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Abstract. Location Based Services can be considered as one of the most rapidly expanding fields of the mobile communications
sector, with an impressively large application range. The proliferation of mobile/wireless Internet and mobile computing, and
the constantly increasing use of handheld, mobile devices and position tracking technologies prepared the grounds for the
introduction of this new type of services. The combination of position fixing mechanisms with location-dependent, geographical
information, can offer truly customized personal communication services through the mobile phone or other type of devices.
Prompted by the avalanche of technology advances in the aforementioned areas in this paper we present an integrated platform
for delivering Location Based Services (LBS). The platform covers the full life cycle of a LBS starting from the specification
of the service, covering issues like the deployment and maintenance of services, the service invocation and the final delivery
of the produced results to the invoking user. A prototype implementation of the discussed platform was developed and used to
perform a series of trial services, with the purpose of demonstrating the pursued functionality.

Keywords: Location Based Services (LBS), positioning, GIS, middleware, software architecture

1. Introduction

The mobile communications market experiences an unprecedented boom in the recent years. New
handheld devices with increased capabilities are introduced, while mobile operators are striving to gain a
significant portion of the market by delivering new state-of-the-art value added network services that can
fully utilize the given technology. Location-Based Services (LBS) is just one such category of services,
upon which both manufacturers and mobile operators have invested a lot. However, delivering new
services requires developing means and tools that assist in their creation, provision and maintenance.

This paper presents an integrated middleware and service provision platform. The main focus of the
platform lies on the LBS domain. It covers the full life cycle of LBS. It provides means that facilitate
the creation and provision of such services with minimum effort from all involved parties (e.g., service
provider, mobile operator). The platform uses open standards so that it can collaborate with existing
network and transport technologies, accommodate future evolved technologies and be accommodated in
current and future telecommunication infrastructures.

The rest of the article is structured as follows. An overview of the involved technologies is presented in
the initial section. The next sections delve deep into the details of the platform’s architecture, discussing
its software architecture and the provided functionality. The technical discussion covers in detail the
core system and more roughly the Service Creation Environment, which accompanies the platform and
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Fig. 1. Middleware and Service Provisioning Platform architecture.

facilitates the service creation and installation process. The article continues with a brief comparison of
the pursued system with other platforms available today in the LBS provisioning domain. The article
ends with the description of the trials and their results, followed by some conclusions on the discussed
work. and some additional thoughts on how to improve the platform in terms of functionality and
performance.

2. Platform overview and related technologies

The discussed platform builds upon technical advances in the area of Info-mobility, distributed/mobile
computing, and Geographical Information Systems (GIS) and aims to provide all the functionality needed
for delivering location-based services in a single platform. The platform focuses on the development,
installation and execution of services and consolidates several technologies.

A modular approach has been followed during the design of the platform resulting to an architecture,
which defines a core component, the kernel, and independent functional entities on the boundary, each
covering a certain operational area in the LBS provisioning chain. These functional entities comprise
the integrated middleware platform shown in Fig. 1. The autonomy granted to each component through
this architectural approach makes possible the extension of the platform through the addition of new
components, modification or even replacement of the existing ones, in order to enhance the overall
functionality.

In order to better illustrate the philosophy behind the proposed framework we will provide, in the
following section, an overview of the involved LBS technologies.
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2.1. Positioning technology

Positioning technology is a key point in the LBS context. Research in this area during the last years
is impressive. A plethora of solutions [6], which provide accurate estimations of user’s location have
emerged, each with distinct characteristics and capabilities applicable in different circumstances. All
solutions, however, can be clustered in two main categories:

– Satellite-Based systems, such as the Global Positioning System (GPS) and Galileo [8]. Such systems
rely on a set of satellites, which continuously transmit position-related information. Specific terminal
devices can be used for receiving the transmitted signals, performing the necessary calculations and
produce estimations of the terminal’s position. A well-known advantage of satellite-based systems
is the high accuracy they can achieve. On the other hand they have certain drawbacks, which include
their inability to operate in indoor environments and the need for specialized, usually costly, terminal
equipment.

– Terrestrial Infrastructure-Based systems are, generally, less accurate than their satellite counterparts.
However, despite this drawback they are widely used, as they do not require expensive add-ons
to terminal devices. Terrestrial infrastructure-based positioning reuses the network infrastructure
available in 2G and 3G networks, by enhancing them with location-aware hardware and software,
capable of performing the complex mathematical calculations needed for achieving accurate location
estimation. GSM positioning has been standardized and includes a variety of methods (Cell identifier,
Time of Arrival, etc.), each providing a different level of accuracy that can fit almost every need.
In addition, significant progress has been achieved in the area of WLAN based location technology.
The problem of positioning in these environments has been solved with ad-hoc solutions due to the
actual lack of standardization for retrieving location information from WLAN devices.

2.2. GIS technology

The Geographic Information System (GIS) technology, although not strictly required in order to
provide location-dependent services, comprises a key technology in this area as its presence can greatly
enhance the quality of the delivered service. Incorporating detailed visual representations (e.g., maps)
or analytical information about certain points of interest can greatly enhance the market potential of the
delivered service.

The GIS consists of a comprehensive database populated with location-specific information, along with
an integrated set of tools for querying, analyzing, and displaying this information. A standard database
management system (e.g., Oracle, Access) is usually used for storing the spatial information. Numerous
data formats have been defined for storing GIS data in these databases (e.g., geotiffs, shapefiles).
Apparently, each data format needs specific software in order to be processed, resulting to a GIS market
flooded with proprietary GIS software. However, products that perform translation between the most
popular formats do exist today; thereupon binding to a specific format does not impose serious problems.
A coarse categorization of the requests that can be possibly dispatched to a GIS system includes:

– Navigation requests for acquiring information on how to travel between two distinct locations.
– Proximity requests, where the query aims to retrieve information related to the user’s current position

(e.g., points of interest).
– Find location requests, where information about a specific location is requested (e.g., a map of the

area)
– Geocoding requests, where based on information about the current location (e.g., address, street

name), the corresponding coordinates are requested.
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Fig. 2. Kernel Architecture.

2.3. Interfacing technologies

The term “interfacing technologies” refers to the transport technologies used for communicating and
transferring data between two end-points. As LBS are strongly coupled with the mobile communications
domain bearers that are used in the latter are of prime importance for transferring data between the
location services platform and its corresponding clients. Until recently, the exchange of data in mobile
networks was limited to the SMS and WAP technologies. The former offered a basic transport protocol
for textual data while the latter a more advanced protocol, similar but more restrictive, to HTTP. SMS
is widely used today but WAP failed to gain wide acceptance mainly due to cost-efficiency reasons,
resulted from the connection-oriented nature of the GSM technology.

Evolution towards 3G networks provided significant benefits to both technologies. The Enhanced
Messaging Service (EMS) and Multimedia Messaging Service (MMS) technologies augmented the SMS
protocol with advanced multimedia capabilities while the GPRS technology not only revived the WAP
technology, but together with the evolution of handheld devices made possible the use of HTTP in the
mobile domain. In WLAN environments the HTTP remains the simplest and most promising technology
for interfacing with servers and other remote systems.

3. Platform architecture

After this short introduction on enabling technologies we proceed with the analysis of the architecture
of the LBS provisioning and middleware platform. As shown in Fig. 2, four main entities have been
defined in the proposed architecture. These entities are:

– The Kernel,
– The Interfaces Component (IFS),
– The Positioning Component (POS), and,
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– The GIS Component (GIS).

The platform is complemented with a Service Creation Environment (SCE), which is not required for
the operation of the rest of the system. However, its presence can greatly enhance the service provisioning
process. An extensive presentation of the SCE will take place in Section 4.

3.1. The kernel

The role of the Kernel in the proposed architecture is to serve as the runtime environment for the
offered services as well as to coordinate the operation of the peripheral components according to the
service logic. Communication of the kernel with the peripheral components is based on XML protocols,
thus, leaving the corresponding interfaces open and adaptable to future updates or replacements of the
respective peripheral component. Moreover, Web Service (WS) interfaces that allow easy and secure
invocation from everywhere have been built for the communication with external entities (e.g., the
Service Creation Environment). The overall functionality of the kernel is summarized in the following
basic tasks:

– Service Installation & Management
– Service Provision

The internal architecture of the Kernel is depicted in Fig. 2, and as shown it consists of several smaller
entities, which cooperate in order to perform the aforementioned tasks. It is evident that the activities
mentioned above, cover the full life cycle of a service from its initial installation on the system to its final
removal.

As seen in Fig. 2, many of the involved modules act as mediators for interfacing with the technologies
presented in Section 2.

3.1.1. Service installation & management
We will start our tour of the kernel from the Service Deployer module, which is the entity responsible

for receiving requests for the installation of new services. Such requests may originate from Service
Creators that operate the SCE, which accompanies the platform. In this perspective, the Service Deployer
can be considered as the server side part for the SCE. The featured WS interface provides to potential
clients (e.g., supported SCEs), methods for receiving new services, for querying the status of already
installed services, for acquiring information about specific services that have been previously installed
on the platform, etc. Clients that need to install new services in the platform should produce the service
specification document and then use the methods provided by the discussed interface to upload that
document to the kernel. The service specification document should comply with the Service Control
Language (SCL) syntax and grammar. The SCL is the language understood by the Service Deployer and
comprises a convenient tool for quickly developing LBS. More details about the SCL and its features are
provided with the description of the SCE, in Section 4.

Integrated with the Service Deployer is the Compiler, which translates the service specification from
SCL to Java code and generates the executable component of the service in the form of an Enterprise
Java Bean (EJB). The EJB format can be directly loaded and executed inside the Service Execution
Environment (SEE). The SEE reproduces the functionality of a standard java-enabled application server,
which has been augmented with functionality that enables the bi-directional communication with the
POS and the GIS peripheral components. This communication is handled by specific modules residing
inside the SEE, which are called Component Handlers. Each Component Handler translates the service
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Fig. 3. Service Installation process.

control logic directives to synchronous method calls on the peripheral component. Data exchanged
between the handlers and the corresponding peripheral component is XML-encoded. Using XML in
this interface enables the kernel to adapt easily to potential enhancements of the involved technologies.
Parsing of the communication parameters is left to the service, rather than being hard-coded in the
kernel (e.g., inside the Component Handlers). For instance, imagine that a new positioning technology is
devised. The new technology may engross new parameters and provide results formatted in a completely
new way. Integrating the new technology to the platform will require minimum effort and will necessitate
a simple modification to the XML schema that is used for the messaging between the SEE and the POS
component. The toll we have to pay for this openness is a small delay in the communication (messaging
protocols cannot compare to direct invocation calls), as well as the transfer of some complexity to the
service creator, which needs to parse XML messages in the service control logic.

The SEE also incorporates concept-mechanisms such as repositories for configuration variables, repos-
itories for variables shared between different instances of the same service, for variables that persist
between successive invocations of the same service for the same user. These repositories are created
and populated during the service installation process. The overall installation process for new services
is depicted in Fig. 3.

Each service, following its successful deployment in the kernel is registered with the Service Registry.
The Service Registry is part of the Kernel’s Registry (see Fig. 2). The Registry consists of two parts:
the Service Registry and the User Registry. The Service Registry is used for storing data related to the
service. The data is stored there upon the installation of the service and is used during the initialization
of the platform (i.e., bootstrapping), for reloading the service contexts, but also during the invocation
of the service in order to locate the appropriate executable component that needs to be invoked. The
User Registry contains the accounts of the users that have registered with the platform. Its presence in
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the system, allows for the adoption of different business models in the service provision process (e.g.,
pre-paid model, per-invocation charging, etc.). The Registry is additionally used for managing services
after their initial installation on the platform (e.g., configuring service parameters, changing invocation
rights, uninstalling services).

3.1.2. Service provision
When a service has been installed in the kernel it becomes available to the users. In this section we

will discuss the process of service provision from the kernel’s perspective. In subsequent sections we
will explain how the peripheral components cooperate in this process. We have already discussed that
when service installation completes, the executable form of the service resides inside the SEE. Now, in
order for the service to “run”, a certain trigger is required. Such triggers arrive either from an end user
and are received through the Interfaces component or they are generated internally by the Scheduler. In
both cases the Service Invocation Module (SIM) is the final interceptor for all triggers.

The role of the Scheduler in the platform is to support the automatic execution of services. It has built-
in support for both event- and time-triggered service execution and a variety of scheduling paradigms are
catered for (one time scheduling, infinite periodic scheduling, periodic scheduling with fixed deadlines,
etc.). Time-triggered scheduling is performed through the Scheduler’s management interface, and
requires defining the service name and the execution timeframe. The Scheduler also provides means for
delivering location events coming from the Positioning component to the service (e.g., the user entered
a mall or a theater), with the minimum possible delay. This is part of the functionality provided by the
OSA/Parlay mobility specification [2] and could prove particularly useful for implementing Location
Based advertising. No priorities have been integrated in its architecture, which means that all events are
treated equally. However, this approach does not impose any restrictions, as the scheduler is a scalable
component, which guarantees, that even concurrent events are executed with the minimum possible
delay. Particular effort, during the design of the Scheduler, was spent on achieving persistency of the
scheduled tasks. Hence, aiming to maximum reliability, the Scheduler features mechanisms for storing
information pertaining to each scheduled task in order to cope with potentials crashes of the platform. A
detailed discussion on the Scheduler’s architecture and capabilities can be found in [10].

The Service Invocation Module (SIM) receives user requests coming from the Interfaces component.
The SIM receives requests in the form of XML messages, which means that any client that wants to
invoke a service directly from the SIM, will need to formulate such a message. Corresponding answers
are also dispatched in the same form. The XML messaging protocol (Fig. 4) was designed by taking into
account the efficiency requirements of real-time communication. In this perspective, it is fairly simple
and compact, but at the same time flexible enough in order to accommodate all information needed for
executing different types of services and handling the produced responses. The general processing rules
that the SIM applies on each incoming message are as follows:

1. The incoming request (in the form of an XML document) is received.
2. The document is validated against the XML DTD.
3. If the validation succeeds, the document elements are processed in order to deduce the service to

be invoked and its parameters.
4. The service registry is consulted, in order to retrieve the context of the requested service.
5. The service is invoked.
6. The service results are packaged in a new XML document.
7. The results, encapsulated into the XML document, are returned to the client that performed the

invocation.
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<!ELEMENT interf-krn-message (request-to-kernel | response-from-kernel)  >
<!ELEMENT request-to-kernel (user-data, service-invoc-data, security-data?)  >
<!ATTLIST request-to-kernel

msg-id CDATA #REQUIRED
date-time CDATA #REQUIRED>

<!ELEMENT user-data (term-cap?)> 
<!ATTLIST user-data 

user-id CDATA #REQUIRED
user-address CDATA #REQUIRED
second-response-type (sms | wap | http) #IMPLIED>

<!ELEMENT term-cap EMPTY>
<!ELEMENT service-invoc-data (service-data, cookies*)>
<!ATTLIST service-invoc-data

service-id CDATA #REQUIRED
service-type (sms | wap | http) #REQUIRED
rqst-method CDATA #REQUIRED>

<!ELEMENT service-data CDATA>
<!ELEMENT cookies EMPTY>
<!ATTLIST cookies

session-id CDATA #IMPLIED
name CDATA #REQUIRED
value CDATA #REQUIRED
description CDATA #REQUIRED>

<!ELEMENT security-data EMPTY  >
<!ATTLIST security-data

url-proxy CDATA #IMPLIED
url-referer CDATA #IMPLIED>

<!ELEMENT response-from-kernel (xslt-data, service-invoc-data, user-data)
<!ATTLIST response-from-kernel

msg-id CDATA #REQUIRED
cservlet-name CDATA #IMPLIED
date-time CDATA #REQUIRED
priority (high | medium | low) �medium�>

<!ELEMENT xslt-data EMPTY  >
<!ATTLIST xslt-data

type (generic | specific) �generic�
name CDATA #IMPLIED>

Fig. 4. SIM-Interfaces communication protocol (DTD).

3.2. Peripheral components

The peripheral components are named after their relative position around the Kernel. Each component
features a well-defined API for interfacing with the Kernel, which is based on XML. This modular
architecture, along with the use of XML results in autonomous and independent components, which
can be swapped-out and replaced, at any moment, by other entities implementing the same APIs with-
out obstructing the Kernel’s operation. As shown in Fig. 1, three peripheral components have been
incorporated, i.e. the Positioning component, the GIS component and the Interfaces component.

3.2.1. The positioning component
The positioning component is responsible for providing location information to the Kernel. It provides

the means for interacting with the various location systems that are available today. The interface
towards the Kernel is based on XML while the interface towards Location systems adopts the OSA/Parlay
specification implemented over WS [2].
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The main role of this component is to integrate all underlying positioning technologies, abstracting
from their differences, under a unified interface, which is used by the service. The interface is fully
configurable through a variety of parameters intended to cover all possible cases and operation paradigms.

The current implementation of the Positioning component supports location retrieval from 2G/3G
networks and WLANs [5]. GPS support also exists through the use of a specific software client module
running on the terminal side. This client pushes the GPS location data (piggybacked on the request)
towards the corresponding server module residing inside the positioning component (GPS Wrapper).
The framework’s support for various positioning technologies allows the seamless provision of LBS
across different infrastructures and facilitates user roaming.

The positioning component consists of several modules that carry out the common functionality needed
for position retrieval. Functions, like multiplexing, routing or scheduling are mandatory steps that every
positioning request has to go through, subject to its type. Functionality specific to the positioning
technology has been placed in separate modules, which are called wrappers, as their task is to wrap the
peculiarities of the underlying positioning system. The positioning component supports four types of
positioning requests, namely those listed below:

1. Request – Response (RR). This is the most common positioning request, where a service requests
the user’s position providing his identity as input.

2. Periodic Request (PR), which is, actually, a periodically activated RR request registered to the
Kernel’s scheduler.

3. Event-driven Request (ER) where an initial request which defines a boundary area is registered to
the underlying positioning mechanism. After the registration completes, the positioning mechanism
returns events on the user’s location in relation to the defined area (e.g., alerts every time the user
is entering or leaving the specified area).

4. Generic Request (GR). This is an RR kind of request where all underlying networks are searched
for locating a specific user.

The internal architecture of the Positioning component includes the Dispatcher, the Router, the QoS
Scheduler, the Multiplexer and the Wrappers (see Fig. 5). Location requests from the Kernel are routed
by the Dispatcher to the appropriate sub-module for further processing. If the request is of type ER it
is processed by the Multiplexer. The latter multiplexes requests coming from the same user terminal in
order to end up with a single request registration within a certain network for each user. Such multiplexing
reduces the load at the network, as it ensures that only one request per user remains pending, inside
the network, at any given time. The three other types of requests are handled by the Scheduler. The
Router performs address resolution for the addresses (e.g., IP or E.164 addresses) of the traced terminals.
Resolved information is used for routing requests to the appropriate wrapper (i.e., the wrapper handling
the communication with the network that the mobile device is connected to). The router entries are
simple mappings of address prefixes to wrapper IDs; they are static and are updated manually by the
platform administrator.

The wrapper is the actual client of the underlying positioning mechanism. Each wrapper instance has a
unique identifier and is bound to a specific positioning gateway. It embodies a set of message queues, for
incoming and outgoing traffic and communicates with the underlying network using an OSA-compliant
WS interface. We should note that the wrapper’s architecture depends exclusively on the underlying
positioning technology. Currently, three different wrappers have been integrated to the platform for
covering GSM, WLAN and GPS positioning. Supporting additional positioning mechanisms would
simply require developing new wrappers and integrating them to the middleware. Further discussion on
the positioning component can be found in [4].
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3.2.2. The GIS Component
The GIS Component is the mediator of the platform with the GIS repository. The component covers

the process of spatial information retrieval and provides means for creating visual representations (e.g.,
maps) of the spatial data. The component implements algorithms like navigation routing and geo-coding,
which render it capable of answering both simple and advanced requests. It consists of two modules:
a client module, which interfaces with the Kernel and a server module, which interfaces with the GIS
repository. Communication between the two parts is achieved through a WS-enabled interface. Such an
approach allows the two involved parties to be technology independent. This is very important, since,
in most cases, GIS repositories are operated by external entities (e.g., content providers) and may adopt
a different implementation technology. Currently, the GIS component supports the ESRI shapefiles data
format and implements the following services:

– Indoor and Outdoor localization service.
– Indoor and Outdoor navigation service.
– Outdoor proximity service for finding POIs.
– Outdoor geocoding and reverse geocoding service for finding street details based on provided

coordinates or the coordinates of a given place accordingly.

Supporting one specific data format is not restrictive as there are several GIS data conver-
sion/transformation tools available today. Such tools eliminate the need for creating different im-
plementations of the same GIS algorithms as the spatial data format can be changed instead.

3.2.3. The interfaces component
The Interfaces component is the gateway of the platform to the external world. Its current implemen-

tation supports three established and commonly used protocols (protocol suites), namely SMS, WAP
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and HTTP. Its design, however, is modular enough so that support for additional protocols can be easily
added in the future. The Interfaces Component can be connected with various proxy servers (e.g., HTTP
Servers, WAP Gateways or SMS Centers) in order to receive the end users’ requests.

The internal design of the component is depicted in Fig. 6 and shows the existence of the special
front-end modules, dedicated to the various supported protocols. The main task of these modules is to
receive the requests arriving in the respected protocols, process them and form the XML document that
is needed for the actual service invocation. The document is next passed to the SIM module, which
processes it further according to the rules discussed in earlier paragraphs.

4. The service creation environment

The Service Creation Environment (SCE) comprises an Integrated Development Environment (IDE)
supported by a GUI, whose goal is to facilitate the creation and installation of new services on the
platform. The SCE features a graphical interface, and customized support for the LBS-oriented language
(SCL), which is supported by the platform. Development using the SCE can provide significant assistance
to inexperienced users, enabling them to create, deploy and debug services easily. For more adept users
a set of command-line tools is provided.

4.1. The development environment

The SCE is based on the Eclipse software platform (http://www.eclipse.org), an open source, extensible,
graphical framework, which enables the development of customized GUIs. The SCE supports two
development environments. New services can be developed using the standard text-based editor but also
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Fig. 7. Textual (left) and Visual (right) editors in action.

a visual environment has been provided. Within the latter it is possible to add and remove commands
corresponding to SCL directives, using a simple drag-and-drop mechanism, and to define the flow of
execution between the various commands. Commands in the visual editor are represented as boxes. Each
box has a set of attributes that need to be filled, resulting to a one-to-one correspondence with the SCL
directives. Development in visual mode generates, behind the scene, the complete SCL specification for
the new service. Switching between the two environments during development time is possible. Figure 7
displays the same service as it looks in each editing environment.

It is evident that the SCE is an add-on to the platform, and its absence does not restrict its capabilities.
Moreover, the web-services interface provided by the Deployer module allows potential users to use
their own, possibly different SCEs for the service creation process.

4.2. The Service Control Language (SCL)

The service logic for applications designed to run by the platform is specified through a new language
the, SCL (Service Control Language) developed specifically for the LBS domain. The language is based
on the XML syntax and resembles other similar scripting languages that have been developed and used
for similar purposes (i.e., service specification).

Reviewing other similar languages we can find CPL [9] and SCML [7] as the most notable examples.
Both are used in providing next generation telephony services. The use of XML for expressing procedural
languages has both benefits and drawbacks. Element nesting used in procedural languages is directly
supported by XML. However, serial interpretation is not a core feature of XML and implicit rules must be
established, such as ordering of tags and content. Fortunately, some XML processing tools (e.g., DOM,
SAX), can provide the XML elements in the order of their appearance in the document. Another feature
of the XML representation is that it can easily be presented in a visual, instead of the traditional textual
form. This allows the easy development of visual service building tools, like the visual environment that
has been developed for supporting the service creation process and which is displayed in Fig. 7. Special
syntactical constructs were used to access middleware components (e.g., Positioning, GIS), while the
generality of the language allows the creation of complex services.

4.2.1. Language specification
A complete service specification includes the following elements:
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1. Service Control Language part: The Service Control Language (SCL part) constitutes the business
logic description of the Service Specification Language (SSL). It does not include input processing
and filtering, nor support for specific output presentation elements. The language is also designed
to be independent from specific interface characteristics, so that potentially diverse functionality is
accessible in a unified way.

2. Configuration Options: This section includes configuration settings for the service, such as pre-
requisites (e.g. dependency on other services or installed libraries) and parameters (e.g. connection
strings to remote databases). Several other elements also reside in this area, such as service
descriptions, visualization data (used by the Visual Editor) and potential security constraints.

3. Additional Elements: This area allows the inclusion of files, which may be used directly or
indirectly by the service. Such files may provide additional functionality to the service logic (e.g.,
class libraries, customized HTML/WAP front-end, applets/midlets that can be downloaded to the
user terminal, images, etc.).

The SCL constitutes the most complex and interesting part of service specification. During system
design it was decided that the language should provide sufficient facilities for simple service description,
without the need for external, native components. By examining a number of possible services, the
following functionality levels were identified:

1. Very simple services, which do not need any control logic other than the activation of system
components in a predetermined order (e.g. a service retrieving the requestor’s location)

2. Low processing requirement services, which require some data manipulation, coordination and
making simple decisions (e.g. a service retrieving someone else’s location)

3. Medium processing services, which require support for manipulating data quantities of varying
sizes (e.g. a service for finding nearby restaurants)

4. High processing services, which require arbitrary control capabilities (e.g. a service performing
fleet management)

Services belonging to levels (1)–(2) may be easily expressed as a series of simple instructions. For
service level (3), in many cases, though not always, processing may be provided by pre-existing platform
components, so as to require the same level of language support as (1) and (2). Service level (4)
requires the presence of a general-purpose language and the support normally associated with full-
featured languages, such as C/C++ and Java, and is not really fit for direct implementation in a scripting
language. To ensure sufficient language flexibility, it was determined that at least level (3) services should
be supported, and the final decision was to provide a general-purpose scripting language, supporting all
functionality levels.

As a mediator for the platform components, SCL needs to communicate and exchange information
with peripheral components. In order to support service aggregation, services should also be capable of
communicating between them. Services, which support advanced functionality, may also require storage
of data across multiple transactions. It is therefore important that SCL provides such facilities to services,
which require them. Relational databases, LDAP enabled directory servers or other mechanisms could
provide the data persistence facilities. However, exposing such mechanisms to the SCL should not
increase the syntactical load of the language. Complex service logic that is not easily expressible using
the SCL should be delegated to native platform modules, which are coded in a native language and can,
therefore, execute more efficiently. Such logic should be embeddable/invocable from SCL descriptions
so that the service execution model remains unchanged, whether the service is implemented using SCL
or implemented as built-in platform functionality.
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<service date="adate" name="GetMyLocation" lang="SCL">
<entry label="Main" roles="super">

<set name="posdata">
<invoke component="POS">

<set name="getLocation">
<set name="transactionId" value="0"/>
<set name="requestMethod" value="’RR’"/>
<set name="priorityLevel" value="1"/>
<set name="targetUserAddress" value="’0049932910729’"/>

</set>
</invoke>

</set>
<set name="gisdata">

<invoke component="GIS">
<set name="getLocationInfo">

<set name="f" value="posdata.longtitude"/>
<set name="l" value="posdata.latitude"/>
<set name="userid" value="’10302020210’"/>

</set>
</invoke>

</set>
<set name="result">

<set name="image" value="gisdata.imagedata1.image"/>
<set name="text" value="gisdata.textdata1.text"/>

</set>

</entry>
</service>

Fig. 8. An SCL example.

The potential of the SCL to be used as a language for expressing arbitrarily complex control logic,
affirms that SCL should provide support for general-purpose language constructs. Typical constructs to
achieve this are iterations, conditional execution and execution flow control in general. These constructs
are meaningful only if execution state can be monitored, such as through the use of variables, as well
as the ability to make calculations based upon the state, which implies that SCL needs a sufficiently
strong expression mechanism. Finally, SCL should provide a compact description of a service. This
directly relates to readability and ease-of-use. Services that require little or no data processing should be
simpler and more intuitively expressed by SCL than equivalent descriptions in general-purpose high-level
languages.

4.2.2. SCL example
We provide a brief overview of the SCL’s grammar and syntax through the simple example service

that is listed in Fig. 8.
The service specification comes in the form of an XML document. Only characters from the stan-

dard 7-bit ASCII set can be incorporated (multilingual support through UTF-8 encoding). Binary data
(classes/midlets, etc.) are described using Base64 encoding. The service presented is a simple “GetMy-
Location” service. It defines a single “Main” method, with certain security constraints. Specifically, the
method is accessible only by registered users with the specified role (“super”) assigned. The “posdata”
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variable is defined using the “set” directive. The variable takes the value returned by a method invocation
on the Positioning component. Component invocations in the SCL are defined with the “invoke” com-
mand, followed by a sequence of variables. The first variable in this sequence defines the service/method
to be invoked on the component, whereas the rest define the parameters to be passed to it. In our example,
the result of the invocation is returned in the variable “posdata” in the expected format. Note that the
SCL, similarly to most scripting languages, does not provide strong type checking and variables are cast
to appropriate types dynamically at run-time.

The next invocation is towards the GIS component, where the “getLocationInfo” service is requested.
The contents of the “posdata” variable (i.e., the location coordinates), which contains the result of the
previous invocation, are used to define the parameters of the new invocation. The result is assigned
to the variable “gisdata” and is used for defining a new variable with the special name “result”. The
“result” variable is reserved for specifying the return value of a method. Hence, the content of the
“result” variable will be returned upon invoking the “Main” method of the “GetMyLocation” service.
More detailed analysis of SCL can be found in [1].

5. Comparison with other platforms

Location-based solutions comprise an area of major interest and activity in the wireless domain. Many
corporate vendors have developed software tools and middleware platforms for handling the delivery of
such services. A list of most location-based platforms, available today, is presented in Table 1.

Many of these LBS platforms are general-purpose allowing development of proprietary services, while
others are targeted to specific application domains (e.g., fleet management). Almost all of the reviewed
platforms are based on JAVA/J2EE.

Table 1 lists some key characteristics for each platform. What can be observed from this list is
that although many solutions have capabilities similar to that of the proposed framework none of them
integrates the full functionality offered by the proposed platform. For example, there are many platforms,
which support 2G/3G networks or WLAN environments but not a single one with support for both of
them. Also, none of the general-purpose platforms has built-in GPS support.

Summing up this comparison, it seems that despite the variety of platforms that exist today there is no
integrated solution that covers all aspects concerning LBS provision, i.e. from new service specification
to its actual deployment and delivery to end users. Most of the available platforms focus on the process of
deploying and delivering the service and neglect issues such as creation and specification of the service
logic. Others do consider those latter issues but restrict their capabilities on a limited subset of the full
LBS spectrum.

6. Performance evaluation

In order to perform the evaluation of the proposed architecture, a prototypical implementation was
developed. The prototype system was based on Java technologies and more specifically on the J2EE
framework (http://java.sun.com/j2ee) and specifically the EJB 2.0 specification. The kernel and the
peripheral components were developed using the JBoss application server (http://www.jboss.org) as
basis. For position retrieval, an emulation of an OSA-compliant positioning gateway was developed
using the Apache Tomcat 5.5 jsp/servlet engine (http://www.apache.org) and the Web Services Axis
toolkit. Finally, a simple GIS server was built using the Java map objects software development kit.
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Table 1
Location Based Service platforms

LBS Platform Provided by Key characteristics Information URL
ArcLocation
Solutions

ESRI WAP/SMS/HTTP connec-
tivity, GMLC connectivity
using MLP

http://www.esri.com/industries/
locationservices/business/developer.html

Autodesk
Location Services

AutoDesk Service
deployment through java or
web services APIs

http://locationservices.
autodesk.com

Canvas Location-
Enabling Server

Telenity SCE provided, Services
specified in SCML,
OSA/Parlay support

http://www.telenity.com

Cellocate Cell-Loc Inc. Uses proprietary position-
ing hardware for delivering
LBS

http://www.cell-loc.com/

Celltick Platform Celltick
Technologies

Supports GSM and GPRS
networks using SMS or
WAP

http://www.celltick.com

Location Engine Kivera Inc. No interface to positioning
infrastructure

http://www.kivera.com

LocationAgent Mapflow Service deployment over
2G/3G networks

http://www.mapflow.com

MapInfo
MapXtreme
Java Edition

MapInfo Java middleware for LBS
but without positioning
interface

http://www.mapinfo.com

Mobile
Positioning
System

Ericsson LBS for 2G/3G networks http://www.ericsson.com/mobilityworld/
sub/open/technologies/mobile positioning/
about/mps system overview

SpatialFX ObjectFX
Corporation

Java enabled software for
performing spatial queries

http://www.objectfx.com

Xypoint Location
Platform (XLP)

TeleCommunication
Systems, TCS

GSM, CDMA, TDMA and
3G support

http://www.telecomsys.com

Webraska Products Webraska Mobile
Technologies

GMLC positioning inter-
face,
SOAP HTTP/XML APIs
for service development

http://www.webraska.com

The Cellpoint
MLS/MLB
architecture

cellpoint 2G/3G networks support http://www.cellpoint.com

6.1. Trial setup

The trial setup involved the network topology displayed in Fig. 9.
The LBS middleware runs on an AMD Athlon XP 2000+ PC (768MB RAM), whereas the Positioning

Gateway and the GIS server run on another AMD Athlon XP 1800+ (512 RAM) PC. Both PCs are located
in the same local area network and use the Microsoft Windows 2000 Server operating system. Service
invocations are performed from a remote computer (Pentium 4 1800 MHz with 256 MB RAM, running
Microsoft Windows XP Professional Edition), which accesses the network via an ADSL 384Kbps line.
The aforementioned topology is chosen because it fits well a real invocation scenario, where high data
rates are experienced in the server domain, while the link between the end user and the invoker is
significantly slower.

One indoor and one outdoor service were created and used for the tests. Both services performed
an invocation to the positioning gateway to obtain the user’s position. A second outdoor service which
performed an additional request towards the GIS to retrieve the map of the surrounding area was also
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INTERNET

10 Mbit Ethernet
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Fig. 9. Trial Network Setup.

created and tested (Fig. 10). For the indoor case no GIS invocation was possible, due to unavailability of
indoor maps. Navigation services, although created, were not tested as their invocation is not deterministic
but strongly depends on the two end points. After all, the performance analysis, was oriented mainly in
the testing of the core system (i.e., the kernel and its interfaces towards external entities); so we did not
want to incur in our tests the overhead produced by external systems, such as the GIS server.

6.2. Evaluation metrics

In order to study the system’s performance, a series of trial scenarios were developed. Each scenario
used a different type of service and aimed to assess the performance of our prototype, under different load
conditions. In this perspective, each scenario consisted of a series of experiments, with an increasing
arrival rate for incoming requests. The general scenario is as follows: A total of N users is assumed. Each
user performs 1 to 3 services invocations. The user arrival rate (L) follows the exponential distribution.
60% of the users perform exactly one request, while the rest remain connected and perform a maximum
of 3 requests (the number is randomly chosen for each individual user) before they leave the system. Time
between two subsequent user requests follows the basic pareto distribution with the shape parameter set
to 0.9 (α = 0.9), thus modeling the thinking time of the user. Starting with a small number of users (N =
10) and a very low inter-arrival rate L (6 arrivals/min), the values of both N and L are increased until the
platform fails to respond to a significant number of incoming requests. In order to be statistically correct,
the Monte Carlo methodology [3], consisting of 10 repetitions of each experiment, was followed. The
evaluation results, discussed in the following sections, are the statistical average of all 10 experiments.

Evaluation metrics that were used include: a) the success rate (% of total requests that were served
successfully), and b) the average service execution time.
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Fig. 10. Example service output produced during service invocation: (a) FindLocation service, (b) navigation service.
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Fig. 11. Indoor location system success rate.

6.3. Evaluation results

6.3.1. Indoor services
In this section, results obtained from indoor services are presented. Figure 11 depicts the success rate

for the indoor location service as a function of the number of users in the system (N) and the user arrival
rate (L users/min). For N = 10 the success rate decreases when the users arrival rate (L) increases to over
1200 users per minute, while for greater values of N (20, 50, 100, 200 and 500 users), the performance
of the system degrades faster (for values of L between 120 and 240 users/min).

The overall behaviour of the system for the indoor location service scenario is uniform, progressive
and predictable. Degradation of performance is gradual and depends strongly on the system load. The
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Fig. 12. Average service execution time.

statistical analysis of the results proved the existence of very small confidence intervals, which imply
predictable behaviour as well as high reliability and precision for our measurements.

As presented in Fig. 12, the system’s response time (the time from the moment the request is received
until the moment the user receives the response) is increased gradually when the rate of incoming requests
is increased.

6.3.2. Outdoor services
The results presented in this section, determine the performance of the outdoor services tested.

Outdoor Location Service (with GIS invocation)

The service retrieves the user’s position and displays it on a map. As shown in Fig. 13, the service
performs reasonably well, and the performance decreases gradually as the user arrival rate increases. It
is remarkable though, that the system remains stable even when the user arrival rate exceeds the 100
users/min threshold.

The average service execution time, for this service, remains in acceptable levels and increases slowly
as the arrival rate increases. As shown in Fig. 14, when the user arrival rate is low, the system responds
in a few seconds (maximum response time in the order of 2–3 sec), which is an excellent performance.
The response time degrades to over 20 seconds only for very high user arrival rates (>120 users/min)
and a large pool of users (N = 1000).

Outdoor Location service (without GIS invocation)

In order to determine the possible cause of the delays experienced in the service invocation, we
performed a series of profiling sessions. The results showed that the GIS component imposed a bottleneck
for the system. To prove this, we developed a simplified service that did not performed a GIS invocation.
We tested the performance of this service and the results are displayed in Figs 15 and 16. This service
performance is significantly enhanced, and as shown in Fig. 15, the success rate is more stable, and
degrades slowly while the user arrival rate increases.

A more obvious improvement was observed in the service execution time, which remained below 20
seconds even for very high arrival rates (Fig. 16).
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Fig. 13. Success rate for Outdoor Location Service.
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Fig. 14. Average Outdoor Location Service execution time.

6.4. Evaluation conclusions

In general, all tested services exhibited similar behavior, with slight variations. An issue that should
be stressed here is that a lot of time in the outdoor service case is spent to the GIS calls. This results from
the fact, that most of the processing that is required for providing the results of the service is performed
by the GIS server (e.g. routing algorithms etc.) Consequently, in certain cases the LBS architecture has
to wait for the answer of the GIS server, thus, resulting to significant delays in the service execution.
Removing the GIS calls from the tested services showed significant improvement in both the success
rate and the mean service execution time.

7. Conclusions

Service provisioning platforms comprise an area of major interest in contemporary telecommunication
infrastructures. Mobile operators offer a continuously growing range of services towards their customers



I. Priggouris et al. / A generic framework for Location-Based Services (LBS) provisioning 131

Success rate - 1000 users

0%

20%

40%

60%

80%

100%

120%

0 50 100 150 200

users/min

%
 fu

lfi
lle

d 
re

qu
es

ts

Fig. 15. Success rate for the simplified Outdoor test service.

Average service execution time - 1000 users

0

5

10

15

20

25

0 50 100 150 200

users/min

ex
ec

ut
io

n 
tim

e 
(s

ec
)

Fig. 16. Average response time for the simplified Outdoor Test service.

trying to attract a significant portion of the market. In this service-centric landscape, platforms capable
of supporting the full life cycle (creation, provision, management) of a service, like the one presented in
this article, will play a critical role. The presented platform offers important tools to its owners (actors
like mobile operators and application service providers), allowing them to develop, test and provide LBS
with little effort and high reliability. The platform was built using open standards in both its software
components (e.g., Java, XML), and interfaces towards third parties (i.e., service creators, positioning
systems, end users). The platform adopts a modular and easily maintainable architecture, which enables
effortless adaptation to the new positioning technologies and application protocols, without affecting the
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core mechanisms. The architecture of the platform allows fully distributed installation and operation, by
different actors, that have to collaborate in order to deliver a complete LBS. Mobile operators, service
developers, service providers and content providers can use the platform as a coordinating entity that
will enable them to pool their resources together, and deliver state of the art services to the user.

A prototypical implementation of the proposed framework was developed and used for running a
series of pilot services. The tests provided the basis for analyzing the performance of the prototype. The
results demonstrated that the behavior of the system is predictable, although its performance degrades
severely when high arrival rates are experienced. However we believe that the conclusions produced by
the evaluation of the system will further assist our research in order to identify the bottlenecks of the
system and improve its performance. An already identified bottleneck point is the GIS subsystem, whose
presence is unavoidable for delivering the full range of LBS applications. Out future intent is to create a
new version of the prototype capable of running in a clustered environment. This will surely improve the
performance of the system but we also hope that it will reveal potential new problems or inefficiencies
that were not initially considered and will assist us in the enhancement of the system’s functionality.
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