
Mobile Information Systems 2 (2006) 135–149 135
IOS Press

Location based mobile computing – A
tuplespace perspective

Anders Fongena,∗, Christian Larsena, Gheorghita Ghineab, Simon J.E. Taylorb and
Tacha Serifb
aThe Norwegian School of Information Technology, Oslo, Norway
bBrunel University, Uxbridge, UK

Abstract. Location based or “context aware” computing is becoming increasingly recognized as a vital part of a mobile
computing environment. As a consequence, the need for location-management middleware is widely recognized and actively
researched.

Location-management is frequently offered to the application through a “location API” (e.g. JSR 179) where the mobile unit
can find out its own location as coordinates or as “building, floor, room” values. It is then up to the application to map the
coordinates into a set of localized variables, e.g. direction to the nearest bookshop or the local timezone. It is the opinion of the
authors that a localization API should be more transparent and more integrated: The localized values should be handed to the
application directly, and the API for doing so should be the same as the general storage mechanisms.

Our proposed middleware for location and context management is built on top of Mobispace. Mobispace is a distributed
tuplespace made for mobile units (J2me) where replication between local replicas takes place with a central server (over GPRS)
or with other mobile units (using Bluetooth). Since a Bluetooth connection indicates physical proximity to another node, a
set of stationary nodes may distribute locality information over Bluetooth connections, and this information may be retrieved
through the ordinary tuplespace API.

Besides the integration with the general framework for communication and coordination the middleware offers straightforward
answers to questions like: Where is node X located? Which nodes are near me? What is the trace of node Y?

Keywords: Distributed tuplespace, location based, context aware, J2me

1. Introduction

The term Location based computing referes to mobile programs that allows the current location to
influence on its execution. A typical example is that the program need localized information like distance
and direction to the nearest hospital, the name of local currency and a map of the neigbourhood.

Middleware for location based computing is typically found behind location APIs like JSR-179,1

through which the client program can inquire about its own position. It is then the responsibility of
the application to retrieve the necessary localized information. This operation may possibly involve
transformation of coordinates to retrieval parameters which potentially is a complicated process.

A more straightforward approach to the retrieval of localized information is needed. In this paper, a
location middleware is offered as an integral part of a distributed tuplespace system. Localized tuples

∗Corresponding author. Tel.: +4792018988; E-mail: anders@fongen.no.
1 http://www.jcp.org/en/jsr/detail?id=179.

1574-017X/06/$17.00 © 2006 – IOS Press and the authors. All rights reserved

136 A. Fongen et al. / Location based mobile computing – A tuplespace perspective

(i.e. tuples containing localized information) are retrieved from the tuplespace as any other tuple, using
special data types in the template.

The proposed implementation of the location service is based on a distributed tuplespace for J2me
(Java 2 Micro Edition) called Mobispace [6], in which mobile nodes update each others local store over
a Bluetooth connection. It is thus possible to configure “stable” nodes with a Bluetooth adapter working
as a “beacon” so that any other node within radio range of the beacon will know the name of the “area”
it is in, and on the basis of this information fetch localized tuples from the local store. The focus of this
paper is to provide detailed information on the principles of this mechanism.

The rest of the paper is organized as follows: In Sections 2 and 3 we present the underlying Mobispace
system and discuss a few principles of tuplespace programming. In Section 4 the the principles of a
distributed tuplespace are presented and discussed. Section 5 gives an overview of the Mobispaced-
based location management system and constitues the core of the paper. Sections 6–9 provide a detailed
presentation of the underlying replication protocols and a proof on the associated ordering semantics.
Section 10 concludes the work and suggests future research on this topic. Readers who are only interested
in a brief overview of the location management mechanisms can skip to Section 5 and read the other
sections as needed.

2. An overview of mobispace

Mobispace is an implementation of the tuplespace model for coordination, communication and storage,
also known as “Linda” [8]. A large body of knowledge has been established on how to design distributed
applications over the tuplespace abstraction (e.g. [2]).

For a tuplespace to be working in a mobile and distributed application, it should be memory-efficient
and able to work in an occationally-connected environment. It should also be reasonably network-efficient
since a mobile unit (using GPRS and Bluetooth connection) have scarce communication resources.

The Mobispace system is designed for mobile applications. It utilizes the scarce set of resources
present in a mobile unit and is designed for connection interruption of unknown length. For portability
reasons, the Java 2 Micro Edition (J2me) platform has been chosen for the implementation for portability
reasons.

The typical communication facilities for a J2me device is a GPRS/GSM service which offers HTTP
connections through the Internet, and/or a Bluetooth device offering short-distance communication with
other mobile units (or possibly a larger computer). MobiSpace uses a distributed and replicated tuplespace
employing replication methods that exploits a combination of these communication facilities.

The attractiveness of the Mobispace is that it offers a familiar and flexible programming model with a
high abstraction level to developers of mobile systems. The loosely coupled coordination and indirect
interactions offered by the tuplespace model fits well with the dynamic environment of mobile systems.

MobiSpace supports:

– Primary-based replication based on a central server connected to secondary (J2me) nodes through a
GPRS/GSM service (or any service that can offer an Internet connection).

– p2p-based replication between secondary nodes based on Bluetooth communication.
– Secondary nodes express their tuplet selection criteria during replication through a set of templates

called an interest profile.
– Open protocols (XML, HTTP, RFCOMM) for interoperability with non-J2me agents. Secondary

nodes can run on any platform and in any language.
– Unknown and dynamic number of secondary nodes.
– Straightforward ordering and synchronization semantics.

A. Fongen et al. / Location based mobile computing – A tuplespace perspective 137

3. The principles of tuplespace programming

The programming model known as “tuplespace” was proposed by Gelernter in 1985 [8] as a combina-
tion of an associative shared storage mechanism and synchronized retrieval operations in a model called
Linda. Today there are two major implementations of tuplespace in a Java environment: JavaSpaces
from Sun Microsystems [7,12] and IBM TSpaces [10].

The basic data structure used in the tuplespace is the tuple, which is an ordered set of fields. Tuples may
be written to the tuplespace, after which they are available for retrieval by any client of the tuplespace.
The original tuplespace model makes a clear distinction between consuming and non-consuming retrieval
operations: A consuming retrieval operation is an atomic read-delete operation, so that it guarantees
that only one client retrieves the tuple. A non-consuming retrieval operation returns a tuple without
affecting its existence. Tuples are immutable, which means that they never change once they are added
to a tuplespace. “Updating a tuple” is done by replacing it with a new tuple in tuplespace. A tuple does
not need to have any unique fields in the sense of a primary key.

Retrieval of tuplets is done through the use of a template parameter. The retrieval operation selects a
set of tuples matching the template, and one or all of the matching tuples are returned to the caller. A
template resembles a tuple by its ordered set of fields, but some of the fields may be “wildcards” i.e. they
have no defined value. A tuple matches a template if all these conditions are met:

– they have the same arity (number of fields),
– the fields of the template and the tuple have pair-wise the same value and type. Wildcard fields in

the template matches any field value (and type) in the tuple.

Formally, a match operation where a template t1 is applied to a tuplespace T resulting in a set of tuples
V can be expressed as follows:

V = match(t1,T) (1)

The original Linda model [8] uses typeless wildcards, and the JavaSpaces implementation follows this
principle. IBM’s TSpaces, on the other hand, uses typed wildcards, in which the type of the wildcard is
checked against the type of the tuple field in an object-oriented fashion.

The result of a retrieval operation is any tuple that matches the template, and neither the Linda model
nor JavaSpaces offer any defined order of retrieved tuplets. TSpaces, on the other hand, offers ’FIFO’
ordering as a configuration option. In JavaSpaces, any ordering requirements is left to the application
which must implement a sequence number scheme in the tuple design.

4. Distributed tuplespaces

Both JavaSpaces and TSpaces implement their services based on a central server. A central server
facilitates consistency and transactional semantics while at the same time creating a scalability bottleneck
and a single point of failure. Also, a central server most often requires permanent connectivity between
the client and the server. Therefore, several distributed tuplespaces have been proposed: Patterson [15]
has presented a fault-tolerant distributed design which requires high availability of network resources.
The LIME system (Linda in a Mobile Environment) [16] offers a platform for mobile agents which bring
a small tuplespace with them as they migrate and make them accessible to other agents residing on the
same host. The SwarmLinda system [5] offers a mechanism for distributed clustering of tuples in a p2p

138 A. Fongen et al. / Location based mobile computing – A tuplespace perspective

environment and claims to be highly scalable. No distributed tuplespace implementation for the J2me
environment has been reported.

In order to conserve the transactional semantics of a tuplespace system the clients need (in practice)
to be permanently connected to the server, so the state-oriented operations between the nodes can be
effectively conducted. A consuming read, for instance, will require a lock on the same tuple in all replica
in order to provide a guarrantee that the tuple is taken by only one client, and such a stateful distributed
operation requires high availability of network resources.

A distributed tuplespace designed for an occationally-connected environment, where it can be weeks
and months between network connections requires a reformulation of the transactional semantics. A
scheme that allows for relaxed coordination between nodes is required. Ordering semantics combined
with lazy replication appear to be useful concepts in such a scheme.

4.1. Ordering and consistency semantics

The correctness of a replicated storage system relies on the ordering of write operations being passed
across the network. If two replica receive write operations in different order, they may end up in different
(inconsistent) states.

A system where all replica receive the results of write operations in the same order is called sequentially
consistent. A more relaxed requirement is that all nodes should receive causally related write operations in
the same order, in which case the system is causally consistent. The corresponding ordering requirement
is called causal ordering. Mobispace offers causal ordering semantics.

When applied to a tuplespace system, the consistency requirements need to be slightly reformulated,
since clients do not neccesarily retrieve the same tuples. Retrieval operations select tuples on the basis of
a template parameter, so two clients will possibly retrieve different sequences of tuples. The reformulated
requirement reads:

If one tuplespace client retrieves two causally related tuples matching the same template in the order
(a,b), then no other client should retrieve them in the order (b,a).

Although considerable effort have gone into semantic definitions of tuplespace-based coordination
models, e.g. [14], there have been no reports on the semantics of tuple ordering.

The details of the Mobispace architecture and the replication protocols are given in Section 6 onwards.
The text will now proceed with a presentation of how the Bluetooth technology can be used for location
management purposes.

5. Bluetooth as a basis for location management

On top of the current Mobispace configuration, location management comes almost for free. A
secondary node must for this purpose be equipped with a Bluetooth adapter. Two Bluetooth units can
“discover” each other and inquire about the other node’s name and available sevices, and then connect
for transport of data.

A stable (non-moving) secondary node can be configured to act as a beacon, and the area within radio
range of its Bluetooth adapter is called a zone. Other nodes within radio range will pick up its “friendly
name” as a designation of its location. The “zone designator” is used as a field to construct the template
being used for retrieval of localized tuples i.e. tuples which are valid only in this zone.

A. Fongen et al. / Location based mobile computing – A tuplespace perspective 139

Secondary
replication
(XML, RFCOMM)

Primary replication (HTTP, XML)

Primary replica

Secondary replica

Secondary replica

TSpaces

Fig. 1. Configuration and position of localization hardware.

Several research projects attempt to utilize Bluetooth hardware for purposes of location management [1,
3,4,9,13]. Although not designed with instant device discovery in mind, Bluetooth is widely deployed
in mobile units (mostly with other applications in mind) and can be used through well-established APIs.

Figure 1 shows an example on how a Mobispace network can be configured for location management
purposes. Three secondary nodes are deployed as beacons on ordinary PCs representing the three zones
“MainLobby”, “Cafeteria” and “Auditorium”. They are identified as beacons by other nodes by naming
convention.

The mobile nodes that are within radio range of one beacon (nodes A, B and D) will have discovered
the beacon and set up their tuplespace retrieval templates accordingly. The mobile nodes C and E have
recently moved as shown with solid-line arrows on the figure. Node E is now outside the range of
all beacons, but retain its association with the zone “Cafeteria” until it eventually moves within radio
range of another beacon. Node C has moved within radio range of the beacon representing the zone
“Auditorium”, but since it still hears the old beacon (“MainLobby”) it will still be associated with this
zone.

140 A. Fongen et al. / Location based mobile computing – A tuplespace perspective

The dashed-line arrows show a selection of secondary replication links. They are included to show
that the seoncdary replication takes place fully independent of the associations of nodes to zones: B and
A replicate while in different zones, and C replicates with a beacon which it is not associated with.

Although not shown on the figure, secondary nodes (mobile and beacons) are optionally conducting
primary replication with the primary server; beacons are likely to use wired connections for this purpose,
whilst mobile nodes would e.g. use GPRS.

The selection of localized tuples represents a process independent from the replication strategy. In
other words, the localized tuples are not actively fetched from a server when a new zone designator is
discovered. The localized tuples are replicated between the nodes in the same fashion as any other tuple.
Which means that the interest profile (See Section 6.2) must be set accordingly for the mobile node to
receive localized tuples.

5.1. The Design of a localized tuple

A new field data type has been introduced for the purpose of location management, the Location. Due
to the type matching of templates and tuples, no localized tuple will be returned to a client unless the
template has a field of this data type. A distinct data type for this purpose thus strengthens the separation
between localized and ordinary tuples.

For the current state of this project, localized tuples are in the form of (key,value) pairs. A localized
tuple has the following design:

localizedTuple = {Location(zone), String(key), String(value)} (2)

which means that it contains of three fields, the first one being of type Location, the two following of
type String. The value of the first field indicates the zone designation that the tuple belongs to.

The retrieval of localized tuples which belong to a particular zone will use the zone designation and
value key as fields in the template parameter:

localizedTemplate = {Location(zone), String(key), String(null)} (3)

The management of localized tuples (creation and deletions) may be given to any node in the system,
but the best solution would be to leave this task to the beacons itself or a central coordinator.

5.2. User-centric localized tuples

In addition to these “zone-centric” localized tuples there exist also localized tuples that do not describe
properties of locations, but of users. User-centric localized tuples are used to describe the whereabouts
of user/nodes2 so that questions like: “In which zone is Christian?” or “Who is in the Cafeteria zone?”
may be answered.

The design of a user-centric localized tuple involves the same structure as before but involves a
“wildcard” zone designation which indicates its special role in locating and listing users of the location-
aware application:

localizedUserTuple = {Location(wilcard), String(user), String(zone)} (4)

2We assume that a node represents a user, and thus the location of nodes reveals the location of a person.

A. Fongen et al. / Location based mobile computing – A tuplespace perspective 141

The management of user-centric localized tuples is done automatically by the Mobispace middleware.
As soon as a node comes within radio range of a beacon and establishes a link with it, the Mobispace
software of the mobile node will remove the tuple containing its former location and replace it with an
updated value (with the designation of the new zone). This information (both the tuple deletion and the
new tuple) will eventually propagate to all nodes through replication sessions.

The retrieval of localized tuples which describe the location of a particular user will use a template
like:

localizedUserTemplate = {Location(wildcard), String(user), String(null)} (5)

The question “who is in my zone” may be answered by a retrieval operation based on this tuple: The
retrieval of localized tuples which belongs to a particular zone will use the zone designation and value
key as fields in the template parameter:

localizedZoneTemplate = {Location(wilcard), String(null), String(zone)} (6)

Likewise, questions like “who is in zone Y” or “who is in all zones” is answered by applying the
appropriate template to a retrieval operation.

5.3. Zones larger than the radio range

A mobile node picks up the zone designation as it discovers a beacon, and keeps that designation as
“its” until another beacon is heard. Consequently, a node belongs to a zone from the moment it discovers
one beacon until it discovers the next (as indicated on Fig. 1). This condition of the system can be
exploited in order to have zones which are larger than the radio range of a small Bluetooth beacon: A
beacon may be placed e.g. in the entrance of a building in order to have one zone for the entire building,
since every mobile node present in the building has had to pass the beacon in the entrance. Efficient
physical placement of beacons should therefore not only consider the propagation of radio waves, but
also the movement patterns of the users.

5.4. Scaleability and responsiveness

The described form of location management depends on the responsiveness of the underlying commu-
nication services. The example just mentioned with a beacon in the entrance of the building requires that
a node quickly detects a that a beacon has come inside radio range and quickly establishes the identity
of the new zone. Also for application where it is necessary to keep a trace of movements in the form of
a sequence of zone designations, it is important that this process completes before the user moves out of
radio range again. In other words, the size of the Bluetooth “cell” should be large enough so that even
a user in constant movement should be able to establish the zone identity before it moves on. It also
becomes necessary to consider scaleability issues: There is an upper limit on how many mobile nodes
that can enter the building at the same time so that everyone discovers the beacon.

Bluetooth technology is not particulary designed for quick link establishment. Bruno and Delmastro [3]
show how the discovery time (equivalent to “link setup”) forms a two-lobed probability distribution with
peaks at approx. 0.5 sec and 3.0 sec. The two-lobed distribution is due to the random selection of
frequency sequences in the bluetooth nodes. Their report also shows that in piconets with 7 nodes or
less, half of the nodes will be found within 0.8 sec. After 3.3 sec all nodes are found by the inquiring
master, even in configurations with as many as 15 nodes.

142 A. Fongen et al. / Location based mobile computing – A tuplespace perspective

After a device discovery phase, the inquiring node will normally initiate a Service Discovery phase
in order to find out if the detected nodes belong to the same application. The outcome of a Service
Discovery is a URL which can be used to connect to the announced service in another node.

Whereas the Device Discovery phase is mandatory in order to establish a Bluetooth link between two
nodes, the Service Discovery phase can be bypassed if one happens to know the associated URL through
other means (caching, lookup etc.).

Despite the fact that other technologies would be better suited for fast device discovery (e.g. RFID), the
availability and deployment scale of Bluetooth makes it the chosen technology for this research effort,
which also includes studies of different optimization techniques in order to bypass the Service Discovery
phase where possible:

– Bypass the Service Discovery Protocol (SDP). One purpose of the SDP is to determine the URL
necessary to connect to a particular service of a Bluetooth node. This URL will change each time
the node restarts its service. Our choice has been to put the URL as a tuple in tuplespace when
the service is started, so that a client may look for the URL in tuplespace rather than doing a SDP
inquiry. It there is no URL in tuplespace, or the given URL does not work, the node initiates a
SDP inquiry. Experimental evaluation estimates the effect of this technique to be approximately 1.1
second.

– Don’t let beacons do Device Discovery (DD). During Device Discovery a node cannot be discovered
or receive connections from others, so a beacon increases its availability to others if it refrains from
DD. Mobile nodes will know that this is a beacon (by convention in its Friendly name) and connect
to it. Since two beacons are never expected to connect to each other, this scheme works without
problems.

To improve the reliability of zone detection, a “diffusion” technique has been considered, but not tested
in practice. A node that for some reason has not detected the present zone may be informed about the
zone from another mobile node. This technique may increase the number of nodes that gets informed
about the present zone, possibly on the expense of accuracy, since mobile node may diffuse inaccurate
information under some circumstances. The diffusion technique is thoroughly presented by Spratt in [17]
and is adopted by the Bluetooth Local Positioning Working Group as its positioning algorithm.

6. Mobispace system overview

The system diagram is shown on Fig. 2. As seen on this figure, node types are either primary
or secondary, which imposes different roles on them, and the replication sessions between them are
different.

6.1. Primary-based replication

The presented approach to a distributed tuplespace uses a “primary server”, i.e. a computer with
enough resources to keep all the data in the tuplespace. Mobile J2me units serve as “secondary servers”
(or simply “secondaries”) which keep a selection of the tuplespace on behalf of local clients, but they
are also able to exchange tuples without primary server involvement.

The approach where secondaries can exchange information directly makes this system different from
ordinary primary-based replication system [18, pp. 337–341], since the primary does not necessarily
have the most current state of the system; new tuples may be created in a secondary and passed on to
other secondaries before they eventually become known to the primary server.

A. Fongen et al. / Location based mobile computing – A tuplespace perspective 143

BEACONCafeteria

BEACONAuditorium

BEACONMainLobby

A

E

D

C

B

Fig. 2. Architecture overview of the distributed store.

6.2. The interest profile

Secondaries are (for resource reasons) not expected to keep the entire tuplespace, but a selection of
tuples from it. A secondary A expresses its selection criteria as a set of templates called an interest
profile, IP [A]. Tuples not matching any of the templates in the interest profile will never be delivered to
the secondary and thus remain unknown to the clients of this secondary.

6.3. UUID, local timestamps and deatch certificates

During operation, a node A maintains a logical clock, LC[A] which is a counter that is incremented by
every event in the node. Every time a message is sent or a tuple is created, the clock is incremented. All
created tuples are assigned a globally unique id, t.uuid , formed by appending a large random number
at the end of the logical clock value.3 During replication, the two nodes exchange their logical clock
value, and the clocks are adjusted to the highest of the two values. This arrangement, known as Lamport
timestamps [11], ensures that for every pair a, b of tuples in the entire system, where a → b (meaning
that a causally precedes b):

(a → b) ⇒ a.uuid < b.uuid (7)

3Other source of unique numbers, like MAC- or Bluetooth addresses, may be used as well.

144 A. Fongen et al. / Location based mobile computing – A tuplespace perspective

I.e. any tuple that causally precedes another will have a lower UUID value in the entire system.
The uuid value remains constant during the lifetime of the tuple, also during replication. The tuple

will have an additional local timestamp which is simply the value of the logical clock when the tuple was
created or received. The role of the local timestamp is to assist in the tuple selection during replication
sessions. The local timestamp t.ts, is causally ordered within the scope of a tuplespace node. For all
tuples stored in the same node, the following is true:

(a → b) ⇒ a.ts < b.ts (8)

When tuples are deleted, they are replaced by Death Certificates (DC) which will inhibit the tuple
to “ressurrect” during replication. In principle, the DCs must be kept forever since the population
of secondaries are unknown and that they replicate with unknown time intervals, but a design choice
has been made to delete the DCs in node A that are older (have a UUID value less than) the variable
TSodc[A].4 The consequence is that a secondary A cannot accept tuples with t.uuid < TS odc[A], i.e.
older than the oldest Death Certificate (but can accept DCs of any age). When a tuplet is deleted, it is
actually converted to a DC by marking it as “dead”. It retains all its original field values, but is given a
new t.ts value.

7. Replication sessions

There are two distinct replication sessions in this system: Replication of data between a primary server
and a secondary (called primary replication) and between two secondaries (called secondary replication).
Primary replication will typically use a connection over a GSM/GPRS service, a wired network (cradle
or Ethernet) or even a Bluetooth connection to a combined GPRS/Bluetooth unit acting as a connection
proxy.

Secondary replication happens between secondaries over a Bluetooth connection. The Bluetooth
technology offers excellent services for ad-hoc connections, since discovery of devices and services is
an integral part of the protocol stack. The units will therefore spontaneously connect to other devices
within radio range.

7.1. Primary replication

The secondary A keeps a record of the locical clock value at the end of the last primary replication,
TSpr[A]. It connects to the primary server P (through a HTTP connection), and sends to P a message
with the following content:

1. All tuples (including DCs) with t.ts > TSpr[A].
2. Its interest profile, IP [A].
3. Its TSpr[A].
4. The value of its logical clock, LC[A].

The primary server will enter the received tuples into its tuplespace (existing tuples already received
from elsewhere are ignored). Received DCs will replace tuples with the same t.uuid. The primary server
will now select every tuple t from the entire tuple collection T that matches the secondary’s interest
profile match(IP [A],T) and has a t.ts > TSpr[A]. The response message back to the primary will
contain these elements:

4More correctly, TSodc is compared to the LC that can be extracted from the UUID (the leftmost digits).

A. Fongen et al. / Location based mobile computing – A tuplespace perspective 145

1. All selected tuples.
2. Value of the logical clock, LC[P].

The secondary A accepts a received tuple t if t.uuid > TSodc[A] and the tuple does not already exist
in the node (but assigns t.ts = LC[A]), and stores the received value of LC[P] into TSpr[A]. After
a complete replication, the secondary can choose to delete some of the oldest Death Certificates and
advance the TSods[A] accordingly.

7.2. Secondary replication

The secondary replication is more “symmetric” than the primary replication, although the parts must
take on different roles, which we will call S1 and S2. Each node S will keep a vector TSsr[N,S]
containing the timestamp of the previous secondary replication with the secondary named N . In case no
data about N is available, the value of TSodc[S] is used.

7.2.1. Template requirements
In order to maintain causal consistency during secondary replication, the sender and the receiver must

have “equal” templates in their interest profiles. If a sender S will send a tuple t from its collection
T[S] to receiver N because the receiver has presented a template r in its interest profile IP [N] and
t ∈ match(r,T), it must be sure that all causally preceding tuples ever to be received by N is present in
T[S]. Otherwise, tuples preceding t may later be received by N from other nodes, which would violate
causal consistency.

Therefore, S will only send tuples to N that match those templates in IP [N] for which S has an equal
template in IP [S]. Two equal templates have the same number of fields, and each pair of field has the
same type and value (regarding “wildcard” as a value).

When S receives IP [N] during secondary replication, it will “prune” the templates in it and remove
those templates for which S does not have an equal template in IP [S]. The resulting interest profile is
denoted as IPp[N]. We will re-visit the causal consistency issues in the next section.

7.2.2. Secondary replication protocol
The role of S1 (the “client”):

1. Send the interest profile IP [S1], the value of TSsr[S2, S1], and the current value of LC[S1].
2. Receive the tuples selected according to TSsr[S2, S1] and the pruned interest profile IPp[S1].

Accept those “new” tuples that have t.uuid > TSodc[S1]. In the same message, receive the interest
profile IP [S2] and TSsr[S1, S2] and LC[S2] from S2.

3. Select the tuples that matches IPp[S2] and t.uuid > TSsr[S1, S2], and send these together with
the current value of LC[S1].

4. The value of LC[S2] received in message 2 is stored as the new value of TS sr[S2, S1].

The role of S2 (the “server”) is simply the opposite: It receives a message containing IP [S1] and
TSsr[S2, S1], selects relevant tuples and returns them to S1 together with its IP [S2] and TSsr[S1, S2].
It then receives the tuples that S1 has selected and LC[S1].

8. Why is this causally consistent?

Tuples are causally ordered from the following reasons:

146 A. Fongen et al. / Location based mobile computing – A tuplespace perspective

– During retrieval operations, tuples are ordered by their local timestamp t.ts, i.e. when more than
one tuple match a template, the tuple with the lowest timestamp value is returned.

– A created tuple t will be assigned a local timestamp value higher than any other tuples in this node
(since the local clock is ever-increasing). No other tuples than the locally stored tuples can causally
precede t. Therefore, a collection of tuples all created locally will have a causal ordering on local
timestamp values.

– During replication sessions, tuples are exported by S to another node R in increasing timestamp
order. Therefore, if t.ts < u.ts, then t will be sent before u and have the lowest timestamp value
assigned by R. Thus, the same relation between the two tuple timestamps holds after replication. If
t and u are causally related, they are (by the definition in Section 4.1) matching the same template
tmpl:

(t → u) ⇒ (t, u) ∈ match(tmpl,T[S]) (9)

And, since S and R have equal templates in their interest profiles, all causally related tuples in S
will be sent to R during a secondary replication session.

– Causal consistency during primary replication is maintained since tuples accepted from a secondary
S are either tuples created in S or tuples received from another secondary with an equal template,
and in both cases are causally related tuples received by the primary in causal order. Causally related
tuples will therefore always have a local timestamp value according to Eq. (8).

9. Mobispace implementation discussion

The design which has been presented in this paper has been implemented in Java. The code for
maintaining the secondary replica has been programmed on the Java 2 Micro Edition API, and the
primary server has been programmed as a Java servlet. The primary server uses the TSpaces system as
its “storage engine”, as indicated on Fig. 2. This section will provide a few remarks to the implementation
efforts.

9.1. Take/delete semantics

The system offers a comsuming retrieve operations, take, which in ordinary tuplespace implemen-
tations acts like an atomic read-delete operation which guarrantees that the tuple is retrieved by one
and only one client. This form for coordination is infeasible in a distributed and occationally-connected
environment, so the take operation has been interpreted to affect only other clients on the same node.
The tuplet is replicated to other nodes (even after it has been taken) and may be retrieved elsewhere.
The take-operation does not delete the tuplet, it only makes it invisible from clients on the same node.

The delete operation has a different semantics, since it convert the given tuple to a Death Certificate,
and the DC will be subject to replication and cause the tuplet to be deleted in other replica as well. Since
causal consistency is ensured, the DC will never be replicated before the tuplet in question, so a tuplet
replace operation (add new tuplet – delete the old) is safe and will be executed in the correct order
everywhere.

9.2. Synchronization – multituples

There are blocking variants of the retrieval operations, called waitToTake and waitToRead.
There are also operations that retrieve all matching tuples (in the correct order) and returns them in a
vector.

A. Fongen et al. / Location based mobile computing – A tuplespace perspective 147

9.3. Persistence management

The implementation offers persistent storage of tuples and all state information so that a unit can be
switched off and on again and continue the expected service. The storage system resident in J2me systems
has been used for this purpose. The persistence service can be set up so that it saves “checkpoints” of
the system state at regular intervals, and the system will automatically perform as if it had been “rolled
back” if it restarts after a crash.

9.4. Resource management

The semantics of the take operation raise a concern that need to be solved by the programmer: Two
threads on different nodes may enter a producer/consumer relationship where one thread (the producer)
is doing a series of write operations and another (the consumer) a series of take operations. In our
system, this would normally fill up the producer’s node with a growing collection of written tuples.
They are taken on another node, which does not affect the producer’s storage. On the expense of
transparency a send operation has therefore been introduced: It works like write, but leaves the tuple
in an invisible state after the next primary replication. The send may be used under the condition
mentioned above: The tuple is supposed to be consumed by clients on other nodes and is not of interest
to clients on this node.

Invisible tuples will be treated like Death Certificates. They are deleted after an aging period.

9.5. Bluetooth operation

There exists a standard API, JSR-82,5 for operating a Bluetooth device in a J2me unit. This API is
implemented on a growing number of J2me-enabled mobile phones, and is offered as additional software
on handheld units using Palm OS and Windows Mobile. The JSR-82 provides access to the Device and
Service Discovery functions, and communication over the L2CAP and RFCOMM protocols.

Secondary replication over a Bluetooth connection is free, fast, and is designed to offer the secondary
replicas the “latest news” and more up-to-date information without the cost of GSM/GPRS based
communication.

10. Conclusion and future work

This paper has discussed the Mobispace middleware in the context of location-aware distributed
applications. The research effort has exploited a middleware for distributed tuplespace and the short
range of Bluetooth tranceivers for location management purposes.

Although Bluetooth discovery mechanisms are not ideally suited for applications that require fast
discovery of a large number of mobile units, the deployment scale of Bluetooth-equipped units make
them interesting alternatives for location-aware mobile applications.

The research presented in this paper offers an integrated approach to tuplespace-based distributed
systems and location management, in the sense that the the tuplespace offers the client location-sensitive
tuples which are transparently representing properties associated with the current location of the mobile

5http://www.jcp.org/en/jsr/detail?id=82.

148 A. Fongen et al. / Location based mobile computing – A tuplespace perspective

client. It also offers eay access to other location management information like who is in a given location
(zone) and where a particular node is located.

The project is in its early stage, and only simple experimenting has been done as a proof of concept.
Future experimenting will address reliability and scalability issues. Besides, the JSR-82 implementation
are often to be buggy and incompletely implemented.

The website www.mobispace.org offers updated information about the project and downloadable
source code.

References

[1] L. Aalto, N. Göothlin, J. Korhonen and T. Ojala, Bluetooth and Wap Push Based Location-Aware Mobile Advertising
System, In MobiSys ’04: Proceedings of the 2nd international conference on Mobile systems, applications, and services,
pages 49–58, New York, NY, USA, 2004. ACM Press.

[2] P. Bishop and N. Warren, JavaSpaces in Practice, AddisonWesley Longman Inc., 2003.
[3] R. Bruno and F. Delmastro, Design and analysis of a Bluetooth-Based Indoor Localization System, In Personal Wireless

Communications, IFIP-TC6 8th International Conference, PWC 2003, Venice, Italy, September 23–25, 2003, Proceed-
ings, 2003, 711–725.

[4] A.T.S. Chan, H.V. Leong, J. Chan, A. Hon, L. Lau and L. Li, Bluepoint: a Bluetooth-Based Architecture for Location-
Positioning Services, In SAC ’03: Proceedings of the 2003 ACM symposium on Applied computing, pages 990–995,
New York, NY, USA, 2003. ACM Press.

[5] A. Charles, R. Menezes and R. Tolksdorf, On the Implementation of Swarmlinda, In ACM Southeastern Conference
(ACM-SE), Huntsville, AL, 2004.

[6] A. Fongen and S. Taylor, A Distributed Tuplespace for J2me Environments, In 16th IASTED International Conference
on Parallel and Distributed Computing and Systems, Phoenix, AZ, 2005, 30.

[7] E. Freeman, S. Hupfer and K. Arnold, JavaSpaces Principles, Patterns and Practice. Addison Wesley Longman Inc.,
Essex, UK, UK, 1999.

[8] D. Gelernter, Generative communication in linda, ACM Trans. Program. Lang. Syst. 7(1) (1985), 80–112.
[9] A. Göoker, S. Watt, H.I. Myrhaug, N. Whitehead, M. Yakici, R. Bierig, S.K. Nuti and H. Cumming, An Ambient,

Personalised, and Context-Sensitive Information System for Mobile Users, In EUSAI ’04: Proceedings of the 2nd
European Union symposium on Ambient intelligence, pages 19–24, New York, NY, USA, 2004. ACM Press.

[10] IBM. Tspaces. Available from: http://www.almaden.ibm.com/cs/TSpaces/[Jun 20, 2005].
[11] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Commun. ACM 21(7) (1978), 558–565.
[12] S. Microsystems, Javaspaces. Available from: http://www.sun.com/software/jini/specs/jini1.2html/js-title.html [Jun 21,

2005].
[13] M. Nilsson, J. Hallberg and K. Synnes, Bluetooth Positioning, In CSEE 2002, 2002.
[14] A. Omicini, On the Semantics of Tuple-Based Coordination Models, In SAC ’99: Proceedings of the 1999 ACM

symposium on Applied computing, pages 175–182, New York, NY, USA, 1999. ACM Press. 31.
[15] L.I. Patterson, R.S. Turner and R.M. Hyatt, Construction of a Fault-Tolerant Distributed Tuple-space, In SAC ’93:

Proceedings of the 1993 ACM/SIGAPP symposium on Applied computing, pages 279–285, New York, NY, USA, 1993.
ACM Press.

[16] G.P. Picco, A.L. Murphy and G.-C. Roman, Lime: Linda Meets Mobility, In ICSE ’99: Proceedings of the 21st
international conference on Software engineering, pages 368–377, Los Alamitos, CA, USA, 1999. IEEE Computer
Society Press.

[17] M. Spratt, An overview of positioning by diffusion, Wirel. Netw. 9(6) (2003), 565–574.
[18] A.S. Tanenbaum and M.V. Steen, Distributed Systems, Principles and Paradigms. Prentice Hall, 2002.

Dr. Anders Fongen is an Associate Professor in the Norwegian School of Information Technology (NITH). He received his
PhD degree from the University of Sunderland, UK in 2004 based on research on distributed search engines. His current
research includes location management for mobile systems, and programming abstractions for communication and coordination
in mobile systems.

Christian Larsen holds a B.Sc. degree in Information Systems from The Norwegian School of Information Technology. He
is currently a Master of Technology candidate in Distributed Information Systems and Computing at Brunel University. His

A. Fongen et al. / Location based mobile computing – A tuplespace perspective 149

research interests are within the areas of distributed and mobile systems, and location-based computing.

Dr. Gheorghita Ghinea is a Senior Lecturer in the School of Information Systems, Computing and Mathematics at Brunel
University. He has over 70 publications in peer-reviewed journals and conferences and has consulted extensively for both
the public and private sector in the areas of multimedia and distributed communications. His expertise in the areas of
pervasive computing and multimedia communications have led to him being invited to sit on Program Committees of leading
in international conferences. Moreover, he is currently editing a book on Digital Multimedia Perception and Design.

Tacha Serif received the B.Sc. (Hons) degree in information systems engineering in 2000, and the M.Phil. degree in computing
in 2002, both from the University of Manchester Institute of Science and Technology (UMIST), Manchester, UK. He is a Ph.D.
Researcher with the School of Information Systems, Computing and Mathematics, Brunel University , Uxbridge, UK. His
research interests include pervasive computing, mobile infotainment, wireless networks, and location-based and context-aware
systems.

Dr. Simon J.E. Taylor is a Senior Lecturer in the School of Information Systems, Computing and Mathematics and is a member
of the Centre for Applied Simulation Modeling, both at Brunel University, UK. He founded and chairs the COTS Simulation
Package Interoperability Standards Development Group (SISO). He is the Chair of the Association for Computing Machinery’s
Special Interest Group for Simulation and was the Chair of the Simulation Study Group of the UK Operational Research Society
for ten years. He has over 100 publications in distributed computing and regularly consults with industry. His email address is
simon.taylor@brunel.ac.uk.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

