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Abstract. One of the key prerequisite for a scalable, effective and efficient sensor network is the utilization of low-cost,
low-overhead and high-resilient fault-inference techniques. To this end, we propose an intelligent agent system witha problem
solving capability to address the issue of fault inference in sensor network environments. The intelligent agent system is
designed and implemented at base-station side. The core of the agent system – problem solver – implements a fault-detection
inference engine which harnesses Expectation Maximization (EM) algorithm to estimate fault probabilities of sensor nodes. To
validate the correctness and effectiveness of the intelligent agent system, a set of experiments in a wireless sensor testbed are
conducted. The experimental results show that our intelligent agent system is able to precisely estimate the fault probability of
sensor nodes.
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1. Introduction

An embedded sensor network is a system of nodes, each of whichis equipped with a certain amount
of sensing, actuating, computation, communication and storage components. Two major components
of sensor nodes are sensing unit and wireless transceiver. They directly interact with nodes in wireless
sensor networks (WSNs) that are easily prone to failure due to hardware failure, communication link
errors, energy depletion, malicious attacks, etc. Even if the sensor node hardware is in excellent condition,
still the communication between sensor nodes is dependent upon many factors such as signal strength,
obstacles and interferences. Degradation in these factorsresults in low reliability of sensor nodes. One
of the key prerequisite for a scalable, effective and efficient sensor network is the utilization of low-
cost, low-overhead and high-resilient fault-inference techniques. To this end, we propose an intelligent
agent system with a problem solving capability to address the issue of fault inference in sensor network
environments. The core of the intelligent agent system is the problem solver, which implements a
fault-detection inference engine that harnesses Expectation Maximization (EM) algorithm to estimate
fault probabilities of sensor nodes.

Due to the characteristics (e.g. energy awareness, constraint bandwidth and so on) of wireless sensor
networks, it is infeasible for each sensor to announce its working state to a centralized node (base station).
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Therefore, we propose an intelligent agent system which utilizes EM algorithm to infer the sensor-node
fault probabilities from a limited dataset. The benefits of our intelligent agent system are summarized
as follows. (1) The intelligent agent system does not involve extra message transmission, since it can
infer sensor-node fault probabilities directly from aggregated dataset that sensor nodes collect. (2) The
intelligent agent system can provide highly accurate estimation.

In WSNs, it is natural that sensor nodes experience some faults at high frequencies due to the following
two factors [2]. Firstly, WSNs put significant constraints on the resource expenditure. Nodes operate
under strict energy constraints, which limits the amount ofenergy devoted to testing and fault tolerance.
Secondly, some applications are equally complex with the involved technology and architecture. Sensor
networks often operate without human intervention [31]. Furthermore, security and privacy concerns
prevent extensive testing procedures. It should be noted that not only testing and fault tolerance are
adversely impacted, but related tasks such as debugging where reproduction of specific conditions
under which fault has occurred are extremely difficult. Similarly, sensor nodes are often deployed in
uncontrolled and sometimes even hostile environment for surveillance and detection [35,36]. Therefore,
knowing sensor-node working states is indispensable.

Due to the energy awareness characteristics in WSNs, there is a trade-off between prolonging the
network lifetime via conserving the energy of individual nodes, and maintaining the high quality of
network services by implementing complex fault managementschemes in a sensor network. To the best
of our knowledge, contemporary fault management mechanisms have to involve extra traffic overhead
and energy expenditure. Therefore, most researchers regularly believed that the expenditure for fault
management is fairly expensive. Based on our previous studyand the following two motivations; we
however, introduce an intelligent agent named ATLAS (An inTelligent agent for fauLt reconnAisSance
in sensor networks).

1.1. Motivation-1: Energy awareness based on data aggregation

Over the past few years, several researches have attempted to propose various mechanisms to pro-
long the network lifetime [32]. An agent-based paradigm is atrend [3–9]. This paradigm adopts
energy-efficient data aggregation to eliminate the redundant transmission and thus to minimize energy
consumption. Under the agent-based paradigm, communication links and partial nodes in a sensor
network are usually perceived as a reverse multicast tree. Generally, a sink node dispatches mobile
agents with processing code to destination nodes through the reverse multicast tree. After collecting the
sensing data from the destination nodes, mobile agent migrates to the sink carrying aggregated data. To
the best of our knowledge, contemporary researches on the agent-based paradigm fail to take the fault
management into consideration.

1.2. Motivation-2: Infeasible individual fault reconnaissance

Fault management in sensor networks can be classified into three phases: fault reconnaissance, fault
diagnosis and recovery. Fault reconnaissance is the most fundamental phase for the simple reason that
only if faults are identified, previously established mechanisms and algorithms [16–19,37] can be further
applied for fault diagnosis and its recovery. Obviously, the trustworthiness and effectiveness of fault
reconnaissance, to a large extent, rely on utilization of communication and hardware resources (i.e.
bandwidth and energy). Consider the following scenario. Each of sensor nodes attempts to report (either
directly or indirectly) its own fault probability to a command center (sink) in a scalable sensor network.
This incurs tremendous energy consumption and wastes limited bandwidth resources. According to
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our literature survey on fault management, even though someresearchers presented some efficient
optimization methodologies for fault reconnaissance (as mentioned in Section 2), these methodologies
still result in extra traffic overhead and energy consumption.

To achieve effective, efficient fault reconnaissance with “zero” extra traffic overhead as well as energy
expenditure, we introduce ATLAS – an intelligent agent for fault reconnaissance in sensor networks.
The core of ATLAS, inference engine, is abstracted as a mathematical model based on Expectation
Maximization (EM) algorithm [20]. The mathematical model of our proposed agent’s problem solver is
based on two assumptions. (1) Data gathering mechanism utilize reverse multicast tree. (2) The reverse
multicast tree is known and is relatively stationary. One ofthe main contributions of this work is to utilize
an agent-based centralized approach [33] to infer and identify failures among sensor nodes. At sink,
an agent is loaded with fault inference engine that profits from an expectation-maximization algorithm
to identify faults at the cost of reduced energy expenditureand bandwidth saturation. Experimental
evaluation of our ATLAS prototype in a wireless sensor testbed, developed at University of Colorado,
Boulder, shows that ATLAS is effective at inferring faults.

The rest of the paper is organized as follows. Section 2 presents related work. Section 3 provides the
basic mathematical model. Section 4 introduces an intelligent agent – ATLAS. Section 5 describes and
discusses experimental results. Finally, Section 6 provides conclusions and future research.

2. Related work

Fault reconnaissance is the first phase of fault management,where an unexpected failure should be
properly identified within a network. The fault reconnaissance approaches in WSNs are generally
classified into two types: centralized and distributed approach.

The centralized approach is the most common approach to identify the cause of failures or suspicious
nodes in WSNs. Usually, a centralized sensor node equipped with abundant power supply (base station
manager [22,23], central controller [24] or sink [25]) thatmonitors [failed or misbehaved nodes in a
network. Centralized node banked with abundant power supply is able to execute a wide range of fault
management maintenance.

In distributed approach, a node is allowed to make certain level of decisions before communicating
with a central node. This is due to the fact that the more decisions a sensor node can make, the less
information needs to be delivered to the central node. This reduces the unnecessary bandwidth utilization
and energy expenditure. This means that the central node should not be informed unless there is really
a fault occurred in the network. Examples of such approach are: node fault self-reconnaissance on its
hardware (including physical malfunction, i.e. sensor, battery, RF transceiver) [26], failure detection via
neighbour co-ordination [19], and utilization of Watchdogto detect misbehaving neighbour [27].

Several attempts have been made by many researchers to find effective centralized approaches that
can achieve the fault management in WSNs with the minimal exploitation of limited bandwidth and
energy. Specifically, Sympathy [25] used a message-floodingapproach to pool event data and current
states (metrics) from sensor nodes. In order to minimize thenumber of communication messages that
nodes must send as well as to conserve node energy. A Sympathynode can selectively transmit important
events to the Sympathy sink node. As a complementary of Sympathy, Staddon et al. [23], to minimize
extra traffic overhead further, seek the solution of appending network topology information (i.e. node
neighbour list) into node’s routing update messages ratherthan in a separate approach. Based on this
approach, the base station can construct the entire networktopology by integrating each portion of the
network topology information embedded in route update messages and identify the communication faults
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within sensor nodes. In addition, some common routing protocols (e.g., SPINs [22]) can also detect
failed or misbehaving nodes through routing discovery and update. However, all of these approaches
typically require the nodes to send additional messages, which is relatively expensive.

Recently, agent-based approaches have been proposed for efficient data dissemination in WSNs.
Furthermore, most of researchers attempted to harness a reverse multicast tree paradigm to achieve
their agent-based approaches [3,5,7]. However, none of them take into account the efficient fault
reconnaissance due to the resource constraints in WSNs. Based on the reverse multicast tree paradigm,
some other researchers proposed a couple of efficient inference schemes [12,13], which to some extent,
provided the foundation of fault reconnaissance. For example, the work proposed by Caceres et al. [13],
a maximum-likelihood estimator for fault inference is developed. This mechanism is based on link losses
observed by multicast receivers and exploits the inherent correlation between such observations to infer
the performance of paths. Many researchers attempted to consider fault-reconnaissance inference using
unicast measurements [10,11]. The end-to-end measurementscheme proposed by Coates et al. [10] is
a case in point. It provides a statistical model and computation framework for network loss inference.
However, both types of inference mechanisms (unicast and multicast inference schemes) are based on the
traditional IP-based networks. In order to overcome the limitation of the traditional inference schemes,
Hartel et al. [14] attempted to address such a drawback in WSNs. Theoretically their approach may
lead into converge to local maxima; furthermore, it also requires sufficient observation data (over 300
observation data) to make approximately accurate fault inference. Therefore, while faults occur in a
sensor node arbitrarily, the approach proposed in [14] may not be able to accurately infer the fault
probability of a sensor node. All of the aforementioned mechanisms focused on the link measurements
rather than on the sensor nodes. To address the aforementioned limitations, we propose an intelligent
agent – ATLAS to perform fault detection inference in WSNs.

3. Basic mathematical algorithm

Expectation-maximization algorithm for finding maximum likelihood estimates of parameters is pro-
posed by Dempster et al. [20]. This algorithm is applied for computing maximum likelihood estimates
from incomplete data. The term “incomplete data” in its general form implies the existence of two
sample spacesΦ andΨ, and many-to-one mapping fromΦ to Ψ, as shown in Fig. 1. The observed data
y is a realization fromΨ, while the corresponding x inΦ is observed indirectly through y only. More
specifically, we assume there is a mapping x→ y(x) from Φ to Ψ, and x is known only to lie inΦ(y), the
subset ofΦ determined by the equation y= y(x). Where, y is the observed data and x is referred to it as
complete data.

Consider first a family of sampling densitiesf (x|α) depending on parameterα (natural parameters)
and derive its corresponding family of sampling densitiesg (y|α). The complete data specification
f (...|...) is related to the incomplete data specificationg (. . . | . . .), which can be described as:

g (y|α) =

∫

Φ(y)
f (x|α) dx. (1)

The EM algorithm is directed at finding a value ofα which maximizesg (y|α) given an observed y, but
it does so making essential use of the associated familyf (x|α). The EM algorithm is briefly described
in the following section, using an application case.
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Fig. 1. Many-to-one mapping from the setΦ to setΨ.

3.1. Application case in glance

In order to give a distinct explanation concerning the EM algorithm, we borrowed a classic application
case from [34]. Suppose that in an image pattern-recognition problem, there are two general classes to be
distinguished: a class of dark objects and a class of light objects. The class of dark objects may be further
subdivided into two shapes: round and square. Using a pattern recognizer, it is desired to determine
the probability of a dark object. In this case, let’s assume that the objects are known to be trinomially
distributed. Let the random variableX1 represent the number of round dark objects,X2 represent the
number of square dark objects, andX3 represent the number of light objects. Also assume that we have
enough information about the probabilities of the different classes. Therefore, the probability may be
written as:

P (X1 = x1,X2 = x2,X3 = x3|p)

=
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= f (x1, x2, x3|p) .

Where,p is the unknown parameter of the distribution andn = x1 + x2 + x3. The notationf(x1, x2, x3

|p) is used to indicate the probability function which may be either a probability density function (pdf)
or a probability mass function (pmf).

The pattern recognizer can distinguish between different classes of objects whether they are dark or
light, but cannot distinguish between the shapes. Let [y1, y2]T = y be the number of dark objects and
number of light objects detected, respectively. Thus,y1 = x1+ x2 andy2 = x3. Let’s also assume that
Y1, and Y2 are the corresponding random variables. There is a many-to-one mapping between{x1, x2}
and{yl}. For example, ify1 = 3, there is no way to tell from the measurements whetherx1 = 1 and
x2 = 2 or x1 = 2 andx2 = 1. Therefore, the EM algorithm is designed for addressing such problem
with many-to-one mappings using the following probabilityfunction.
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The symbolg is used to indicate the probability function for the observed data. From the observation of
y1 andy2, we can compute the maximum likelihood estimate ofp, using the following equation:

pML = arg max
p

g (Y1 = y1|p) . (4)

Where “arg max” means the value that maximizes the function.In this example, it would be a simple
matter to determine a maximum likelihood estimate ofp. In more interesting problems, however, such
straightforward estimation is not possible. In the interest of introducing the EM algorithm, we will not
take the direct approach to the maximum likelihood estimate. Taking the logarithm of the likelihood
often simplifies the maximization and yields equivalent results since log is an increasing function, so
Eq. (4) can be rewritten as:

pML = arg max log
p

(

n
y1

)(

1

2
+

p

4

)y1
(

1

2
−

p

4

)n−y1
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Based on EM algorithm, even though we do not knowx1 andx2, the knowledge of the underlying
distributionf (x1, x2, x3| p) can be used to determine an estimate forp. This is done by first estimating
the underlying data, then using these data to update currentestimate of the parameter. This is repeated
until convergence. Letp[k] indicate the estimate ofp after thekth iteration (k = 1, 2, 3, ...). An initial
parameter valuep[0] is assumed. The algorithm consists of two major steps, namely: expectation step
and maximization step.
Expectation Step(E-step). In this step, the expected value ofx data is computed using the current
estimate of the parameter and the observed data. In the current example, the expected value ofxl, given
the measurementy1 and based upon the current estimate of the parameter, may be computed as follows:

x
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x3 = y3.

Maximization Step(M-step). In this step, a maximum likelihood estimate of the parameteris determined
using the data from the expectation step as if it were actually measured data.

In this example, withx[k+l]
l , x[k+1]

2 andx3 available, the maximum likelihood estimate of the parameter

is obtained by taking the derivative oflog f (x[k+l]
l , x

[k+1]
2 , x3|p) with respect top, set it to zero, and

solving forp as follows:
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.
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Table 1
Results of the Em Algorithm for pattern
recognition problem

k x
[k]
1 x

[k]
2 p[k]

1 31.500000 31.500000 0.379562
2 26.475460 36.524540 0.490300
3 25.298157 37.701843 0.514093
4 25.058740 37.941260 0.518840
5 25.011514 37.941260 0.519773
6 25.002255 37.997745 0.519956
7 25.000441 37.999559 0.519991
8 25.000086 37.999914 0.519998
9 25.000017 37.999983 0.520000
10 25.000003 37.999997 0.520000

Now, we need to compute the estimate ofx
[k+1]
1 . The estimatex[k+1]

1 is not used in Eq. (7). Thus,
there is no need to compute it, for this example. The EM algorithm consists of E-step and M-step until
convergence. Intermediate computation and storage may be eliminated by combining E-step equation
and M-step one to obtain a one-step update.

Using a numerical example, suppose that the true parameter is p = 0.5,n = 100 samples, andy1 =
100. The true values respectively ofx1 andx2 are 25 and 38, but this is unknown to the algorithm.
Table 1 illustrates the results of the computed algorithm, starting fromp[0] = 0 which is similar to [20].

4. ATLAS

This section first provides an intelligent agent-ATLAS- with failure Inference capacity. Furthermore,
we provide terminology and a fundamental mathematical model used in the inference engine. Finally, we
propose the core of ATLAS – a failure inference engine which is formulated as a maximum-likelihood
estimate problem.

4.1. An Intelligent agent with fault inference

Most of agent-based distributed systems consist of two types of agents based on their functionalities,
i.e. stationary and mobile agents. In this paper, ATLAS is a stationary agent with an embedded fault
inference engine. The architecture of ATLAS (shown in Fig. 1) with fault-reconnaissance functionality
is based on the agent model described in [1]. Generally, ATLAS resides on a central node equipped with
surplus power supply (Base station).

As demonstrated in Fig. 2, the architecture of ATLAS consists of knowledge base and executable
components. The knowledge base contains the information about the WSNs environment such as
packet-store table and topology structure. The packet-store table is composed of the received packets
from target sensor nodes; ATLAS maintains the topology structure of reverse multicast trees as well.
For some applications in WSNs, an application may generate several reverse multicast trees to achieve
a better quality of service. The learning component provides ATLAS with the capability of monitoring
observation data stored in its knowledge base. Based on the observations, ATLAS collaborates with
various routing protocols and thus dynamically selects a routing protocol that provides the best perfor-
mance benefits for WSNs. The scheduler component provides ATLAS with a time agenda to start or
stop certain activities such as monitoring and aggregatingdata. In this architecture, the problem solver
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Fig. 2. The architecture of ATLAS.

is an intelligent component of ATLAS. It includes failure-reconnaissance inference engine (which is the
core of ATLAS) and fault-avoidance component. Fault-reconnaissance inference engine harnesses the
information in knowledge base to infer the working states ofsensor nodes in a reverse multicast tree.
And then, the inferred consequences assist fault-avoidance component in choosing and switching to the
appropriate routing strategy among various routing protocols.

4.2. Terminology and mathematical model

Failure inference engine adopts a reverse-multicast-treemechanism. This scheme is based on the
fundamental of data aggregation. In the inference engine, we formulate a reverse multicast tree as a
mathematical modelT := (V,E), whereT is the reverse multicast tree that is subject to the following
conditions:

V is a set, whose elements are called wireless sensor nodes;E is a set of pairs of distinct sensor nodes
called communication link. Obviously, the node setV ={n1, n2, n3,. . . ,S} also contains sinkS. And a
communication link from nodei to nodej is represented byei,j ∈ V × V .

For our modeling purposes in this paper, we make a simplifying assumption – the communication link
between nodei andj is always symmetrically bidirectional link such thatei,j ≡ ej,i. Further, letc(ni)
andd(ni) denote the child set and the descendent set of nodei, respectively. In reverse multicast tree
paradigm, each node except sink has a unique parent node denoted byp(ni) whereni ∈ V ∧ ni /∈ {S}.
Finally, denote the set of leaf nodes in the tree byl(T ). That isl (T ) = {nk ∈ V ∧ c (nk) = φ}.
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Fig. 3. Eight-node reserve multicast tree in a square grid topology.

For example, in the tree depicted in Fig. 3, for node 2 the proper descendant nodes are 4, 5 and 6 and
the parent node is node 1 i.e.,d(n2) = {4, 5, 6} andp(n2) ={1} respectively. In this whole tree, the leaf
nodes are 4, 5, 6, 7, 8 denoted asl(T ) = {4, 5, 6, 7, 8}. In wireless sensor networks, sensor nodes are
prone to failures [15]. Therefore, each sensor node is modeled by an independent Bernoulli process [14].

Associated with every nodeni ∈ V , a success probabilityαni
represents the packets sent from nodej

(∀j nj ∈ c (ni)) to nodei that are received successfully. On the contrary, the fault probability of nodei
denotesβni

(αni
+ βni

= 1). Finally, letα = 〈αn1, αn2 , αn3 , ...〉 denote the set of success probabilities
for all sensor nodes. The packets transmitted through a reverse multicast tree, and the packets received
by sink construct a sample spaceΩ =

〈

x1, x2, x3, ..., xm
〉

.
A possible outcomexi in data collection roundi is composed of a sequence of partial nodes in reverse

multicast tree. Based on the reverse-multicast-tree paradigm, each node aggregates its data with that of
its descendants. Therefore, if the sink does not receive data from a node, it also does not gather data
from all the descendents of that node. For example in Fig. 3, the sink receives an aggregated packetxi

with the sequence of nodes<1, 2, 3, 5, 6, 7>. Furthermore, each round of data collection is considered a
random trial. Since the outcome of each random trial denotesa record of which nodes the sink received
data from that round, we consider a discrete random variableX. Let p (X = x; α) = p (x; α) denotes
the probability distribution for a given set of node successprobabilitiesα. Also, assume anm-round
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trial, the probability of observingx1, ...,xm in m data collection rounds is denoted by:

p
(

x1, ..., xm
)

=
m
∏

i=1

p
(

xi;α
)

. (8)

4.3. An intelligent agent with fault inference

Failure inference engine adopts a reverse-multicast-treemechanism. From previous section,p (x; α)
is the probability mass function of a single outcomex. Nevertheless, the success probabilityα is an
unknown parameter and a quantity we expect to estimate. So, our proposed inference engine utilizes
maximum likelihood estimation to infer parameter of underlying probability distribution from a collected
packet set. Assume thatN represents packet collection rounds, the packet sequencex1, ...,xN observed
at the sink comprises a random sample space (due to malfunction of WSNs,xi may be an empty node
sequence). Based on the sample space ofN values, we choose⌢α to maximizep

(

x1, ..., xN ;
⌢
α
)

, i.e.,
⌢
α = arg max p

(

x1, ..., xN ;α
)

which is maximum likelihood estimation.
In our approach however, we require a sophisticated estimation technique due to the fact that the current

knowledge base in inference engine (sample space) is incomplete. Therefore, as an efficient iterative
computing approach, the expectation maximization algorithm is incorporated in the fault-detection
inference engine. This algorithm makes inference about parameterα using incomplete knowledge
base. It should be noted that “incomplete knowledge base” isequivalent to “complete observed data” in
expectation maximization algorithm.

It is more convenient to operate the log-likelihood function of the complete data. Let{x1, x2, . . . ,
xN} be the set of complete data. Then, log-likelihood equation can be described as follows:

L
(

x1, x2, ..., xN ;α
)

= log p
(

x1, x2, ..., xN ;α
)

. (9)

Where, the joint distribution probability is divided into two parts: leaf and non-leaf nodes. The expression
for leaf nodes is:

p
(

x1, x2, ..., xN ;α
)

=
N
∏

i=1

α
Nni→ni
ni · β

N−Nni→ni
ni . (10)

WhereNni→ni
denotes the number of data collection rounds that nodei successfully sent out packets.

For the non-leaf nodes, it is described as:

p
(

x1, x2, ..., xN ;α
)

=
N
∏

i=1

α
N

d(ni)→ni
+Nni→ni

ni · β
N+N

c(ni)→ni
−N

d(ni)→ni
ni . (11)

WhereNd(ni)→ni
denotes the number of data collection rounds that nodei successfully received packets

from its descendents, andNc(ni)→ni
represents the number of data round that nodei successfully received

child nodes’ packets.
To maximize the Eqs (10) and (11), we take the logarithm function to simplify maximization likelihood

estimation. The results are shown in Eqs (12) and (13).

L
(

x1, x2, ..., xN ;α
)

=
∑

ni∈l(T )

(Nni→ni
log αni

+ N log βni
− Nni→ni

log βni
) . (12)
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L
(

x1, x2, ..., xN ;α
)

=
∑

ni /∈l(T )

((Nd(ni)→ni+Nni→ni
) log αni

+ (N + Nc(ni)→ni
− Nd(ni)→ni

)

(13)
log βni

) .

For maximizing Eqs (12) and (13), we utilize Calculus Theorythat leads to Eq. (14).

d

dα
L

(

x1, x2, ..., xN ;α
)

= 0. (14)

By combining Eqs (12), (13) and (14), we solve the equations and produce the parameter Eqs (15) and
(16) as we expected.

αi = (Nni→ni
/N) · 100% ni ∈ l (T ) . (15)

αi =

∑
(

Nd(ni)→ni
+ Nni→ni

)

∑
(

N + Nc(ni)→ni

) · 100% ni /∈ l (T ) . (16)

For example, in the square grid topology depicted in Fig. 4, the success probability of node 3 is formulated
as follows:

α3 =
(Nn3→n3 + Nn5→n3 + Nn6→n3 + Nn4→n3)

(N + Nn6→n6 + Nn5→n5 + Nn4→n4)

However, a complete knowledge base requires each sensor node to record and transmit packets that
it received from descendents in each round. Unfortunately,this solution not only wastes constrained
bandwidth but also consumes energy resources. Therefore, an efficient inference engine, which learns
from the collected packets at sink, is utilized to complete knowledge base.

To complete the knowledge base, we adopt expectation maximization algorithm, using Eqs (8) and (9).
This algorithm, in this case, consists of five steps. In step 1, initializing fault-detection parameter vector
⌢
α

[0]
and

⌢

β
[0]

. In step 2, the conditional expectation is used under the parameter vector⌢α
[k]

and
⌢

β
[k]

to estimate incomplete data setN
[k+1]
d(ni)→ni

, N
[k+1]
c(ni)→ni

andN
[k+1]
ni→ni . In step 3, maximizing the expected

log-likelihood and update the parameter vectors⌢
α

[k+1]
and

⌢

β
[k+1]

. In step 4, repeating steps 2 and 3
until the algorithm converges to local maxima. In step 5, restarting with new initial parameter vector
⌢
α

[0]
and

⌢

β
[0]

since the likelihood surface may not guarantee convex. If the likelihood is not convex,
then the probability may converge to local maxima. The entire internal inference process described as a
Non-deterministic Finite Accepter (NFA) as shown in Error!Reference source not found..

The iterative steps 2 and 3 require computingN [k+1]
d(ni)→ni

, N
[k+1]
c(ni)→ni

andN
[k+1]
ni→ni from the knowledge

base, i.e., completely observed data set{x1, x2,. . . ,xN}. The computation process is based on Chapman-
Kolmogorov functional equation. The corresponding Markovchain model is shown in 5.

Therefore, the Chapman-Kolmogorov equation based on the matrix of transition probabilities can be
represented by Eqs (17) and (18).

[

αni
βni

βni
αni

]

·

[

αnj
βnj

βnj
αnj

]

· ... ·

[

αnm βnm

βnm αnm

]

=

[

α β
β α

]

(17)
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Fig. 4. Six-node reserve multicast tree in a square grid topology.

Fig. 5. Fault-detection inference engine described in NFA.

For leaf nodes,

N [k+1]
nj→ni

= Nnj
+

(

N − Nnj

)

· β[k]
ni

, nj ≡ ni. (18)

Where,Nnj
denotes the number of packet collection rounds with node identificationj observed by sink.
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Fig. 6. Morkov chain model.

Fig. 7. A snapshot of Testbed at University of Colorado.

Similarly, this can be used to represent non-leaf nodes, using Eq. (19).

N [k+1]
nj→ni

(19)
= Nnj

+
(

N − Nnj

)

· β nj ∈ c (ni) ∨ nj ∈ d (ni) .

Combining E-Step Eqs (15) and (16) with M-Step Eqs (18) and (19), we iteratively compute a set of
success probability values. Next section will show a 6-nodes reverse cast tree experiment in detail and
analysis of our experiment results.

5. Experimental results

This section discusses our experimental results and analyzes the properties of inference engine in
ATLAS. In order to validate the correctness and effectiveness of ATLAS, we implement the prototype of
ATLAS on top of the Mantis Operating System (MOS). MOS is an open source, multithreaded operating
system developed at University of Colorado at Boulder for use on wireless sensor networking platforms.

For our experiments, we deployed an indoor testbed of TelosBmotes as shown in Fig. 7. The TelosB
platform was developed at University of California at Berkeley and is marketed and sold by Moteiv and
Crossbow. The radio used by the TelosB is the chipcon CC2420,which is an 802.15.4 compliant device,
has a data rate of 250Kbps, and operates in the 2.4 GHz ISM band. The mote uses an 8 MHz TI MSP430
processor and has 1 MB of external flash.

The entire experimental scenario we adopted consists of 30 sensor nodes. In the 30-node topology, 7
nodes generated a reverse multicast tree. During each collection round, the sink cached received packets
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Table 2
Results of the iterative computation based
on equal fault probability

k n
[k]
1 n

[k]
2 n

[k]
3

1 98.1507% 96.8647% 98.1432%
2 98.8739% 97.6735% 96.3148%
3 98.8795% 97.5608% 96.4541%
4 98.8774% 97.5733% 96.4631%
5 98.8776% 97.5728% 96.4570%
6 98.8776% 97.5727% 96.4587%
7 98.8776% 97.5727% 96.4583%
8 98.8776% 97.5727% 96.4584%

k n
[k]
4 n

[k]
5 n

[k]
6

1 92.5000% 91.6250% 92.8750%
2 86.1250% 84.6528% 86.7653%
3 87.0812% 85.8206% 87.6359%
4 86.9378% 85.6250% 87.5118%
5 86.9593% 85.6578% 87.5295%
6 86.9561% 85.6523% 87.5270%
7 86.9565% 85.6532% 87.5273%
8 86.9565% 85.6530% 87.5273%

Fig. 8. Inference engine under scenario 1.

from its descendents. After 400 data collection round, the fault-inference engine was triggered at sink.
For comparability, the inference engine analyzed observeddataset based on various sub-datasets.

The first experiment is conducted on an equal fault probability (Scenario 1). In this scenario, we
assumed the normal success probability of sensor node to be 95%. The 5% of failure probability could

be due to signal loss, interference, radio initialization,etc. Thus, the initial parameter
⌢

β
[0]

is chosen as
a set of different values in the interval [0,1] to avoid halting on local maxima. Table 2 illustrates the
detailed results based on the iterative computation for equal fault probability scenario.

Furthermore, the failure probabilities as well as the absolute error for each node are reflected in Figs 8
and 9 respectively.

In Fig. 8, it was observed that inferred fault probabilitiesof the nodes are increasingly accurate along
with the increase in the volume of dataset.

Furthermore, it is obvious from the plot of standard deviation shown in Fig. 10 that the inference
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Fig. 9. Absolute error under scenario 1.

Fig. 10. Standard deviation under disparate scenario.

process is able to accurately reflect the real-time states ofnodes.
The second experiment was conducted on a high-frequent-fault node (scenario 2). Faults kept occurring

frequently at node 2.
We assume fault probability is set to 40%, while the other nodes ran normally with the same fault

probability as that of nodes in first scenario. Based on the experimental results shown in Figs 11 and
12, we may make a reasonable inference that node 2 may experience unexpected high-frequency faults
while the rest of nodes 1, 3, 4, 5 and 6 kept running normally.

The results of the reasoning using Eqs (15), (16), (18) and (19) are listed in Table 3.
The volume of dataset in this scenario has great impact on theproperty of inference engine. More

importantly, it can be seen that the standard deviation of the inference engine shown in Fig. 10 drastically
decreases along with an increase in dataset that was utilized to infer fault probabilities of nodes. Thus,
the proposed inference mechanism is able to successfully target fault-experience nodes.

Furthermore, we study the reliability of maximum-likelihood estimator. Based on the same dataset
generated by the scenario 2, the maximum-likelihood estimator performed poor inference result, as
shown in Fig. 13.

With the comparison between our proposed mechanism and maximum-likelihood estimator,we observe
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Fig. 11. Inference Engine under scenario 2.
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Fig. 12. Absolute Error under scenario 2.

Fig. 13. Maximum-likelihood estimator under scenario 2.
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Table 3
Results of the iterative computation based
on high-frequent-fault node.

k n
[k]
1 n

[k]
2 n

[k]
3

1 95.3451% 67.6250% 86.4805%
2 96.8658% 62.7234% 94.8478%
3 96.6865% 62.2154% 94.5067%
4 96.5479% 62.4503% 96.9278%
5 96.6532% 62.3417% 94.2011%
6 96.5946% 62.3919% 94.5636%
7 96.6240% 62.3687% 94.3865%
8 96.6095% 62.3794% 94.4729%

k n
[k]
4 n

[k]
5 n

[k]
6

1 89.1566% 86.0250% 99.0250%
2 96.9956% 95.7234% 95.4564%
3 96.6219% 96.2154% 95.2655%
4 96.9259% 96.4503% 95.3500%
5 96.2501% 96.3417% 95.3126%
6 96.6086% 96.3919% 95.3291%
7 96.9208% 96.3687% 95.3218%
8 96.7695% 96.3794% 95.3250%

Fig. 14. Standard deviation under disparate inference mechanisms.

from Fig. 14 that our proposed mechanism with the lower standard deviation would satisfy the objective
of inference detection. In contrast, maximum-likelihood estimator would not be utilized in WSNs
environment.

6. Conclusions and future work

This paper identified the principal faults experienced by WSNs and summarized the existed fault
inference mechanisms. This paper presented an intelligentagent – ATLAS with a fault inference
problem solving engine as a response to the drawbacks of current inference mechanisms and the features
of WSNs. The inference engine is modeled by maximization-likelihood estimation via unobservable data
set. In accordance with theoretical computation, the proposed inference engine embedded in ATLAS is
abstracted as a nondeterministic finite accepter. This paper provided experimental results that showed the
inference engine of ATLAS achieves substantial energy gainby containing the impact of malfunctioning
sensor nodes.
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In the future, we plan to study and establish the relationship between ATLAS and energy consumption
of WSNs. Moreover, we plan to augment our effort to expand ourapproach to a higher level of fault
management, i.e. involving fault diagnosis with minimum exploitation of WSNs resources.
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