Mobile Information Systems 6 (2010) 229-247 229
DOI 10.3233/MIS-2010-0101
10S Press

Fault reconnaissance agent for sensor
networks

Elhadi M. Shakshuki*, Xinyu Xing® and Tarek R. Sheltari

aJodrey School of Computer Science, Acadia University Welfilova Scotia, B4P 2R6 Canada
bDepartment of Computer Science, University of Coloradoail@er, CO, USA

¢Computer Engineering Department, King Fahd Universityetféleum and Minerals, Dhahran, Saudi
Arabia

Abstract. One of the key prerequisite for a scalable, effective andiefft sensor network is the utilization of low-cost,
low-overhead and high-resilient fault-inference techeis} To this end, we propose an intelligent agent systemangtioblem
solving capability to address the issue of fault inferentesénsor network environments. The intelligent agent sysge
designed and implemented at base-station side. The cone afgent system — problem solver — implements a fault-detect
inference engine which harnesses Expectation MaximizgE®1) algorithm to estimate fault probabilities of sensodas. To
validate the correctness and effectiveness of the in&gltiggent system, a set of experiments in a wireless serstbedteare
conducted. The experimental results show that our intglliggent system is able to precisely estimate the faulighitity of
sensor nodes.
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1. Introduction

An embedded sensor network is a system of nodes, each of whécfuipped with a certain amount
of sensing, actuating, computation, communication anchgeocomponents. Two major components
of sensor nodes are sensing unit and wireless transceifiey directly interact with nodes in wireless
sensor networks (WSNSs) that are easily prone to failure ddsatdware failure, communication link
errors, energy depletion, malicious attacks, etc. Evédmeisensor node hardware is in excellent condition,
still the communication between sensor nodes is depengemt mnany factors such as signal strength,
obstacles and interferences. Degradation in these fasudts in low reliability of sensor nodes. One
of the key prerequisite for a scalable, effective and efficeensor network is the utilization of low-
cost, low-overhead and high-resilient fault-inferenaghtéques. To this end, we propose an intelligent
agent system with a problem solving capability to addressgbue of fault inference in sensor network
environments. The core of the intelligent agent system éspgfoblem solver, which implements a
fault-detection inference engine that harnesses Expectitaximization (EM) algorithm to estimate
fault probabilities of sensor nodes.

Due to the characteristics (e.g. energy awareness, coristeandwidth and so on) of wireless sensor
networks, itis infeasible for each sensor to announce itkiwg state to a centralized node (base station).
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Therefore, we propose an intelligent agent system whidizegi EM algorithm to infer the sensor-node
fault probabilities from a limited dataset. The benefits of mtelligent agent system are summarized
as follows. (1) The intelligent agent system does not ing@xtra message transmission, since it can
infer sensor-node fault probabilities directly from aggated dataset that sensor nodes collect. (2) The
intelligent agent system can provide highly accurate exton.

In WSNSs, it is natural that sensor nodes experience somts fathigh frequencies due to the following
two factors [2]. Firstly, WSNSs put significant constraints the resource expenditure. Nodes operate
under strict energy constraints, which limits the amourdredrgy devoted to testing and fault tolerance.
Secondly, some applications are equally complex with thelted technology and architecture. Sensor
networks often operate without human intervention [31].rtlk@rmore, security and privacy concerns
prevent extensive testing procedures. It should be notaidntbt only testing and fault tolerance are
adversely impacted, but related tasks such as debuggingewbproduction of specific conditions
under which fault has occurred are extremely difficult. $amhy, sensor nodes are often deployed in
uncontrolled and sometimes even hostile environment fimesiilance and detection [35,36]. Therefore,
knowing sensor-node working states is indispensable.

Due to the energy awareness characteristics in WSNs, thadrade-off between prolonging the
network lifetime via conserving the energy of individualdes, and maintaining the high quality of
network services by implementing complex fault managerseimémes in a sensor network. To the best
of our knowledge, contemporary fault management mechaniswe to involve extra traffic overhead
and energy expenditure. Therefore, most researchersarbgbklieved that the expenditure for fault
management is fairly expensive. Based on our previous sindythe following two motivations; we
however, introduce an intelligent agent named ATLA® [(ATelligent agent for faut.reconnAsSance
in sensor networks).

1.1. Motivation-1: Energy awareness based on data aggiegat

Over the past few years, several researches have attenoppedpose various mechanisms to pro-
long the network lifetime [32]. An agent-based paradigm igemd [3—-9]. This paradigm adopts
energy-efficient data aggregation to eliminate the redonhtfansmission and thus to minimize energy
consumption. Under the agent-based paradigm, commuurichitiks and partial nodes in a sensor
network are usually perceived as a reverse multicast treenef@lly, a sink node dispatches mobile
agents with processing code to destination nodes throwgitetlerse multicast tree. After collecting the
sensing data from the destination nodes, mobile agent tegta the sink carrying aggregated data. To
the best of our knowledge, contemporary researches on #r-agsed paradigm fail to take the fault
management into consideration.

1.2. Motivation-2: Infeasible individual fault reconnaence

Fault management in sensor networks can be classified irge ghases: fault reconnaissance, fault
diagnosis and recovery. Fault reconnaissance is the modafoental phase for the simple reason that
only if faults are identified, previously established matkms and algorithms [16—19,37] can be further
applied for fault diagnosis and its recovery. Obviouslg thustworthiness and effectiveness of fault
reconnaissance, to a large extent, rely on utilization ehrmainication and hardware resources (i.e.
bandwidth and energy). Consider the following scenariahid sensor nodes attempts to report (either
directly or indirectly) its own fault probability to a commd center (sink) in a scalable sensor network.
This incurs tremendous energy consumption and wastestntiatndwidth resources. According to
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our literature survey on fault management, even though s@searchers presented some efficient
optimization methodologies for fault reconnaissance (astianed in Section 2), these methodologies
still result in extra traffic overhead and energy consunmptio

To achieve effective, efficient fault reconnaissance widrt” extra traffic overhead as well as energy
expenditure, we introduce ATLAS — an intelligent agent faulf reconnaissance in sensor networks.
The core of ATLAS, inference engine, is abstracted as a matieal model based on Expectation
Maximization (EM) algorithm [20]. The mathematical modébair proposed agent’s problem solver is
based on two assumptions. (1) Data gathering mechanisaeutiverse multicast tree. (2) The reverse
multicast tree is known and is relatively stationary. Onthefmain contributions of this work is to utilize
an agent-based centralized approach [33] to infer andifgidatiures among sensor nodes. At sink,
an agent is loaded with fault inference engine that profitmfan expectation-maximization algorithm
to identify faults at the cost of reduced energy expendituréd bandwidth saturation. Experimental
evaluation of our ATLAS prototype in a wireless sensor tedfleveloped at University of Colorado,
Boulder, shows that ATLAS is effective at inferring faults.

The rest of the paper is organized as follows. Section 2 pteselated work. Section 3 provides the
basic mathematical model. Section 4 introduces an in&gltiggent — ATLAS. Section 5 describes and
discusses experimental results. Finally, Section 6 pesvimbnclusions and future research.

2. Related work

Fault reconnaissance is the first phase of fault managemvbete an unexpected failure should be
properly identified within a network. The fault reconnaissa approaches in WSNs are generally
classified into two types: centralized and distributed apph.

The centralized approach is the most common approach ttifidére cause of failures or suspicious
nodes in WSNs. Usually, a centralized sensor node equipjiecibundant power supply (base station
manager [22,23], central controller [24] or sink [25]) tmaonitors [failed or misbehaved nodes in a
network. Centralized node banked with abundant power supgble to execute a wide range of fault
management maintenance.

In distributed approach, a node is allowed to make certaial lef decisions before communicating
with a central node. This is due to the fact that the more d@tisa sensor node can make, the less
information needs to be delivered to the central node. Huaces the unnecessary bandwidth utilization
and energy expenditure. This means that the central nodadshot be informed unless there is really
a fault occurred in the network. Examples of such approaeh mode fault self-reconnaissance on its
hardware (including physical malfunction, i.e. sensottdrg, RF transceiver) [26], failure detection via
neighbour co-ordination [19], and utilization of Watchdogietect misbehaving neighbour [27].

Several attempts have been made by many researchers tofeativef centralized approaches that
can achieve the fault management in WSNs with the minimaloggpion of limited bandwidth and
energy. Specifically, Sympathy [25] used a message-floaalipgoach to pool event data and current
states (metrics) from sensor nodes. In order to minimizentimber of communication messages that
nodes must send as well as to conserve node energy. A Symmuatbygan selectively transmit important
events to the Sympathy sink node. As a complementary of Sthyp&taddon et al. [23], to minimize
extra traffic overhead further, seek the solution of appsmdietwork topology information (i.e. node
neighbour list) into node’s routing update messages rdttear in a separate approach. Based on this
approach, the base station can construct the entire netapokogy by integrating each portion of the
network topology information embedded in route update mgssand identify the communication faults
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within sensor nodes. In addition, some common routing Ea(e.g., SPINs [22]) can also detect
failed or misbehaving nodes through routing discovery godiate. However, all of these approaches
typically require the nodes to send additional messageshvigrelatively expensive.

Recently, agent-based approaches have been proposedidnéfdata dissemination in WSNSs.
Furthermore, most of researchers attempted to harnesseeemulticast tree paradigm to achieve
their agent-based approaches [3,5,7]. However, none of tiake into account the efficient fault
reconnaissance due to the resource constraints in WSNedBasthe reverse multicast tree paradigm,
some other researchers proposed a couple of efficient imferschemes [12,13], which to some extent,
provided the foundation of fault reconnaissance. For exantipe work proposed by Caceres et al. [13],
a maximum-likelihood estimator for fault inference is deyed. This mechanismis based on link losses
observed by multicast receivers and exploits the inher@metation between such observations to infer
the performance of paths. Many researchers attempted siderfault-reconnaissance inference using
unicast measurements [10,11]. The end-to-end measurestiagine proposed by Coates et al. [10] is
a case in point. It provides a statistical model and comjmrtdtamework for network loss inference.
However, both types of inference mechanisms (unicast artibast inference schemes) are based on the
traditional IP-based networks. In order to overcome thédition of the traditional inference schemes,
Hartel et al. [14] attempted to address such a drawback in VSKheoretically their approach may
lead into converge to local maxima; furthermore, it alsauiezs sufficient observation data (over 300
observation data) to make approximately accurate faudrémfce. Therefore, while faults occur in a
sensor node arbitrarily, the approach proposed in [14] n@ybe able to accurately infer the fault
probability of a sensor node. All of the aforementioned nagi$ms focused on the link measurements
rather than on the sensor nodes. To address the aforemathtioritations, we propose an intelligent
agent — ATLAS to perform fault detection inference in WSNs.

3. Basic mathematical algorithm

Expectation-maximization algorithm for finding maximurkdiihood estimates of parameters is pro-
posed by Dempster et al. [20]. This algorithm is applied famputing maximum likelihood estimates
from incomplete data. The term “incomplete data” in its gahéorm implies the existence of two
sample spaceB and¥, and many-to-one mapping frointo ¥, as shown in Fig. 1. The observed data
y is a realization from¥, while the corresponding X i is observed indirectly through y only. More
specifically, we assume there is a mapping ¥(x) from ¢ to ¥, and x is known only to lie irb(y), the
subset ofp determined by the equationy y(x). Where, y is the observed data and x is referred to it as
complete data.

Consider first a family of sampling densiti¢gz|«) depending on parameter(natural parameters)
and derive its corresponding family of sampling densitjég|«). The complete data specification
f (...]...) is related to the incomplete data specificatidn. . | ...), which can be described as:

9 (ylo) = [p Gl 1)
Y

The EM algorithm is directed at finding a value®@fvhich maximizeg; (y|«) given an observedy, but
it does so making essential use of the associated fafriyfa)). The EM algorithm is briefly described
in the following section, using an application case.
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Fig. 1. Many-to-one mapping from the setto setW.

3.1. Application case in glance

In order to give a distinct explanation concerning the EMbalthpm, we borrowed a classic application
case from [34]. Suppose thatin animage pattern-recogrmtioblem, there are two general classes to be
distinguished: a class of dark objects and a class of ligjetotd. The class of dark objects may be further
subdivided into two shapes: round and square. Using a pageognizer, it is desired to determine
the probability of a dark object. In this case, let's assuhad the objects are known to be trinomially
distributed. Let the random variabl; represent the number of round dark objed(s, represent the
number of square dark objects, aKd represent the number of light objects. Also assume that we ha
enough information about the probabilities of the diffdrelasses. Therefore, the probability may be
written as:

P (X) =1, X2 = x2, X3 = x3|p)

B n! N /1 p\™ /1 p\*
= (7951!@1;631) @ (1 * 1) <§ - 1) @
:f(.%'l,.%'g,l'g‘p) .

Where p is the unknown parameter of the distribution anek x; + x5 + 3. The notationf (x1, z2, z3
|p) is used to indicate the probability function which may liber a probability density function (pdf)
or a probability mass function (pmf).

The pattern recognizer can distinguish between differtsses of objects whether they are dark or
light, but cannot distinguish between the shapes. gth]” = y be the number of dark objects and
number of light objects detected, respectively. Thyss z1+ z2 andy, = x3. Let's also assume that
Y1, and Y; are the corresponding random variables. There is a maop¢anapping betweefx, z2}
and{y;}. For example, ify; = 3, there is no way to tell from the measurements whether 1 and
x9 = 2 0rx; = 2 andze = 1. Therefore, the EM algorithm is designed for addressirudy suroblem
with many-to-one mappings using the following probabifityction.

P(Yy =uyilp) = (Zl> (% n Z)yl (% - §>n—y1

(3)
=g (y1lp) .
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The symbol; is used to indicate the probability function for the obserdata. From the observation of
y1 andys,, we can compute the maximum likelihood estimate,afsing the following equation:

pML = arg max g (Y1 =wulp) . 4)

Where “arg max” means the value that maximizes the functlarthis example, it would be a simple
matter to determine a maximum likelihood estimateofn more interesting problems, however, such
straightforward estimation is not possible. In the intecgsntroducing the EM algorithm, we will not
take the direct approach to the maximum likelihood estimatking the logarithm of the likelihood
often simplifies the maximization and yields equivalenufissince log is an increasing function, so
Eqg. (4) can be rewritten as:

n 1 p\" /1 p\"*
prng 1 - — - - = . 5
. =argmaxtoe (1) (5+3)" (3 -5 ®

Based on EM algorithm, even though we do not knewand z,, the knowledge of the underlying
distribution f (x1, z2, x3| p) can be used to determine an estimatepforhis is done by first estimating
the underlying data, then using these data to update clestiniate of the parameter. This is repeated
until convergence. Letl*! indicate the estimate of after thek!” iteration ¢ = 1, 2, 3, ...). Aninitial
parameter valug!’ is assumed. The algorithm consists of two major steps, nanegpectation step
and maximization step.

Expectation Step(E-step). In this step, the expected value ofdata is computed using the current
estimate of the parameter and the observed data. In thentexample, the expected valuexgf given

the measurement and based upon the current estimate of the parameter, maynipmited as follows:

o= Bla| oy,

1
[k+1] _ 1
1‘1 =11 1 p[k] .

2T 2

Similarly for 25 andzs,

AN
S
Nl

+
LI

:c[ng] =K {$1|y1,p[kq =1 N
2

S
B

N[

(6)
T3 =Ys-
Maximization Step (M-step). In this step, a maximum likelihood estimate of the paranistetermined
using the data from the expectation step as if it were agtnadlasured data.

In this example, withrl[k*” , x[j*” andx; available, the maximum likelihood estimate of the paramete

is obtained by taking the derivative tfg f (mI[kH], :c[QkJ“”, x3|p) with respect t, set it to zero, and
solving forp as follows:

0— ilog f (w[lk+1],x[2k+1],m3\p)

o 7)
2m[k+1} .
[k-+1] '
Tq + x3
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Table 1
Results of the Em Algorithm for pattern
recognition problem

x[lk} $[2k] p[k]

31.500000 31.500000 0.379562
26.475460 36.524540 0.490300
25.298157 37.701843 0.514093
25.058740 37.941260 0.518840
25.011514 37.941260 0.519773
25.002255 37.997745 0.519956
25.000441 37.999559 0.519991
25.000086 37.999914 0.519998
25.000017 37.999983 0.520000
25.000003 37.999997 0.520000

HooNouohrwNek| >

Now, we need to compute the estimateaé . The estimatec[lk“] is not used in Eq. (7). Thus,

there is no need to compute it, for this example. The EM allgoriconsists of E-step and M-step until
convergence. Intermediate computation and storage maiirbimated by combining E-step equation
and M-step one to obtain a one-step update.

Using a numerical example, suppose that the true paranseteti0.5,n = 100 samples, angh =
100. The true values respectively of andxz, are 25 and 38, but this is unknown to the algorithm.
Table 1 illustrates the results of the computed algorithartiag frompl® = 0 which is similar to [20].

4. ATLAS

This section first provides an intelligent agent-ATLAS-ailure Inference capacity. Furthermore,
we provide terminology and a fundamental mathematical inagked in the inference engine. Finally, we
propose the core of ATLAS — a failure inference engine whicformulated as a maximum-likelihood
estimate problem.

4.1. An Intelligent agent with fault inference

Most of agent-based distributed systems consist of twostgh@agents based on their functionalities,
i.e. stationary and mobile agents. In this paper, ATLAS isagianary agent with an embedded fault
inference engine. The architecture of ATLAS (shown in Figwith fault-reconnaissance functionality
is based on the agent model described in [1]. Generally, Akdésides on a central node equipped with
surplus power supply (Base station).

As demonstrated in Fig. 2, the architecture of ATLAS cosidtknowledge base and executable
components. The knowledge base contains the informationtabhe WSNs environment such as
packet-store table and topology structure. The packee-sédle is composed of the received packets
from target sensor nodes; ATLAS maintains the topologycstime of reverse multicast trees as well.
For some applications in WSNSs, an application may geneeateral reverse multicast trees to achieve
a better quality of service. The learning component pravilELAS with the capability of monitoring
observation data stored in its knowledge base. Based onbenations, ATLAS collaborates with
various routing protocols and thus dynamically selectsutimg protocol that provides the best perfor-
mance benefits for WSNs. The scheduler component provide#&8Twith a time agenda to start or
stop certain activities such as monitoring and aggregatatg. In this architecture, the problem solver
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Fig. 2. The architecture of ATLAS.

)

is an intelligent component of ATLAS. It includes failureeonnaissance inference engine (which is the
core of ATLAS) and fault-avoidance component. Fault-re@ssance inference engine harnesses the
information in knowledge base to infer the working statesearisor nodes in a reverse multicast tree.
And then, the inferred consequences assist fault-avo@aoimponent in choosing and switching to the
appropriate routing strategy among various routing prac

4.2. Terminology and mathematical model

Failure inference engine adopts a reverse-multicastrireehanism. This scheme is based on the
fundamental of data aggregation. In the inference engirefonmulate a reverse multicast tree as a
mathematical modél’ := (V, E'), whereT' is the reverse multicast tree that is subject to the follgwin
conditions:

V is a set, whose elements are called wireless sensor nbBdgs; set of pairs of distinct sensor nodes
called communication link. Obviously, the node $et={n1, ns, ns,...,S} also contains sinl§. And a
communication link from nodéto node; is represented by; ; € V x V.

For our modeling purposes in this paper, we make a simpifggsumption — the communication link
between node andj is always symmetrically bidirectional link such that; = e; ;. Further, letc(n;)
andd(n;) denote the child set and the descendent set of nogspectively. In reverse multicast tree
paradigm, each node except sink has a unique parent nodeeddnyp(n;) wheren; € V A n; ¢ {S}.
Finally, denote the set of leaf nodes in the treédy). Thatisl (T') = {nx € V A c(ni) = ¢}.
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Ihrermediaté Node | Targ}et Regt’oné
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Fig. 3. Eight-node reserve multicast tree in a square gpdltmy.

For example, in the tree depicted in Fig. 3, for node 2 the @rdescendant nodes are 4, 5 and 6 and
the parent node is node 1i.€(n2) = {4, 5, 6} andp(ny) ={1} respectively. In this whole tree, the leaf
nodes are 4, 5, 6, 7, 8 denoted/é5) = {4, 5, 6, 7, §. In wireless sensor networks, sensor nodes are
prone to failures [15]. Therefore, each sensor node is nedd®f an independent Bernoulli process [14].

Associated with every node, € V, a success probability,,, represents the packets sent from ngde
(V5 n;j € ¢(n;)) to nodei that are received successfully. On the contrary, the faolability of node;
denotess,, (o, + Bn, = 1). Finally, leta = (au,,, sy, g, -..) denote the set of success probabilities
for all sensor nodes. The packets transmitted through aseweulticast tree, and the packets received
by sink construct a sample spage= (z', 2%, 2%, ..., 2™).

A possible outcome’ in data collection roundis composed of a sequence of partial nodes in reverse
multicast tree. Based on the reverse-multicast-tree arascach node aggregates its data with that of
its descendants. Therefore, if the sink does not receive fdatn a node, it also does not gather data
from all the descendents of that node. For example in Fidié8sink receives an aggregated pacKet
with the sequence of nodedl, 2, 3, 5, 6, 2. Furthermore, each round of data collection is considered a
random trial. Since the outcome of each random trial deretesord of which nodes the sink received
data from that round, we consider a discrete random vari&bleetp (X = z; o) = p (z; «) denotes
the probability distribution for a given set of node succeszbabilitiesa. Also, assume am-round
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trial, the probability of observing?!, ..., ™ in m data collection rounds is denoted by:
p(ml, ,xm) :Hp(xi;a). (8)

4.3. Anintelligent agent with fault inference

Failure inference engine adopts a reverse-multicastrtiezhanism. From previous section;z; «)
is the probability mass function of a single outcome Nevertheless, the success probabititys an
unknown parameter and a quantity we expect to estimate. Bqroposed inference engine utilizes
maximum likelihood estimation to infer parameter of ungied probability distribution from a collected
packet set. Assume that represents packet collection rounds, the packet sequénce = observed
at the sink comprises a random sample space (due to matiaraftiWSNs,z* may be an empty node
sequence). Based on the sample spac¥ ehlues, we choose to maximizep (z!, ..., zV;a), i.e.,

a = arg maxp (z',...,2"; ) which is maximum likelihood estimation.

In our approach however, we require a sophisticated estimigtchnique due to the fact that the current
knowledge base in inference engine (sample space) is inetanpTherefore, as an efficient iterative
computing approach, the expectation maximization algoriis incorporated in the fault-detection
inference engine. This algorithm makes inference aboumatera using incomplete knowledge
base. It should be noted that “incomplete knowledge basajisvalent to “complete observed data” in
expectation maximization algorithm.

It is more convenient to operate the log-likelihood funotif the complete data. Ldt!, 22, ...,
xN} be the set of complete data. Then, log-likelihood equatamte described as follows:

L(xl,xz,...,xN;a) = log p(wl,xZ,...,xN;a) . (9)

Where, the joint distribution probability is divided intod parts: leaf and non-leaf nodes. The expression
for leaf nodes is:

N
Nnp: -, N—Nn.—n.
p ($1,$2, ...,ﬂL’N;Oé) — Hanim ng . o TN (10)
i=1

WhereN,,, _,,,, denotes the number of data collection rounds that riclecessfully sent out packets.
For the non-leaf nodes, it is described as:

N
N, +Nn, —n, N+N, =N,
1 2 N, d(n;)—n; nyTYg c(n;)—n; d(n;)—n;
p(mjmj._.7x ’a):Hani(z i ﬁnz (n3)—mn; i) i (11)
i=1

WhereNy(,,,)—n, denotes the number of data collection rounds that isdecessfully received packets
from its descendents, and.(,,,)_.,,, represents the number of data round that nedrecessfully received
child nodes’ packets.

To maximize the Egs (10) and (11), we take the logarithm fondb simplify maximization likelihood
estimation. The results are shown in Egs (12) and (13).

L (xl’ x2’ o xN; a) = Z (Ni;—n; log o, + Nlog By, — Np,—n,; 10g Bn,) - (12)
nzel(T)
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L (xlv 127 L) xN§ (l) - Z((Nd(ni)ani-l—N"i_,"i)log Qp,; + (N + ]Vc(n,)—mZ - Nd(nl)—ml)

n; ¢l(T
&l(T) (13)
log Bn,;) -
For maximizing Eqs (12) and (13), we utilize Calculus Thetbiat leads to Eq. (14).
d 1,2 N, _
daL(az R R ,a) =0. (14)

By combining Egs (12), (13) and (14), we solve the equatiosgroduce the parameter Eqgs (15) and
(16) as we expected.

a; = (Np,—n./N)-100% n; € 1(T) . (15)

> (N + NC(m)Hm)

For example, in the square grid topology depicted in Fidhd success probability of node 3 is formulated
as follows:
(NTLS*WLS + ang’ns + Nnﬁ"ns + Nn44’n3)

(N + Nng—ng + Nns—ns + Nngny)

a3 =

However, a complete knowledge base requires each sensertoadcord and transmit packets that
it received from descendents in each round. Unfortunateiy,solution not only wastes constrained
bandwidth but also consumes energy resources. Therefoedfiaient inference engine, which learns
from the collected packets at sink, is utilized to complatewledge base.

To complete the knowledge base, we adopt expectation mziion algorithm, using Egs (8) and (9).

This algorithm, in this case, consists of five steps. In stapitlalizing fault-detection parameter vector
~ ~[0] " L _ ~[k]
a[o} andg . In step 2, the conditional expectation is used under tharpater vecton[k] and g

to estimate incomplete data s&t' ! NPT and NI in step 3, maximizing the expected

(ns)—m;’ = e(ng)—ny

oo ~[k+1] _
log-likelihood and update the parameter vec'@vﬁsﬂ} andg . In step 4, repeating steps 2 and 3
until the algorithm converges to local maxima. In step Startigig with new initial parameter vector

~[0]
am and($ since the likelihood surface may not guarantee convex. dflitelihood is not convex,

then the probability may converge to local maxima. The entiternal inference process described as a

Non-deterministic Finite Accepter (NFA) as shown in Err®&ference source not found..

The iterative steps 2 and 3 require computisig +!! N andNr[ffilﬂbifrom the knowledge

ng)—n; ' c(ni)—ng
base, i.e., completely observed data{sét =2,. . . ,x"V'}. The computation process is based on Chapman-
Kolmogorov functional equation. The corresponding Markbain model is shown in 5.
Therefore, the Chapman-Kolmogorov equation based on thexnoé transition probabilities can be
represented by Egs (17) and (18).

e o] an ] = (5 @

ﬁni Qi an anj Bnm On,p B «
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Intermediate Node | Target Region|

[°°°]
-J Sounce Node

- ﬁrtr..fr,.J

hterm&dlat;e Nodes

Fig. 4. Six-node reserve multicast tree in a square gridltggo

Fig. 5. Fault-detection inference engine described in NFA.

For leaf nodes,

NEEN =N, + (N =N,,) - 88, nj=n,. (18)

nj—ni n;

Where,N,,; denotes the number of packet collection rounds with nodetifiigation j observed by sink.
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Fig. 6. Morkov chain model.

Fig. 7. A snapshot of Testbed at University of Colorado.

Similarly, this can be used to represent non-leaf nodesgusi. (19).

NEHL
o (19)
=Np,+ (N—=Nyp,)-B njec(ng)Vn;ed(ng.

Combining E-Step Eqgs (15) and (16) with M-Step Eqgs (18) ar®J, (We iteratively compute a set of
success probability values. Next section will show a 6-sad®erse cast tree experiment in detail and
analysis of our experiment results.

5. Experimental results

This section discusses our experimental results and amlywe properties of inference engine in
ATLAS. In order to validate the correctness and effectiasradf ATLAS, we implement the prototype of
ATLAS on top of the Mantis Operating System (MOS). MOS is armpource, multithreaded operating
system developed at University of Colorado at Boulder fer s wireless sensor networking platforms.

For our experiments, we deployed an indoor testbed of Tetnsts as shown in Fig. 7. The TelosB
platform was developed at University of California at Bdelgeand is marketed and sold by Moteiv and
Crossbow. The radio used by the TelosB is the chipcon CC24i2i6h is an 802.15.4 compliant device,
has a data rate of 250Kbps, and operates in the 2.4 GHz ISM B&ednote uses an 8 MHz TI MSP430
processor and has 1 MB of external flash.

The entire experimental scenario we adopted consists ofi3€os nodes. In the 30-node topology, 7
nodes generated a reverse multicast tree. During eacltofigound, the sink cached received packets
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Table 2
Results of the iterative computation based
on equal fault probability

(K] (K]

k ny n[2k] Ny
1 98.1507% 96.8647% 98.1432%
2 98.8739% 97.6735% 96.3148%
3 98.8795% 97.5608% 96.4541%
4 98.8774% 97.5733% 96.4631%
5 98.8776% 97.5728% 96.4570%
6 98.8776% 97.5727% 96.4587%
7 98.8776% 97.5727% 96.4583%
8 98.8776% 97.5727% 96.4584%
k nz[lk] n[5k] ngc]
1 92.5000% 91.6250% 92.8750%
2 86.1250% 84.6528% 86.7653%
3 87.0812% 85.8206% 87.6359%
4 86.9378% 85.6250% 87.5118%
5 86.9593% 85.6578% 87.5295%
6 86.9561% 85.6523% 87.5270%
7 86.9565% 85.6532% 87.5273%
8 86.9565% 85.6530% 87.5273%
1-
0o ] %:33.%—;
| ' 1
081 | 1 ! ! | | —e— 400-dataset
|
] 071 | ! | | | | —m— 300-dataset
T 0.6 - I | : I I I
x ! ! | ! ! ! 200-dataset
2 0.5 : ! | ! ! !
S 04ad : | : : | 100-dataset
o . | | | | | |
@ 03] | | | | | | | —— 10-dataset
024 | | | ! | | —e— actual
|
0.1 4 : : ! : : :
I | ! I I I
0 ! . ! i ! i ! i ! i ! .
1 2 3 4 5 6 Node ID

Fig. 8. Inference engine under scenario 1.

from its descendents. After 400 data collection round, ¢hétfinference engine was triggered at sink.
For comparability, the inference engine analyzed obsete¢aiset based on various sub-datasets.

The first experiment is conducted on an equal fault prokghiBcenario 1). In this scenario, we
assumed the normal success probability of sensor node t6%e Bhe 5% of failure probability could

be due to signal loss, interference, radio initializatiett, Thus, the initial paramet@r[o] is chosen as
a set of different values in the interval [0,1] to avoid hadtion local maxima. Table 2 illustrates the
detailed results based on the iterative computation foakfqult probability scenario.

Furthermore, the failure probabilities as well as the alieatrror for each node are reflected in Figs 8
and 9 respectively.

In Fig. 8, it was observed that inferred fault probabilittdthe nodes are increasingly accurate along
with the increase in the volume of dataset.

Furthermore, it is obvious from the plot of standard dewiatshown in Fig. 10 that the inference
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Fig. 9. Absolute error under scenario 1.
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Fig. 10. Standard deviation under disparate scenario.

process is able to accurately reflect the real-time stateeddés.

The second experiment was conducted on a high-frequehnfade (scenario 2). Faults kept occurring
frequently at node 2.

We assume fault probability is set to 40%, while the otherasodn normally with the same fault
probability as that of nodes in first scenario. Based on themental results shown in Figs 11 and
12, we may make a reasonable inference that node 2 may expeti@expected high-frequency faults
while the rest of nodes 1, 3, 4, 5 and 6 kept running normally.

The results of the reasoning using Egs (15), (16), (18) aBpdde listed in Table 3.

The volume of dataset in this scenario has great impact oprbgerty of inference engine. More
importantly, it can be seen that the standard deviationedirtference engine shown in Fig. 10 drastically
decreases along with an increase in dataset that was dtitiz@fer fault probabilities of nodes. Thus,
the proposed inference mechanism is able to successfigigttiault-experience nodes.

Furthermore, we study the reliability of maximum-likelinb estimator. Based on the same dataset
generated by the scenario 2, the maximum-likelihood estimgerformed poor inference result, as
shown in Fig. 13.

With the comparison between our proposed mechanism anamaxlikelihood estimator, we observe
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Fig. 13. Maximume-likelihood estimator under scenario 2.
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Table 3
Results of the iterative computation based
on high-frequent-fault node.

k n[k] n[k] n[k]
1 2 3
1 95.3451% 67.6250% 86.4805%
2 96.8658% 62.7234% 94.8478%
3 96.6865% 62.2154% 94.5067%
4 96.5479% 62.4503% 96.9278%
5 96.6532% 62.3417% 94.2011%
6 96.5946% 62.3919% 94.5636%
7 96.6240% 62.3687% 94.3865%
8 96.6095% 62.3794% 94.4729%
k nz[lk] n[5k] ngc]
1 89.1566% 86.0250% 99.0250%
2 96.9956% 95.7234%  95.4564%
3 96.6219% 96.2154% 95.2655%
4 96.9259% 96.4503% 95.3500%
5 096.2501% 96.3417% 95.3126%
6 96.6086% 96.3919% 95.3291%
7 96.9208% 96.3687% 95.3218%
8 96.7695% 96.3794%  95.3250%
30 T T T T T T T
s 0 —
BT A — Maximumvlikelihood
8 | | | | | | | Estimator
15 +---—a--t----- 4 — it — -
'g : : : : : : : —— Proposed Mechanism
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Fig. 14. Standard deviation under disparate inference areésims.

from Fig. 14 that our proposed mechanism with the lower steshdeviation would satisfy the objective
of inference detection. In contrast, maximum-likelihocgtimator would not be utilized in WSNs
environment.

6. Conclusions and future work

This paper identified the principal faults experienced byN&¥&nd summarized the existed fault
inference mechanisms. This paper presented an intelliggant — ATLAS with a fault inference
problem solving engine as a response to the drawbacks @fdunference mechanisms and the features
of WSNs. The inference engine is modeled by maximizatikelihood estimation via unobservable data
set. In accordance with theoretical computation, the pgedanference engine embedded in ATLAS is
abstracted as a nondeterministic finite accepter. Thisraipeided experimental results that showed the
inference engine of ATLAS achieves substantial energy lggicontaining the impact of malfunctioning
sensor nodes.
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In the future, we plan to study and establish the relatignsbtween ATLAS and energy consumption
of WSNs. Moreover, we plan to augment our effort to expandamproach to a higher level of fault
management, i.e. involving fault diagnosis with minimunplexation of WSNs resources.
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