implement and can resolve bank conflicts
effectively. However, FBNR can not judge the register pressure in advance so that it has a difficulty in
balancing the register pressure, which often causes a lot of spilling codes [33]. On the other hand, MRB
cannot effectively coordinate the synchronization between the register allocation and the bank allocation.
The worst situation is all adjacent vertexes of a vertex are conservatively assigned in a bank, which also
cause a lot of unnecessary spilling codes.

We use the first method, i.e., FRNB, because it can reduce spilling codes as much as possible. Possibly,
FRNB allocation will result in more bank conflicts than FBNR. But FRNB outperforms to FBNR because
code spilling needs to access memory and the cost for resoling bank conflicts is much less than that for
code spilling. The framework of register allocation is shown in Fig. 6. Each phase will be presented
in the following subsections, where we assume the total register number be N and each bank have N/2
registers.

5.1. Register allocation

We firstly allocate registers since it reduce the total number of code spilling, which is more expensive
than the bank conflict. Interference graph is built then virtual registers are mapped into physical register
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Fig. 6. Register allocation framework for IXP.
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Fig. 7. Insert a move instruction.
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Fig. 8. In-place bank exchange.

assuming a single monolithic register bank with traditional register allocation algorithm [9]. The resulting
interference graph is N-colorable and each vertex presents a physical live range (PLR). Here physical
live range is the maximal du-ud chain with respect to the physical register names. They can contain
different virtual live ranges that reside in the same physical register.

5.2. Cost model

Before present the cost model, we first introduce two methods for resolving bank conflict.

1)

2)

3)

If the register pressure of the program point at which the PLRs conflict is less than N/2, we use a
move instruction to resolve the conflict. For example, in the left instruction in Fig. 7, Al conflicts
with A2. A move instruction, B1 = Al, is inserted, and B1, which is a register on the opposite bank
of A, replaces Al in the original instruction. Such a B1 can certainly be found since the register
pressure is less than N/2, which means there is at less one register available in either bank.

When the number of registers is more than N/2-1, one of the bank may not have unused registers.
I both the banks have at least one available register, we can resolve conflicts by a move instruction
as in case (a). If not, it is possible that the opposite bank, against which the PLRs reside in, has
no available register. In this case, we use a tricky technique called in-place bank exchange to
avoid spills, instead of inserting a move instruction. For example, in the left instruction in Fig.8,
Al conflicts with A2. Two XOR instructions are inserted before the original one, exchanging the
values of Al and B1. Then B1 replaces Al in the original instruction. The last two instructions
restore the values of Al and B1.

As to BAG, these are equivalent to delete an edge between two vertexes, since they no longer
conflict. Theoretically, a new node should be added into the BAG. Nevertheless, it is not necessary
since the new node only conflict with one node and such a node will never induce an odd cycle.
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Fig. 9. Flip vertex between banks.

To estimate the cost of resolving PLRs conflicts, we define the following quantities:

1. conf; is the 5" conflict of two PLRs

2. confwt; is the cost of resolving conf;. Inthe case (a) mentioned above, it is taken to be the cost of the
move instruction, say 1. In the case (b), we don’t simply set the cost to be the 4 XOR instructions,
say 4, since PLRs conflict with less register pressure have better changes to be resolved as in case
(a). Instead, the cost is taken to be 2(2?/N=2) 'where p is the register pressure of the conflict point.
Its range is [1,4] when p iswithin [N/2, N].

The cost to resolve all the conflicts within two PLRs is
Z confwt; - 8depth(confi)
7

5.3. Conflict resolving and bank balance

In this step, we build the weighted BAG, whose edges have weights representing the cost to remove
it from the graph, i.e. the cost to resolve the conflict between two PLRs. To make a graph bipartite, we
can delete vertexes and edges or split nodes. However, we cannot delete nodes here since PLRs cannot
be deleted. We employ the uniform 2-way graph partition algorithm presented in Section 4 to make
the graph bipartite and balance with the minimal cost. If k£ passes the threshold, we invoke a heuristic
algorithm.

5.4. Bank assignment

At this time, bank conflict graph has been converted into balanced bipartite graph. A connected graph
will keep connected after it is reduced into a balanced bipartite graph. As a result, we can use just one
way to color the BAG with 2 colors. The vertexes get the same color will be assigned to the same bank.

5.5. Register assignment in a bank

Now the conflicts are resolved and the banks are assigned. The next step is to assign registers in-bank.
We perform it with traditional register allocator. Though the graph is balanced, there still may be a few
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1.BI=A41 1.BI=A41
A2=A1+A2 2.A2=BI® 42 2.A2=B]+A2
...... = =
A3=A1+A3 3.B2=A41 3.A3=B]+A3
4.A3=B2 ®A43

Fig. 10. Eliminate a move instruction.

1.A1=A1® Bl

2.BI=AI® Bl

3.A2=B]+A2 1.AlI=AI®BI

4.BI=A1® Bl 2.BI=A1® BI
A2=A1+A2 5.A1=A1DBI 3. A2 =Bl + A2

...... = =

A3=A1+A3 6.A1=A1® B2 4.A3=B1+A3

7.B2=A1® B2 5.BI=A1® Bl

8. A3=B2+A3 6.A1=AI®BI

9.B2=A1® B2

10.A1=A1® B2

Fig. 11. Eliminate 4 XOR instructions.

cases that the registers cannot be successfully allocated in-bank. For example, for the instructions in
Fig. 9(a), assume vertexes A, B and C get bank A while vertexes D, E and F get bank B in Fig. 9(b).
Each bank has two registers. The original graph is divided into two subgraphs induced by the vertexes in
the same bank respectively. For example, G1 is divided into G2 and G3 as shown in Fig. 9(c). We try to
color each subgraph with two colors but fail to do so in bank B. Then some PLRs have to be “spilled” to
the opposite bank, which will induce new conflicts. The vertex with least spill cost is to be spilled with
the highest priority. The vertex to be spilled is the one with least flip cost as calculated in Section 4.2
and the new conflicts are resolved as described in Subsection 5.2. Vertex B is spilled since it has the
least spill cost = 1. The final interference graph is shown in Fig. 9(d), assuming D be “spilled”.

5.6. Redundant instruction &limination

A insert instruction at every conflict point may results in redundancy. For example, assume there
are unused register in the opposite bank of bank A, and Al and B1 is not redefined between the two
instructions in the left of Fig. 10. In this case, two move instructions may be inserted as shown in the
middle of Fig. 11. We can remove the third instruction and rename B2 to B1 in the fourth instruction.

If the register pressure is high, there is more redundancy. Also assume Al and B1 are not redefined
between the original two instructions. Four instructions can be eliminated and the result is shown in the
right of Fig. 11. Simple dataflow algorithm can perform the eliminations easily.

6. Experimentsand evaluation

We developed a simulation system oriented to mobile and wireless applications using Intel 1XP
simulation workbench. Each mobile node with an IXP processor connects with others using wireless
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Table 1
System configuration parameters

Parameters Value
K 32
The number of total threads 4
The number of registers in a bank 32
The number of used threads 1

Table 2

Benchmark properties

Applications Number of instructions
IPSec_forward 6194
10GB_Ethernet 1781
L2_forward 2405
Firewall 566
MPLS 1025

C \ Intel \ | Restor \. | Resolve N\ | In-Bank \ \
Source IXP Virtual Bank Register A(Ijr']L-JZt?:gnt Asgg;n:ly
Code /| Compiler| |/ | Register | |/ | Conflicts| |/ | Allocation| |/ J /

Fig. 12. Compilation flowchart.

Nodes
Slnterference Edges
Bank Conflict Edges

Fig. 13. Number of conflict edges and bank conflict edges.

mesh communication. The node was configured according to Table 1. The benchmarks were compiled
using the C compiler for Intel IXP to generate assembly codes, restored in all the virtual registers, and
assigned registers with our algorithm, as shown in Fig. 12. Then conflict graph and BAG was constructed
from the assembly codes. The construction of BAG is easy since IXP only has 80 instructions. Table 2
shows the properties of the benchmark applications used in our experiments.

We used five real network applications, whose parameters are listed in Table 2 and features are shown
in Fig. 13. The average vertex degree is 9.6 in the interference graph and 1.2 in bank conflict graph,
respectively.

We tested our algorithms FPT and Heuristic algorithm using the above five benchmarks in terms of
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Z Deleted Dedges(FPT)

@ Inserted
Instructions(FTP)

Deleted
Dedges(Heuristic)

N Inserted
Instructions(Heuristic)

90 82
80 N
70 § Deleted Dedges(FPT)
60 § M Inserted
50 § Instructions(FTP)
20 § B Deleted
30 § Dedges(Heuristic)
% Inserted
?g § Instructions(Heuristic)
)/
&

Fig. 15. Results with redundancy elimination.

the following performance metrics.

The number of deleted edges and inserted instructions. In the experiments, we tested the number of
edges and instructions that need to be deleted and inserted respectively for IXP register allocation. In
Fig. 14, redundant instructions in tested programs were not deleted, while Fig. 15 shows the experimental
results after the redundant instructions were removed from the programs. The difference between Figs 14
and 15 is a little because live range in network applications is small, and there are only 2 or 3 conflicts.
By comparison, the algorithm FPT outperformed the Heuristic one in terms of whether the number
of deleted edges or inserted instructions. In FPT, the number of deleted edges always approximately
equals to the number of inserted instructions, which means that FPT can solve conflicts by inserting less
instructions. At the same time, Heuristic algorithm needs approximate number of deleted edges and
inserted instructions for small graph such as Firewall. For Heuristic algorithm, however, the inserted
instructions grow more quickly than the deleted edges with the increase of the size of programs.

Throughput. Typically, a network application consists of an unconditional loop, which continuously
handles and forwards incoming packets, as shown in Fig. 16. We used OC48 (2.5 Gb/s) engine to test
the throughput of benchmarks using different register allocation algorithms. The results are shown in
Fig. 17 and Fig. 18. We found that the two algorithms all provide around 3.5 Gb/s network bandwidth.
The processing speed may improve by 2.7% after deleting redundant codes, and the FPT is 2.5% better
than the Heuristic algorithm.
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for ()
{
Rx_Packet(); //receive data packets;

IPv4_Fwd(); //forward data packets;

Tx_Packet(); //send data packet;

}
Fig. 16. A typical network processing application.
3400 558 3356 i a%o 3362
3350 | 77 7 . 318
3300 [ 772283
| ] 3249 é Output(FPT)
3250 3219 B Output(Heuristic)
3200 [ =
3150 %%
3100 '
s S
%00/ %@ @ %%§ %&
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Fig. 17. Throughput without redundancy elimination.
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Fig. 18. Throughput with redundancy elimination.

Comparison with Post-RA. We tested the inserted instructions for our FPT algorithm, Heuristic algo-
rithm and Zhuang’s Post-RA [9], which firstly assigns registers and then banks. We tested them using
the ratio of inserted instructions to the number of conflict edges in order to avoid the affects of different
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Fig. 19. Comparison among FPT, heuristic and post-RA.

benchmarks. The results are shown in Fig. 19, where Y-axis represents the sum of inserted instructions
of all the benchmarks and X-axis represents the sum of total conflict edges. Our FPT algorithm needs
fewer insert instructions to resolve more conflicts since FPT takes the interaction of edges as a whole and
provide optimal solution instead of approximate solution. Besides, the bank pressure is almost balanced
since we take a uniform graph partition algorithm. Note that the data in Fig. 19 is the sum of inserted
instructions and conflict edges for all five benchmarks.

From the Fig. 19, we can draw a conclusion that the FPT is the best one in all three algorithms in terms
of the ratio of inserted instructions to conflict edges. Post-RA is better than Heuristic, but worse than
our FPT. Heuristic is the worst one in this experiment.

7. Conclusion

Mobile and wireless networks need to provide sufficient bandwidth to improve users’ transparent
experience and meet increasingly QoS demands of the users. Network processors, e.g., IXP, oriented to
mobile and wireless networks typically have many registers, where effective register allocation is very
important for the efficient computing ability and thus high network throughput. For this purpose, we
have presented a graph uniform 2-way partition algorithm (FPT), which can work out an optimal solution
to the graph partition, and a heuristic algorithm, which can get approximate results, for the generation of
balanced bipartite graph. Based on the algorithms, we designed a framework for two banks based IXP
register allocation. Experimental results demonstrate the framework and the algorithms are efficient in
register allocation for IXP network processors. Further, our FPT algorithm is practical and effective in
solving certain NP-complete problems in embedded systems. By employing such an algorithm to give
an optimal solution, we can consider the BAG as a whole and reduce the inserted instructions for conflict
resolving.
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