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Abstract. A frequent type of query in a car navigation system is to find the & nearest neighbors (kN V') of a given query object
(e.g., car) using the actual road network maps. With road networks (spatial networks), the distances between objects depend on
their network connectivity and it is computationally expensive to compute the distances (e.g., shortest paths) between objects. In
this paper, we propose a novel approach to efficiently and accurately evaluate kN N queries in a mobile information system that
uses spatial network databases. The approach uses first order Voronoi diagram and Dijkstra’s algorithm. This approach is based
on partitioning a large network to small Voronoi regions, and then pre-computing distances across the regions. By performing
across the network computation for only the border points of the neighboring regions, we avoid global pre-computation between
every object-pair. Our empirical experiments with real-world data sets show that our proposed solution outperforms approaches
that are based on on-line distance computation by up to one order of magnitude. In addition, our approach has better response
times than approaches that are based on pre-computation.
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1. Introduction

Over the last decade, due the rapid developments in information technology (IT), particularly com-
munication technologies, a new breed of information systems have appeared such as mobile information
systems. Mobility is perhaps the most important market and technological trend within information
and communication technology. Mobile information systems will have to supply and to adopt services
that go beyond traditional web-based systems, and hence it comes with new challenges for researchers,
developers and users.

One of well-known applications that depend on mobility is the car navigation system, which allows
drivers to receive navigation instructions without taking their eyes off the road. Using a Global Positioning
System (GPS) in the car navigation system enables the driver to perform a wide manner of queries, from
locating the car position, to finding a route from A to B, or dynamically selecting the best route in real
time. One of the frequently used queries in such systems is k& nearest neighbor (kN N) queries. This
type of query is defined as: given a set of spatial objects (or points of interest, e.g., hospitals), and a
query point (e.g., vehicles’ location), find the & closest objects to the query. An example of kNN query
is a query initiated by a GPS device in a vehicle to find the 5 closest restaurants to the vehicle. With
spatial network databases (SNDB), objects are restricted to move on pre-defined paths (e.g., roads) that
are specified by an underlying network. This means that the shortest network distance between objects
(e.g., the vehicle and the restaurants) depend on the connectivity of the network rather than the objects’
location.
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The majority of the existing work on kN N queries is based on either computing the distance between
a query and the objects on-line [3,5,9], or utilizing index structures [4,6,8,10,11,13,16-18]. The solution
proposed by the first group is based on the fact that the current algorithms for computing the distance
between a query object ¢ and an object O in a network will automatically lead to the computation
of the distance between ¢ and the objects that are (relatively) closer to ¢ than O. The advantage of
these approaches is that they explore the objects that are closer to ¢ and computes their distances to ¢
progressively. However, the main disadvantage of these approaches is that they perform poorly when
the objects are not densely distributed in the network since then they require large portion of the network
to be retrieved for distance computation. The second group of approaches is designed and optimized
for metric or vector spatial index structures (e.g., m-tree and r-tree, respectively). The approaches that
are based on metric index structures require pre-computations of the distances between the objects and
grouping of the objects based on their distances to some reference object (this is more intelligent as
compared to a naive approach that pre-computes and stores distances between all the object-pairs in the
network). These solutions filter a small subset of possibly large number of objects as the candidates for
the closest neighbors of ¢, and require a refinement step to compute the actual distance between ¢ and the
candidates to find the actual nearest neighbors of ¢. The main drawback of applying these approaches on
SNDB is that they do not offer any solution as how to efficiently compute the distances between ¢ and the
candidates. Moreover, applying an approach similar to the first group to perform the refinement step in
order to compute the distance between ¢ and the candidates will render these approaches, which traverse
index structures to provide a candidate set, redundant since the network expansion approach does not
require any candidate set to start with. In addition to this drawback, approaches that are based on vector
index structures are only appropriate for spaces where the distance between objects is only a function
of their spatial attributes (e.g., Euclidean distance) and cannot properly approximate the distances in a
network.

A comprehensive solution for spatial queries in SNDB must fulfill these real-world requirements: 1)
be able to incorporate the network connectivity to provide exact distances between objects, 2) efficiently
answer the queries in real-time in order to support kN N queries for moving objects, 3) be scalable in
order to be applicable to usually very large networks, and 4) be independent of the density and distribution
of the points of interest.

Taken into consideration that Mobile devices are usually limited on memory resources and have lower
computational power, in this paper, we propose a novel approach that fulfills the above requirements
by reducing the problem of distance computation in a very large network, into the problem of distance
computation in a number of much smaller networks plus some online “local” network expansion. The
main idea behind our approach, termed Progressive Incremental Network Expansion (PINE), is to first
partition a large network in to smaller/more manageable regions. We achieve this by generating a
network Voronoi diagram over the points of interest. Each cell of this Voronoi diagram is centered by
one object (e.g., a restaurant) and contains the nodes (e.g., vehicles) that are closest to that object in
network distance (and not the Euclidian distance). Next, we pre-compute the inter distances for each
cell. That is, for each cell, we pre-compute the distances across the border points of the adjacent cells.
This will reduce the pre-computation time and space by localizing the computation to cells and handful
of neighbor-cell node-pairs. Now, to find the k nearest-neighbors of a query object ¢, we first find the
first nearest neighbor by simply locating the Voronoi cell that contains ¢. This can be easily achieved
by utilizing a spatial index (e.g., R-tree) that is generated for the Voronoi cells. Then, starting from the
query point ¢ we perform network expansion two different scales simultaneously to: 1) compute the
distance from ¢ to its first nearest neighbor (its Voronoi cell center point), and 2) explore the objects
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that are close to ¢ (centers of surrounding Voronoi cells) and computes their distances to ¢ during the
expansion.

At the first scale, a network expansion similar to INE performed inside the Voronoi cell that contains
q (VC(q)) starting from ¢. To this end, we utilize the actual network links (e.g., roads) and nodes (e.g.,
restaurants, hospitals) to compute the distance from ¢ (e.g., vehicle) to its first nearest neighbor (the
generator point of V'C'(g)) and the border points of V' C(q). When we reach a border point of VC(q), we
start a second network expansion at the Voronoi polygons scale. Unlike I N E and similar to VN 3, the
second expansion utilizes the inter-cell pre-computed distances to find the actual network distance from
q to the objects in the other Voronoi cells surrounding V' C'(g). Note that both expansions are performed
simultaneously. The first expansion continues until all border points of V' C(q) are explored or all kN N
were found.

To the best of our knowledge, the Incremental Network Expansion (I N E') and the Voronoi-based Net-
work Nearest Neighbor (V/ N 3) approaches presented in [5,9], respectively, are the only other approaches
that support the exact kN N queries on spatial network databases. However, V N 3 performance suffers
with lower density data sets.

Our empirical experiments with real-world data sets (presented in Section 5) show that VN3 disk
access time tends to be on average twice to four times more than that for PINE. In addition, VN3
CPU time tends to be on average five to ten times more than that for PI N E. Finally, we show that the
required computation for the pre-computation component of VN3 is on average 13.59 times more than
that of PINE. IN E approach also suffers from poor performance when the objects (e.g., restaurants)
are not densely distributed in the network. Our empirical experiments show that /N E query processing
time is 10 to 12 times more than that of PIN E, depending on the density of the points of interest.
Also, we show that PI N E’s performance is independent of the density and distribution of the points of
interest, and the location of the query object.

The remainder of this paper is organized as follows. We review the related work on & nearest neighbor
queries in Section 2. We then provide a review of the Voronoi diagrams and Dijkstra’s algorithm, the
basis of our proposed PIN E approach in Section 3. In Section 4, we discuss our proposed PINE
approach. Finally, we discuss our experimental results and conclusions in Sections 5 and 6, respectively.

2. Related work

Numerous algorithms for k-nearest neighbor (kN N) queries are proposed. This type of queries is
extensively used in car navigation systems, geographical information systems, shape similarity in image
databases, etc. Some of the algorithms are aimed at m-dimensional objects and are based on utilizing
one of the variations of multidimensional vector or metric index structures. Other algorithms are based
on pre-calculation of the solution space or the computation of the distance from a query object to its
nearest neighbors on-line and per query. Finally, there are approaches that support the exact & nearest
neighbors’ queries on spatial network databases. In this section, we consider each group in turn.

Some of the algorithms are aimed at m-dimensional objects and are based on utilizing one of the
variations of multidimensional vector or metric index structures. The algorithms that are based on index
structures usually perform in two filter and refinement steps and their performance depend on their
selectivity in the filter step. These approaches can be divided in two group: 1) vector index structures [4,
6,8,10,15,18], and 2) metric index structures [11,12,16,17]. Vector index structures are approaches that
are designed to utilize spatial index structures and aimed to minimize number of candidates, index nodes
and disk accesses required to obtain candidates. There are two major shortages with these approaches
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that render them impractical for networks: 1) networks are metric space, i.e., the distance between two
objects depends on the connectivity of the objects and not their spatial attributes, however, the filter step
of these approaches is based on Minkowski distance metrics (e.g., Euclidean distance). Hence, the filter
step of these approaches cannot be used for, or properly approximate exact distances in networks. 2)
These approaches do not propose any method to calculate the exact network distance between objects and
the query for their refinement step, rather they assume that the distance function can be easily calculated.
Metric index structures are approaches that are also based on a filter and refinement process, but as
opposed to the vector index structures, they index and filter the objects considering their metric distance.
The main disadvantage of these approaches is that they do not offer any solution on how to efficiently
compute the distances between the query and the candidates (i.e., the same as the second shortage of the
approaches based on vector index) which is required by the refinement step.

There are also other algorithms that are based on pre-calculation of the solution space or the computation
of the distance from a query object to its nearest neighbors on-line and per query. Berchtold et al. in [13]
suggest pre-calculating, approximating and indexing the solution space for nearest neighbor problem in
m dimensional spaces. Pre-calculating the solution space means determining the Voronoi diagram of
the data points. The exact Voronoi cells in m dimensional space are usually very complex, hence the
authors propose indexing approximation of the Voronoi cells. This approach is only appropriate for first
nearest neighbor problem in high-dimensional spaces. Jung et al. in [14] propose an algorithm to find
the shortest distance between any two points in a network. Their approach is based on partitioning a
large graph into layers of smaller sub graphs and pushing up the pre-computed shortest paths between
the borders of the sub graphs in a hierarchical manner to find the shortest path between two points. This
approach can potentially be used in conjunction with one of the approaches that are based on metric
index, however, the main disadvantage of this approach is its poor performance when multiple shortest
path queries from different sources are issued at the same time.

Finally, to the best of our knowledge, there are only two other approaches that support the exact
kN N queries on spatial network databases (i.e., Papadias et al. in [5], and Kolahdouzan et al. in [9]).
Papadias et al. in [5] propose a solution for nearest neighbor queries in network databases by introducing
an architecture that integrates network and Euclidean information and captures pragmatic constraints.
Theirapproach is based on generating a search region for the query point that expands from the query. This
approach performs similar to Dijkstra’s algorithm and the underlying data structures of the architecture
are aimed to minimize number of disk accesses that are required to fetch adjacent links and nodes from
the database. The advantages of this approach are: 1) it offers a method that finds the exact distance in
networks, and 2) the architecture can support other spatial queries like range search and closest pairs.
Since the number of links and nodes that need to be retrieved and examined are inversely proportional to
cardinality ratio of entities and number of nodes in the network, the main disadvantage of this approach
is a dramatic degradation in performance when the above cardinality ratio is (far) less than 10%, which is
the usual case for real world scenarios (e.g., the real data sets representing the road network and different
types of entities in the State of California show that the above cardinality ratio is usually between
0.04% and 3%). This is because spatial databases are usually very large and small values for the above
cardinality ratio will lead to large portions of the database to be retrieved. This problem happens for
large values of k as well.

Kolahdouzan et al. in [9] propose a solution for & nearest neighbor queries in spatial networks, termed
VN3, which is based on the properties of the Network Voronoi diagrams (NVD). In addition, it uses
localized pre-computation of the network distances for a very small percentage of neighboring nodes in
the network to enhance query response time and reduce disk accesses. V N 3 iterative filter/refinement
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process is based on the fact that the Network Voronoi Polygons (NVPs) of an NVD can directly be used
to find the first nearest neighbor of a query object ¢. Subsequently, NVPs’ adjacency information can be
utilized to provide a candidate set for other nearest neighbors of ¢. Finally, the pre-computed distances
can be used to compute the actual network distances from ¢ to the generators in the candidate set and
consequently refine the set. The filter/refinement process in V N 3 is iterative: at each step, first a new
set of candidates is generated from the NVPs of the generators that are already selected as the nearest
neighbors of g, then the pre-computed distances are used to select “only the next”” nearest neighbor of
g. The advantages of this approach are: 1) it offers a method that finds the exact distance in networks,
2) fast query response time, and 3) progressively returns the k nearest neighbors from a query point (i.e.,
at each iterative step it computes the exact next nearest neighbor and the shortest distance to it). The
main disadvantage of this approach is its need for pre-computing and maintaining two different sets of
data: 1) query to border computation: computing the network distances from ¢ to the border points of
its enclosing network Voronoi polygon, and 2) border to border computation: computing the network
distances from the border points of NVP of ¢ to the border points of any of the other NVPs.

3. Background

Our proposed approach to address the nearest neighbor queries is based on both the Voronoi diagram
and Dijkstra’s algorithm. A Voronoi diagram divides a space into disjoint polygons where the nearest
neighbor of any point inside a polygon is the generator of the polygon. Dijkstra’s algorithm provides
one the most efficient algorithm that finds shortest paths from the source node to all the other nodes. In
this section, we review the principles of the Voronoi diagrams. We start with the Voronoi diagram for
2-dimensional Euclidean space and present only the properties that are used in our approach. We then
discuss the network Voronoi diagram where the distance between two objects in space is their shortest
path in the network rather than their Euclidean distance and hence can be used for spatial networks. A
thorough discussion on Voronoi diagrams is presented in [2]. Finally we discuss Dijkstra’s algorithm.

3.1. Voronoi diagram

The Voronoi diagram of a point set P, V' D(P), is a unique diagram that consists of a set of collectively
exhaustive and mutually exclusive Voronoi polygons (Voronoi cells), V Ps. Each Voronoi polygon is
associated with a point in P (called generator point) and contains all the locations in the Euclidean
plane that are closer to the generator point of the Voronoi cell than any other generator point in P. The
boundaries of the polygons, called Voronoi edges, are the set of locations that can be assigned to more
than one generator. The Voronoi polygons that share the same edges are called adjacent polygons and
their generators are called adjacent generators. Figure 1 shows an example of a Voronoi diagram [9], its
polygons and generators. The following property holds for any Voronoi diagram and will be used later
to answer kNN queries: ““The nearest generator point of p; (e.g., p;) is among the generator points
whose Voronoi polygons share similar Voronoi edges with V P(p;).” [2,9].

3.2. Network Voronoi diagram
“A network Voronoi diagram, termed NVD, is defined for graphs and is a specialization of Voronoi

diagrams where the location of objects is restricted to the links that connect the nodes of the graph and
distance between objects is defined as their shortest path in the network rather than their Euclidean
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Fig. 1. Example of a Voronoi diagram: Generators and Voronoi polygons.

distance.” [2,9]. Spatial networks (e.g., road networks) can be modeled as weighted planar graphs where
nodes of the graph represent the intersections and roads are represented by the links connecting the
nodes.

Assume a planar graph G(N, L) that consists of aset of nodes N = {p1,...,Pn, Pn+1,-- -, Do}, Where
the first n elements (i.e., P = {p1, ..., pn}) are the generators (e.g., points of interest in a road network),
and a set of links L = {l, ..., [x} that connects the nodes. Also assume that the network distance from
apointponalinkin Lto p; in N, d,,(p, p;), is defined as the shortest network distance from p to p;. For
all j € I,,\{:}, we define:

k
Dom(p;, pj) = {plp € U loydn(p,pi) < dn(p,pj)}

k
b(pi, pj) = {plp € U loydn(p,pi) = dn(p,pj)}

The set Dom(p;, p;), called the dominance region of p; over p; on links in L, specifies all points in
all links in L that are closer to p; or of equal distance to p;. The set b(p;, p;), called bisector or border
points between p; and p;, specifies all points in all links in L that are equally distanced from p; and
p;. Consequently, the Voronoi link set associated with p; and network Voronoi diagram are defined as
following respectively:

Viink (i) = om(p;, p;)

Nn D
JeI\{i}

where Vi, (p;) specifies all the points in all the links in L that are closer to p; than any other generator
point in N. Similar to V D defined in Section 3.1, elements of NV D are also collectively exhaustive
and mutually exclusive except for their border points. Note that b is a set of points, which unlike Voronoi
diagram in Euclidean space, cannot directly generate polygons. However, by properly connecting
adjacent border points of a generator g to each other without crossing any of the links, we can generate
a bounding polygon, called network Voronoi polygon, we term NV P(g), for that generator. Note that
generation of NV P(g) only requires local network information, i.e., the links and nodes that are in the
area between g and its adjacent generators are used to generate NV P(g).

An example of NVD [9] is shown in Fig. 2, where p1, p2, and p3 are the generators. We can assume
that the set of generators is the set of points of interest (e.g., hotels, restaurants, ...) and p4 to pi¢ are
the intersections of a road network that are connected to each other by the set of streets L. The NVD
of the graph where each line style corresponds to a Voronoi link set of a generator is shown in the same
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Fig. 2. Example of a network Voronoi diagram (NVD).

figure. Some links are completely contained in Vj;,, of a generator (e.g., the link connecting pg and
pg is completely inside V;;,,x(p1)), while others are partially contained in different V;;,,.s (e.g., the link
connecting p4 and ps is divided between and contained in Vi, (p1) and Vi;,,x (p2). The figure also shows
how adjacent border points should be connected to each other: if two adjacent border points are between
two similar generators (e.g., b5 and b7), they can be connected with an arbitrary line that does not cross
any of the members of L. Three or more adjacent border points (e.g., b2, b3 and bs) can be connected
to each other through an arbitrary auxiliary point (e.g., v in the figure). By using arbitrary lines and
auxiliary points, NVPs will become non-unique. However, since objects in a graph can only be located
on links, different NVPs will contain exactly identical Voronoi link sets and hence are unique in this
respect. Moreover, as shown in the figure and unlike Voronoi polygons in the Euclidean space, common
edges between two NVPs may contain more than two border points and are not necessarily straight lines.
Despite this, properties 1 and 2 of Section 3.1.1 are still valid for NVPs.

3.3. Dijkstra’s algorithm

In a weighted graph G = (V, E) (otherwise known as a network); where V' is a set of vertices, and
E is a set of edges; it is frequently desired to find the shortest path between two nodes. Dijkstra’s
algorithm provides one the most efficient algorithm that finds shortest paths from the source node to all
the other nodes. The main idea of the Dijkstra’s algorithm is to maintain a set of vertices (S) whose final
shortest-path weights from the source (s) have already been calculated, along with a complementary set
of vertices (QQ = V — S) whose shortest-path weights have not yet been determined. The algorithm
repeatedly selects the vertex with the minimum current shortest-path estimate among (. It updates the
weight estimates to all vertices adjacent to the currently selected vertex (known as relaxation). The
vertex is then added to the set .S. It continues to do this until all vertices’ final shortest-path weights have
been calculated (i.e., until the set @ is empty).

kN N problem can be solved by first applying Dijkstra’s algorithm to find the distance from the source
node to all other nodes in the graph. Next, by sorting the nodes in an ascending order according to their
distances from the source node, the kN NV nodes can be identified as the top & elements of the sorted list.

4. kN N queriesusing network Voronoi diagram expansion

In this section we propose a new approach, termed Progressive Incremental Network Expansion
(PINE), based on Dijkstra’s algorithm. PIN E is used to find the exact kNN of a query point using
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Algorithm: PINE (g, £)

NVP(q)is the polygon that ¢ belongs to.

N

The generator point (G

neighbor ( NN,).

3. Cand-NN is a set of size &-7 that should contain the next &-7
candidate (network) nearest interest points sorted in ascending
order of their network distance. Initially the set is empty. Cand-
NN can be implemented as a priority queue.

_I.‘ dn’\ max = cjfwﬂ{q‘ca}Td_ N'll\{k 1 ) // IF (.‘ﬂ?ﬂ'fﬂ\":\" ib g‘ d\' max

PQ=<(n,d,(g,n,))>: where N;s are the nodes that can be

reached from the query point. // sorted in ascending order of

their network distance

net”

,ﬂ,;,“”) for NVP(q) is your first nearest

=a0.

6. de-queue the node » on top of PQ // with the smallest
d,(g.n).
while (( d,(g.n)<d,,., ) and (number of nodes in
Cand— NN < k)
/

if (nis n,,,) then //nis a network node
{ for each non-visited adjacent node n, of »
i en-queue (n.,d,. (q,n.))
ii. de-queue the next node # in PQ
1
i
else // nis Rypp: A polygon border point that is on the
border of an adjacent polygon with generator point g .

i
L3

i. update Cand-NN from Cand-NNug, . If g
already belongs to Cand-NN, then relax its value,
otherwise add it to Cand-INN.

i, ('{\'nlnx = dm-:(qscvand_‘l\'l"\!k}

iii. for each border point of NVP(g)( ”-\I'Ptm.) en-queue
(”.’\-'I'J’{J:. » fnw{q‘”.\-iﬁf'tx. ;])

iv. de-queue the next node # in PQ

End PINE
Fig. 3. PINE algorithm.

network Voronoi diagram and network expansion algorithm. It performs network expansion starting
from the query point ¢ and examines the interest points (i.e., N NS) in the order they are encountered.
This approach is also based on the properties of the network Voronoi diagrams and pre-computation of
the network distances for a very small percentage of the nodes in the network.

PINE reduces the problem of distance computation in a very large network, into the problem of
distance computation in a number of much smaller networks plus some online “local” network expansion.
The main idea behind our approach is to first partition a large network in to smaller/more manageable
regions (using network Voronoi diagram). Next, we pre-compute the inter distances for each cell. This
will reduce the pre-computation time and space by localizing the computation to cells and handful of
neighbor-cell node-pairs. Unlike 7N E' [5], our expansion method utilizes the inter-cell pre-computed
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Fig. 4. Sample network Voronoi diagram.

distances to find the actual network distance from the query point to the objects in the surrounding area,
hence saves on computation time. VN3 [9] performance suffers with lower density data sets, because
it has to access the pre-computed border-to-border (inter-cell) and query-to-border (intra-cell) distances
stored with the polygons. To avoid this problem, with PIN E, we only need to access border-to-border
(inter-cell) distances stored with the polygons.

4.1. Network node types

To explain how PIN E works, we need to distinguish between two different types of nodes. First
node type (ny¢:) represents the nodes that are inside NV P(q). These nodes are the original network
map nodes (e.g., no in Fig. 4). The second node type (n xv p) represents the border points of a polygon.
In the sequel we use BoP(e) to specify the set of border points of an entity e. n vy p can be either
BoP(q) or BoP(NV P)s of the polygons that we will explore. These nodes are either original network
map nodes or nodes generated to create NV D (e.q., bs, bi7, ... etc.).

4.2. Border to border computations

Border to border distance (inter-cell) computations are required to find the network distances from
BoP(NV P(q)) to the border points of the NVP of any generator, BoP(NV P(g)). To this end, we pre-
compute the point-to-point network distances between the border points of each NVP “separately”. For
example, this approach suggests that for the NVD shown in Fig. 4, the point-to-point network distances
among {b1,...,bs} (corresponding to NV P(P;)) be pre-computed. It also suggests that the point-to-
point network distances among {b1, ba, b14, ..., b19} (corresponding to NV P(Ps)) be pre-computed.
Note that each border point (e.g., b1) belongs to at least two NVPs (e.g., NV P(P;) and NV P(Ps))
and hence, its distances to all the border points of two NVPs must be pre-computed. The intuition for
this approach is that once the point-to-point network distances among the border points of “each” NVP
is computed, these distances can be used to find the network distances between the border points of
“any” two NVPs. The other intuition is that this approach has low complexity with respect to both space
and computation. The reasons are: 1) The pre-computation is only performed for the border points of
each NVP separately, and in real world scenarios (as opposed to the example shown in Fig. 4), the ratio
of the total number of the border points to the total number of the nodes in the network is small (see
Section 5), and 2) the pre-computation is performed for each NVP separately and not across all NVPs,
and the border points of each NVP are fairly close to each other.
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4.3. PINF algorithm

PINE works as follows. First, it locates the polygon (NV P(q)) that the query point ¢ belongs to
using Contain() function, hence, retrieving the first nearest neighbor (the generator point of NV P(q)).
This is based on Voronoi Property 2 mentioned in Section 3.1.1. Note that we do not have the distance
information from the query point to that neighbor yet. Then, the links that cover ¢ are located and the
nodes of those links are placed on a priority queue P according to their network distance to ¢ and are
explored later. Next, the node closest to ¢ (i.e., the node on top of PQ), e.g., ¢, is removed from PQ
and nodes that are connected to c are retrieved from the database. Subsequently, the minimum possible
network distance, d.,»,, from ¢ to these nodes are computed and the nodes are placed on PQ (if they are
already on PQ), their locations on the queue are updated based on their new distances to ¢). During this
progressive process, when we reach a n y.; node we expand from it as I N E algorithm using the original
network edges/nodes of NV P(q). However, when we reach a n v p node connecting to a new polygon
(NVP(j)) adjacent to NV P(q), then we do not need the original network edges/nodes of NV P(j).
This is because, for any polygon we know how to reach (shortest path) from any border point to any other
border point and how much it costs. Therefore, we consider that all the other border points of NV P(5)
as the links that we can reach from n v p and we add them to PQ to be explored later. In addition, we
know the distance from any border point of NV P(j) (including n yv p) to its generator point (interest
point). Therefore, we compute the d,,,,, to that generator (not the actual shortest distance) and add the
generator point for NV P(j) to our candidate k-1 interest points queue (Cand-NN). At any point during
the algorithm execution, the nodes inside the Cand-NN are only candidate neighbors that we can reach
so far and their order in the queue (ordered in ascending order according to distance). The order of the
nodes in the queue may change at each execution step, if we were able to find a shorter path to reach the
same node that is already in Cand-NN. Nodes can also be added or dropped deepening on their updated
dmnp- This is because our algorithm depends on Dijkstra’s algorithm that updates the distance estimates
to all vertices adjacent to the currently selected vertex (known as relaxation process). Only at the end
of the progressive process, Cand-NN would have the next k-1 interest points of ¢ ordered from top to
bottom. We recursively apply the above algorithm and terminate it when we have the queue Cand-NN
filled with k-1 neighbors and the distance from ¢ to any element of P(Q) is greater than the distance to
reach any node in Cand-NN. This means, from any point in P(), we cannot reach another neighbor with
a distance shorter than any of the k-1 interest points already discovered. See Fig. 3 for the complete
PINFE algorithm.

4.4, Analysis

This approach is more suitable for large networks with a small number of points of interest (i.e., a
large value for n/mb; m points of interest, n nodes in the network, b connected nodes on one disk
block). The approach does not have to retrieve a large portion of the network data (edges/nodes) before
the distance from ¢ to BoP(N'V P(q)) can be computed. It only retrieves the part of the network in the
direction that it will explore next, and delays the exploration of the rest of the network, until it is needed.
With I N E algorithm, if the & interest points cover a large spatial area, then the algorithm would have
to explore the exact network edges and nodes for that area (i.e., a large number of nodes and edges).
However, in our approach, the search area is divided into a set of network Voronoi polygons. Hence, to
find the first interest point, we only need to explore the exact network edges and nodes of the polygon
area that contains the query point ¢ (NV P(q)). Then, to find the next k-1 interest points, we utilize the
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Table 1
Query processing time of PINE vs. INE
Entities Query processing time (sec.)
Qty k=1 k=5 k=10 k=25 k =50 k =100
(density) PINE INE PINE INE PINE INE PINE INE PINE INE PINFE INE

(cpu)  (cpu)  (cpu) (cpu) (cpu)  (cpu)  (cpu)  (cpu)  (cpu) (cpu)  (cpu) (cpu)
disk  disk disk  disk  disk disk disk disk disk  disk disk  disk

Hospitals (0.06) (0.3) (0.38) (1.7) (0.57) (3.8) (1.31) (10.1) - - - -
46 (0.0004) 131 124 7.40 783 9.12 165.1 34.81 430.2 - - - -
Shopping Centers (0.02) (0.09) (0.12) (0.5) (0.23) (1.1) (0.45) (3.1) - - - -
173 (0.0016) 056 3.6 232 211 426 440 7.47 1180 - - - -
Parks (0.01) (0.03) (0.04) (0.2) (0.07) (0.3) (0.19) (0.8) (0.36) (1.6) - -
561 (0.0053) 024 14 072 82 127 153 312 364 6.01 711 - -
Schools (0.00) (0.015) (0.01) (0.07) (0.03) (0.14) (0.07) (0.36) (0.14) (0.7) - -

1230 (0.0115) 012 06 033 35 062 6.6 140 156 280 322 - -
Auto Services  (0.00) (0.013) (0.01) (0.05) (0.01) (0.09) (0.03) (0.23) (0.07) (0.44) (0.14) (0.87)
2093 (0.0326) 041 057 023 243 041 43 087 100 157 194 329 38.00
Restaurants (0.00) (0.01) (0.01) (0.03) (0.01) (0.06) (0.02) (0.15) (0.07) (0.3) (0.10) (0.6)
2944 (0.0580) 0.4 049 024 134 034 27 069 68 155 133 257 26.0

saved information stored with the polygons (i.e., shortest path between all border points of each polygon)
instead of exploring the exact network edges and nodes of the rest of the polygons.

Our preliminary experiments show that the total number of border nodes of an NV P is much smaller
than the number of actual network nodes inside NV P. Therefore, PIN E would access fewer network
nodes and links to explore the same spatial area that /N E would explore. Hence, we would have to
compute fewer distances online than I/ N E. In addition, it boosts the performance since it eliminates the
need for executing complex algorithms for distance computations in the adjacent polygons to NV P(q),
rather, the distances can be computed from a lookup table in one disk block access. The disadvantage
of this approach is the requirement for an off-line process to pre-calculate and store the above network
distances.

5. Performance evaluation

We conducted several experiments to: 1) compare the performance of PIN E with its competitor,
the I N E approach presented in [5], and 2) evaluate the overhead of the pre-computations for PINE,
and 3) compare the performance of PIN E with that of V. N3. We used real-world data set obtained
from NavTech Inc., used for navigation and GPS devices installed in cars, and represent a network of
approximately 110,000 links and 79,800 nodes of the road system in the downtown Los Angeles. The
experiments were performed on an IBM ZPro with dual Pentium 11l processors, 512 MB of RAM, and
Oracle 9.2 as the database server. We present the average results of 1000 runs of & nearest neighbor
queries where & varied from 1 to 500.

5.1. PINEVs. INE

Our experiments show that the total query response time of PIN E is up to one order of magnitude
less than that of /N E. Table 1 shows the results of comparing query response time between PINE
and I N E approach proposed in [5]. The first and second columns specify the entities (or points of
interest) and their population and cardinality ratio (i.e., number of entities over number of links in the
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Table 2
Overhead of PIN E pre-computations
Entities Points inside each NVP  Average BPs per NVP  Number of Pre-comp.
Bor-Bor (inter-cell)
Hospital 1698 52 232,000
Shopping 458 25 225,600
Parks 142 14 239,500
Schools 64 10 246,000
Auto Svc. 38 7 239,900
Restaurants 27 6 243,600

network), respectively. Note that for the given data set, restaurants and hospitals represent the entities
with the maximum and minimum cardinality ratios. As shown in the table, when k& = 1, and regardless
of the density of the entities, PI N E generates the result set almost instantly. This is because a simple
Contain() function is enough to find the first NN. However, depending on the density of the entities,
IN E approach requires between 0.49 to 12.4 seconds to provide the first NN. For all values of £ and for
different data densities, PI N E always outperformed I N E in terms of CPU processing times (values
inside “()”) (see Fig. 6). 1N E CPU time tends to be on average 5.42 times more than that for PINE,
and INE DISK time tends to be on average 11.11 times more than that for PINE. This is because
IN E explores a larger set of the exact network edges and nodes, while PI N E utilizes the pre-computed
distances stored with the polygons. It is obvious from Table 1 that the time required by the database to
retrieve the links from network is the dominant factor and the CPU times are almost negligible. Hence,
we can conclude that the total query response time of PINE is up 11.1 times faster than that of /N E.

Depending on the density of the entities, the time incurred by INE to retrieve the network from
the database is between 10.1 (for high densities and larger ks) and 12.4 (for low densities and higher
values of k) times more than that incurred by PINE. This is because for lower densities of entities,
IN E requires larger portion of the network to be retrieved. For example, while there are only 340 links
retrieved from the database to find the 10 closest restaurants to a query, 17900 links (equal to 16% of the
network) need to be retrieved to find the 10 closets hospital to the same query object. Note that INE
does not retrieve the required links in one step, rather, only a small number of links are retrieved from
the database at each step. Note that PI N E also requires pre-computed values to be retrieved from the
database, and the number of required pre-computed values increases for lower densities of the entities
and larger values of k. However PIN E retrieves the required data in only one step, resulting in much
faster data retrieval time.

Table 2 shows the overhead incurred by the pre-computations required by PINE. As shown in the
table, for entities with higher densities (e.g., restaurants) which generate smaller and more number of
NVPs, the average number of nodes inside each NVP and number of border points per NVP are less.
This will lead to faster pre-computation process since the pre-computations are performed in smaller size
local areas. The third column of the table shows the total number of border-to-border pre-computations,
which is almost constant for entities with different densities. This is because when there is more number
of NVPs (e.qg., restaurants), the average number of border points is smaller and when there is less number
of NVPs (e.g., hospital), the average number of border points is larger.

Figure 5 depicts the performance of PIN E with respect to the size of the candidate set when kNN
queries are performed for different entities. For each value of & (x-axis) we performed 1000 queries
where the location of the query point is randomly selected, and we averaged the results. Two observations
can be made from the figure. First, the ratio of the size of the candidate set over k& (SK S/k) decreases
as k increases. For example, while 7 candidates are selected when & = 3 (2.33 times the value of k),
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Fig. 5. Performance of PINE.

only 31 candidates are selected when & = 20 (1.55 times the value of k). The figure also shows that
for large values of k, the size of the candidate sets become very close to k. The reason for this is that
as k increases, once a generator g is explored, the possibility that some of its adjacent generators have
already been explored (already in the candidate NN gueue) and no longer need to be examined increases.
This is a very important feature of PINE since for large values of k, the average number of points
of interest that must be examined significantly decreases. The second observation is that the PINE
behaves independently from the density of the points of interest and their distribution in the network. For
example, while Restaurants have a cardinality ratio of almost 5 times the Parks, the difference between
the corresponding generated candidate sets is only 5.58% (for & = 500) to 4.2% (for k£ = 3). This means
that whether the points of interest are very dense or sparsely scattered in the network, the performance
of PIN E does not change. This is because the average number of adjacent generators is “independent”
of the density of the points of interest, their distribution, and the underlying network (see [2] for further
details).

5.2. PINEVs. VN3

Our experiments show that the query response time of PIN E is about one half of that of V. NV 3. Table 3
shows the results of comparing query response time between PI N E and VN 2 approach proposed in [9].
As shown in the table, when & = 1, and regardless of the density of the entities, both PINE and V N 3
generates the result set almost instantly. This is because a simple Contain() function is enough to find the
first NN. However, PI N E has a slightly larger CPU and disk times. This due to the fact that with V N 3
method the distances from each border point to all the nodes inside the polygons that contain the border
point are pre-computed in an off-line process. With PI N E the distance Contain() returns the generator
point of NV P(q) (first NN) but not the distance to it. Hence, Dijkstra’s method is applied locally using
the local edges and nodes to compute the distance to the first NN. However, for all other values of k& and
for different data densities, PIN E outperforms V N3 in most cases in terms of CPU processing and disk
times (see Fig. 7). V. N3 CPU time tends to be on average 8.25 times more than that for PINE, and V N 3
DISK time tends to be on average 2.7 times more than that for PIN E. V N3 DISK time is higher because
it has to access the pre-computed border-to-border (inter-cell) and query-to-border (intra-cell) distances
stored with the polygons, while PI N E has to access only border-to-border (inter-cell) distances stored
with the polygons. V. N3 CPU time is high because I N 3 updates the distance from the query point to the
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Table 3
Query processing time of PINE vs. VN3
Entities Query processing time (sec.)
Qty k=1 k=5 k=10 k=25 k =50 k =100
(density) PINE VN® PINE VN® PINE VN® PINE VN® PINE VN® PINE VN3

(cpu)  (cpu)  (cpu) (cpu) (cpu) (cpu)  (cpu)  (cpu) (cpu)  (cpu)  (cpu) (cpu)
disk  disk disk disk  disk  disk disk disk disk  disk disk  disk

Hospital (0.06) (0) (0.38) (1.5) (0.57) (45) (1.31) (15.3) - - - -
46 (0.0004) 131 0018 740 65 9.12 140 3481 351 - - - -
Shopping Centers (0.02) (0) (0.12) (0.45) (0.23) (1.3 (0.45) (3.4 - - - -
173 (0.0016) 056 0.020 232 33 426 6.9 747 181 - - - -
Parks (0.01) (0) (0.04) (0.15) (0.07) (0.37) (0.19) (1.9) (0.36) (2.5) - -
561 (0.0053) 024 0.021 072 15 127 28 3.12 6.4 6.01 133 - -
Schools (0.00) (0.015) (0.01) (0.07) (0.03) (0.14) (0.07) (0.36) (0.14) (0.7) - -
1230 (0.0115) 012 06 033 35 062 6.6 140 156 2.80 322 - -
Auto Services (0.00) (0) (0.01) (0.01) (0.01) (0.09) (0.03) (0.58) (0.07) (1.65) (0.14) (2.78)
2093 (0.0326) 0.11 0.30 023 065 041 14 0.87 2.95 157 6.68 329 131
Restaurants (0.00) (0) (0.01) (0.01) (0.01) (0.04) (0.02) (0.26) (0.07) (0.8) (0.10) (1.85)
2944 (0.0580) 014 0.032 024 057 034 148 0.69 2.8 155 6.1 257 128
Table 4
Overhead of V' N? pre-computations
Entities Points inside each NVP  Average BPs per NVP  Number of Pre-comp.  Number of Pre-comp.
Bor-Bor (inter-cell) OPC (intra-cell)

Hospital 1698 52 232,000 8,781,000

Shopping 458 25 225,600 4,653,000

Parks 142 14 239,500 2,630,000

Schools 64 10 246,000 1,787,000

Auto Svc. 38 7 239,900 1,611,000

Restaurants 27 6 243,600 1,348,000

generator points and the border points of the newly explored neighbors (polygons) at each iterative step.
While in PIN E only the border-to-border distances for the newly explored neighbor (one polygon) is
updated in the Candidate queue. It is obvious from Table 3 that the time required by the database to
retrieve the links from network is the dominant factor and the CPU times are almost negligible. Hence,
we can conclude that the total query response time of PIN E is up 2.7 times faster than that of INE.

Table 4 shows the overhead incurred by the pre-computations required by V N 3. The third column of
the table shows the total number of border-to-border pre-computations (inter-cell computation), which
is exactly the same as for PI N E (shown in Table 2). The fourth column shows the extra computations
(intra-cell computations) that are required for 1V N3,

Using Tables 2 and 4, we compare the total required pre-computations for both PINE and V N 3.
One observation can be made is that VN3 requires on average a larger number of pre-computations
than PINFE (due to the need for the extra intra-cell computations), however, this ratio reduces as the
density of the data set increases. This is because for entities with higher densities (e.g., restaurants),
which generate smaller and more number of NVPs, the average number of nodes inside each NVP and
number of border points per NVP are less. This will lead to faster pre-computation process since the
pre-computations are performed in smaller size local areas. For example, for the hospital data set, VN 3
requires 38.8 times the number of computations required by PI N E. While V N 2 requires only 6.5 times
the number of computations required PIN E for the restaurant data set (a higher density set).

The distance pre-computations are usually performed offline, hence it should not affect the overall
performance of V. N3. However as shown in Table 3, the time required by the database to retrieve the
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Fig. 6. Performance of PIN E VS. I N E for restaurants data.
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Fig. 7. Performance of PINE VS. V N? for restaurants data.

links from network online is the dominant factor and the CPU times are almost negligible. Since VN3
requires larger amount of pre-computed values to be retrieved from the database than PIN E, therefore
PINE outperforms V N3,

See Fig. 8 for a complete comparison between PINE, INE, and VN3 in terms of CPU, Disk and
total query processing time for Restaurants data.

6. Conclusion

In this paper we presented a novel approach for & nearest neighbor queries in spatial network databases.
Our approach, PIN E, is based on: pre-calculating the network Voronoi polygons (NVP), pre-computing
some network distances, and Dijkstra’s algorithm. We showed how NVPs could immediately be used
to find the first nearest neighbor of a query object. We also showed how the pre-computed distance
expedites the process of finding the other nearest neighbors. The main features of PI N E are as follow:
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Fig. 8. Performance comparison of PINE, INE, and VN3,

1) PIN E’s CPU time outperforms both IN E and V N3, the only other approaches proposed for kN N
queries in spatial network databases. It outperforms I N E with a factor of 5.41, and V' N 3 with a factor of
8.25 depending on the value of k and density of the points of interest, 2) PI N E’s DISK time outperforms
both /N E and V N3. It outperforms I N E with a factor of 11.1, and VN3 with a factor of 2.7 depending
on the value of k£ and density of the points of interest.

The time required by the database to retrieve the links from network is the dominant factor and the
CPU times are almost negligible. Hence, we can conclude that the total query response time of PINE
is up to 11.1 times faster than that of 7N E, and up to 2.7 times faster than that of VN 3.

PIN E’s algorithm results in up to 2.33 times less number of candidates as compared to that of the
traditional approaches. In addition, the size of PIN E’s candidate set has less variance across different
query point locations and densities of the points of interest. Consequently, the query response time
becomes more deterministic, which is an important feature for many real-time kNN query applications.

As with V N3, the pre-computation required by PIN E has low computation and space complexities
due to performing the pre-computations in local areas as opposed to across the entire network. VN3
and I N E progressively return the k nearest neighbors from a query point (i.e., at each iterative step it
computes the exact next nearest neighbor and the shortest distance to it), which is vital for an interactive
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real time system such as navigation system. While with PIN E, the k nearest neighbors is returned at
the end of the searching algorithm. However, during each step it provides some candidates of k nearest
neighbors, which is useful for systems where the exact NNs are not required. We plan to extend PINE
to address similar kN N queries such as group kN IV, constraint kNN, and finding the actual shortest
path between a query and its closest neighbors, as our future work.
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