Mobile Information Systems 1 (2005) 129-147 129
10S Press

An improved itinerary recording protocol for
securing distributed architectures based on
mobile agents

Guillaume Allée?, Samuel Pierre>*, Roch H. Glitho® and Abdelmorhit El Rhazi®
a&Mobile Computing and Networking Research Laboratory (Larim), Canada
bEricsson Research Canada, Canada

Abstract. This paper proposes an improved itinerary recording protocol for securing distributed architectures based on mobile
agents. The behavior of each of the cooperating agents is described, as well as the decision process establishing the identities of
offenders when an attack is detected. Our protocol is tested on a set of potential attacks and the results confirm our assumption
regarding offender designations and moments of detection. More precisely, the performance evaluation shows that our protocol
detects the attack where there is collaboration between a platform on the cooperating agents’ itinerary and another on the mobile
agent’s itinerary. As a result, this protocol constitutes a suitable option for electronic commerce applications where security
concerns prevail over cost factors.

Keywords: Mobile agent, itinerary recording, distributed architecture, security protocol, electronic commerce, cooperating
agents

1. Introduction

Wide-area networks allow the design of interesting shared applications that permit constant access to
resources and information available on the Internet. However, programming these applications remains
challenging: the main problem is due to the fact that the static features of the client-server architecture
are not well adapted to the dynamic aspects and diversity of the systems that are available on the Internet.
An alternative could be to replace the interactions between both entities by the mobility of an agent that
migrates to hosts providing interesting data. Since the agents execute within the environment provided by
the remote host, security concerns are paramount, especially for applications like electronic commerce.
The problem we are addressing is that of verifying and recording the identities of the host platforms
which have executed the agent. This problem is hard to solve with only one agent as malicious hosts can
alter the agent’s data. One possible solution to detect these attacks would be to use co-operating agents
in a protocol to record and verify the itineraries.

Greenberg et al. [11] define the word agent as an autonomous application which has one or several
purposes or a set of capabilities and could, if need be, collaborate or communicate with other agents

*Corresponding author: Samuel Pierre, Department of Computer Engineering, Ecole Polytechnique de Montréal, C.P. 6079,
Station Centre-ville, Montréal, Québec, Canada H3C 3A7. Tel.: +514 340 4711 ext. 4685; Fax: +514 340 3240; E-mail:
samuel.pierre@polymtl.ca.

1574-017X/05/$17.00 © 2005 — 10S Press and the authors. All rights reserved



130 G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures

or users. An agent is considered mobile when it can be transported from one machine to another on a
network [12]. However, a mobile agent cannot transport itself: it is the executing platform that sends it
to another platform through the network. The set of platforms where the agent is executed is called the
agent itinerary.

A platform is concurrently a client and a server that allows the execution of an agent. The platform
receives and sends the agent. It must be installed on all hosts where the agent stops. Platform protection]
techniques are required to shield the execution environment and platform resources against several types
of attacks from a mobile agent. On the other hand, agent protection techniques must be used to protect
the agent’s code and data from interference by malicious hosts [6,7,9,14,17].

Platforms are susceptible to a variety of possible agent attacks. A hostile agent can attempt to access
resources without the platform authorization, it may consume too many resources (e.g. CPU or disk
space) or disguise itself as another agent. Researchers have developed several techniques in order to
protect the platform. Most of these are based on conventional protection approaches but there are some
technigues that use new concepts, such as codes with proofs, which consists of asserting certain features
of the agent’s code (such as memory protection) and supplying a proof of these features. When an agent
arrives on a new platform, the latter verifies the compatibility of the proof and the agent’s code [2,3,8].

Platform attacks against the agent are even more critical since the platform has access to an agent’s
components and can modify them in the absence of attack detection or prevention techniques. An
attack [13] may take various shapes: a change that modifies the behavior of an agent or alters the stored
results obtained from another platform, as well as the denial of services when a platform requests a task
from an agent, namely when a platform refuses to send an agent to another platform. A simple yet
effective attack on a mobile agent aims at preventing the agent from migrating to competitors’ servers.
This particularly affects mobile agents with loose itineraries in comparison to agents whose itineraries
are defined a priori [15]. The problem consists of verifying and recording the identities of the platforms,
which have executed the agent in order to secure the mobile agent’s route. It is crucial to detect or protect
the mobile agent against this type of attack in the field of e-commerce where the agent wants to visit all
of the competitors’ servers.

Roth [16] identifies flaws in some cryptographic protocols that are targeted at protecting free-roaming
mobile agents, e.g. mobile agents that are free to choose their next hop dynamically based on data they
acquire during their execution. He found that some protocols succumbed to interleaving attacks which
are impersonation or other deception involving selective combination of information from one or more
previous or simultaneously ongoing protocol execution. He presented in [17] an approach which is
robust against interleaving attacks. He also introduced algorithms and data structures meant to protect
free-roaming mobile agents against attacks on data integrity and confidentiality.

In [4], Westhoff et al. propose a method to protect agent routes against attacks performed by a single
platform as well as attacks conducted by collusions of cooperating malicious platforms. They define the
route protection as the guarantee that “none of the visited stations can manipulate the route in a malicious
ways, nor can they get an overview of the other sites the agent’s owner is contacting”. They suppose
that the agent route is initially provided by the platform of origin and that it can be extended by a visited
site. The information related to a mobile agent’s route is hidden in such a way that only the mobile
agent’s platform of origin knows all the platforms to be visited. The platform of origin can be sure that
all chosen platforms have been visited. Actually, this method differs from our method as we consider
the agent route to be totally dynamic (i.e., the route is not fixed by the platform of origin).

Schneider [5] combines the replication and the voting concepts to ensure the proper functioning of the
agent. The idea is that instead of having a computation performed solely by the mobile agent, multiple



G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures 131

copies are used to perform the same computation and the result is obtained by a result consensus from all
of the platforms. If a malicious platform attacked the mobile agent, the existence of several clones would
ensure the correct end result. The main advantage of this method is that it addresses the system failure.
Its drawbacks is that additional resources are needed for agent replications. The method proposed in this
paper also uses the concepts of replication to ensure security i.e. a cooperating agent executes partially
the same code as the one executed by the mobile agent.

This paper proposes a security mechanism inspired by Roth [15] to protect mobile agents’ itineraries
against a set of potential attacks from offender platforms in an electronic commerce context. Section 2
summarizes Roth’s protocol. Section 3 proposes a new itinerary recording protocol (based on Roth’s
protocol) and assesses the effectiveness of this new protocol through the types of attacks it detects.
Section 4 presents implementation details and results.

2. Summary and background of Roth’s protocol

Itinerary recording is carried out according to a protocol whose purpose is to record and verify the
itinerary of a mobile agent with a cooperating agent, in an autonomous fashion, without permanently
connecting a trusted platform to the network. The two agents’ owner platform connects to the network
to send the agents to their first platforms, and then it disconnects itself until both agents return. As
the itinerary is not pre-established, the mobile agent moves progressively while accomplishing its tasks
and it chooses its next destinations during its execution on different platforms. The purpose of Roth’s
protocol is to record and verify the mobile agent’s itinerary.

2.1. Definitions and main assumptions

Let H be the set of available platforms on a network. R is a subset of 4 x H such as (h;, h;)
€ R < h; and h; collaborate in order to attack the agent. H, and H;, are non-void subsets of 4 with
(H, x Hy) N R = . These two subsets are considered non-collaborating sets of platforms. Two agents,
a and b, are considered cooperating agents, when the itinerary of agent a contains only H , platforms and
agent b’s itinerary has only H platforms. h, and h; are current execution environments for agents a and
b. Basically, agent a could be attacked by platform A, that executes it, but i, could not directly attack
cooperating agent b. Moreover, platform h; will not collaborate with h,, for this purpose. However, it is
possible that two platforms on agent a’s itinerary collaborate to attack it.

Roth [14] justifies this choice by stating that it is as unrealistic to state that “all platforms are hostile
and ready to collaborate with each other to attack the agent” as to claim that “all platforms could be
securely used”. According to Roth, it is more realistic to state that:

— At a given moment in the life of an agent, a certain percentage of platforms could be considered
dangerous;

— All dangerous platforms are not necessarily ready to collaborate with other platforms to attack an
agent.

Roth [14] adds the following three assumptions to implement the concept of cooperating agents:

— The transport of agents from one platform to another is carried out through an authenticated channel
(Assumption 1);

— The platforms supply authenticated communication channels to cooperating agents (Assumption 2);

— The agent has authenticated access to the identity of the remote platform with which it communicates,
the platform on which it is executed, and to the previous platform on which it was executed
(Assumption 3).



132 G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures

Definition: Let h; € H, bethe platforms visited by agent a and let id(h;) be the identity of
platform h;. Let prev; be the identity of the last platform where agent a has been executed.
Finaly let next; bethe identity of the next platform where the agent would like to go after
platform h;. The agent starts from platform ho. Thus, if the agent moves atotal of n times,

we must obtain hy= hy, since agent a returns to the platform of origin.

Initialization: Let hy be the platform of origin of agentsa and b. ho must be atrustworthy
platform for agents a and b. Each agent is sent to itsfirst platform (nexto) through an
authenticated communication channel (Assumption 1).

Stepi,i € {1,...,n}:

Agent a sends a message to agent b containing next; and prev; through an
authenticated channel (Assumption 2). Thus, agent b learnsid(h;) (Assumption 3) and
verifiesthat

id(hy) = next; _; and prev; = id (hi_1)
If thisisthe case, b records next; in agent & sitinerary.

Fig. 1. Itinerary recording protocol.
2.2. Roth’s protocol

Let @ and b be two cooperating agents, H, and H,, two non-collaborating platform subsets of H. Each
agent must return to its platform of origin at the end of its task. Agent b records and verifies the itinerary
of its cooperating agent a, according to the protocol described in Fig. 1.

The need for a cooperating agent is mainly justified by the fact that a malicious platform might modify
the data held by an agent executing on that platform. Indeed, it could be argued that, if one supposes
that the third assumption is valid, it is sufficient that the agent keeps the authenticated identity of each
platform where it was executed. It could be supposed that it makes the same verifications as agent b
in Roth’s protocol. However, this solution is not secure. The following is a contrary example with an
undetected attack. Host h; attacks the agent by sending it to host 4 f, although the agent is supposed to
go to platform A, ;. The identity of host / is added to the itinerary record, then host 4 replaces the
agent on its route by sending it to h;,1, which is supposed to be honest. On h; 1, the agent verifies the
identity of the platform that sent it, which appears correct, since i ; did not modify the itinerary record.
On step j > i + 1, host h;, which is allied with attacking platforms h; and %y, modifies the itinerary
record to remove the record of execution on host ;. When the agent returns to its owner’s platform, its
itinerary record appears correct although there are no records of the execution on host 7 ;.

3. Proposed new itinerary recording protocol
It should be noted that Roth’s protocol does not specify the manner by which agent b moves. In

our approach, we propose to move agent b every time agent a moves, i.e., when agent a contacts b to
announce the identities of its next and previous execution platforms. Once this information is obtained,



G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures 133

agent b moves to another platform and waits to communicate with agent a. We will specify the required
assumptions for our protocol, describe the possible attacks, and indicate the manner in which they will
be detected by the protocol. Finally, we will show the originality of our protocol in relation to Roth’s.

3.1. Assumptions

As stated above, agent b will move. There are two possibilities for agent b’s itinerary: it is either
pre-determined or not. We propose to fix the itinerary of agent b at the beginning of the protocol. The
advantage of this choice is that, with a fixed itinerary, we simplify the protocol and increase the likelihood
of detecting the attack.

We suppose that agent a has a chronological list of platforms to be visited by agent 6. We call this
list pf, pf[é] indicating the platforms visited by agent b, later called hb;. Since a movement from agent
a triggers the movement of agent b, the number of platforms visited by agent b must be identical to the
number of platforms visited by agent a. However, the number of hosts visited by agent a cannot be
predicted. To solve this problem, the number of platforms visited by agent a will be limited. This type
of estimate is possible when “looking for the best price for a product” type of applications, where we
know that the agent will visit a number of vendors, but we know neither the platforms (because a vendor
has several platforms) nor the order in which the visits will take place. Therefore, it is impossible to
establish an itinerary before the departure from the owner’s platform. Agent b’s itinerary consulted by
agent a must be protected from modifications. This itinerary could, for example, be part of the agent’s
data and thus, with the agent’s code, could be protected from modifications. This is possible with the
owner’s sighature guaranteeing the integrity of the agent and publishing its identity for the benefit of the
platforms where the agents will eventually be executed.

We suppose that the set of platforms visited by agent a and the set of platforms visited by agent b are
disjoint. The order in which agent b visited the platforms is irrelevant. It is nevertheless important to
minimize the probability of an attack from a platform on agent b’s itinerary with a collaboration from
a platform on agent a’s itinerary. However, it is difficult to quantify this risk, since «’s itinerary is not
pre-determined. This is why agent b’s itinerary should be chosen randomly, from a list of platforms that
do not offer the services sought by agent a.

Figure 2 illustrates these assumptions using a collaboration example considered impossible in Roth’s
protocol, which becomes possible in the protocol we suggest. We use the same assumptions as Roth’s (cf.
Section 2.1). This figure shows the assumptions that we put forth concerning the platform collaboration
to perform an attack. In our assumption, the platforms in a’s itinerary and b’s itinerary can collude to
attack mobile agent a. It is important to note that Roth’ assumption stipulates that the platforms in a’s
itinerary and b’s itinerary cannot collude to attack mobile agent a. For example, on the left of the figure,
the platforms ha; and hb;;1 can collude to attack agent a.

The impossible collaboration between platforms in the itinerary of agent a and platforms in the itinerary
of agent b is simply an assumption put forth by Roth. Our protocol treats the case where this collaboration
is not supposed. Consequently, our protocol supposes a reduced number of assumptions compared to
Roth’s protocol and treats more realistic cases.

3.2. ltinerary recording protocol
Definition

Let ha; be the platform visited by agent a, id(ha;) the identity of this platform, hb; the platform
visited by agent b and id(hb; ) the identity of this platform. Let prevai be the identity of the last platform



134 G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures

ha, ha,

+
! : hay ha,

hbi hbi” b, hb,

Hozzikle collatboration

Platform wisited by agert 2

@ Platform visited by agent b

Fig. 2. Possible collaborations.

where agent a was executed. According to Assumption 3, the agent has access to this identity in an
authenticated manner. Finally, let nextai be the identity of the next platform that agent « would like to
visit after visiting platform ha;. The agent begins its itinerary on platform hag. Thus, if agent a moves
a total of n times, we obtain hag = ha,, as the assumption stating that the agent finally returns to the
platform of origin.

Initialization

Let hg be the platform of origin of both agents a and b. hy must be a trusted platform for both agents
a and b. For agent a, nextag has the value of the first platform where the agent will be executed. Each
agent is sent to its respective destination.

Stepi,i € {1,...,n—1}

Agent b waits for communication from agent a. If agent a does not communicate after a certain period
of time, agent b would consider that agent a was kidnapped, and it would return to its owner’s platform.
The offender cannot be identified with certainty: it could be either that platform ha;_; did not actually
send the agent, or that platform ha; hindered communication.

Agent o attempts to communicate with agent b on platform hb;.

If agent b is not on this platform, it is due to the fact that the previous platform hb;_; did not send it
and that platform hb; did not execute it, or it did not grant network access to agent b in order to receive
communication from agent a. Therefore, we cannot record nor verify agent a’s itinerary. In this case,
agent a returns to its platform of origin.



G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures 135

bisonhg
i=1
continue:= true
while continue do
wait_communication ()
if (verify_signature ( preva || nexta , sighyy) = false
or id(ha) # nexta _;
or prevg #id (ha _1)) then
migrate ( hy)
find_offender()
continue: = false
else
record_itinerary ( preva;, nexta, signn, (preva || nexta),
SigNnyi (Preva || nexta|signka))
if nexta = hythen
migrate ( hy)
continue: = false
else
=i+l
migrate ( hb; )
end if
end if
end while

Fig. 3. Algorithm for agent b.

Otherwise, agent a sends agent b the identities of nexta; and preva;, signed by platform ha; and by
the authenticated channel, b learns id (ha;). It verifies the signature of ha; and the following equalities:

id(ha;) = nexta;—1 and preva; = id(ha;_1)

If these equalities are confirmed, agent b records nexta;, preva;, ha;’s signature, then requires a
signature from hb;. We use signy (X) to designate the result of the cryptographic signature of platform
Y on object X and we use || to designate concatenation. Here is a typical entry from the itinerary record.

preva; nexta;  Signp.i(nexta; || preva;)  Signae: (preva; || nexta;||signpa:)

Non-confirmed identities indicate that an attack has occurred. In this case, agent b returns to its owner’s
platform.

Agent « performs its task on the platform before migrating to its subsequent destination. Figures 3
and 4 describe the algorithms for agents a and b respectively.

Stepn
When the agents return to their owner’s platform without detecting an attack, the owner verifies
whether the itinerary has been modified. For eachentry i € {1,...,n}, it verifies whether the signature

signna;(preva;||nexta;) is valid and that ha; = nexta;—1 = preva;11. It repeats the operation for
signgy; (preva; || nexta; || signne;). An invalid entry indicates the occurrence of an attack on the agent’s
itinerary and the results are considered invalid. The offender was not identified.

Once the integrity of the itinerary record has been confirmed, the agent’s owner verifies whether agent
a’s itinerary was executed on the designated platforms. A negative outcome indicates an attack has
occurred and messages exchanged between a and b have been modified.



136 G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures

aisonh
i=1
while hg # hy do
communicate to hb,(preva, nexta, sighys (preva || nexta))
if communication_succeed () = falsethen
migrate ( hy)
else
task ()
=i+l
migrate ( ha )
end if
end while

Fig. 4. Algorithm for agent a.

offenderl: = person
offender2: = person
offender3: = person
validity: = true
i:=1
while (offenderl = person and i < n+1 and validity = true) do
if (verify_signature ( preva || nexta , Signna) = true
and verify_signature ( preva || nexta || Signnai , Signm) = true) then
If id(signng) # prevai.; then

offenderl: = ha
offender2: = hby,,
end if

if id(signna) # nexta_sthen
offenderl: = ha_;

offender2: = hb;
offender3: = hbiy,

end if

if (Id(Signna) = prevai.;and id(signng) = nexta_;

and platform_conform(id(signis)) = false ) then

offenderl: = ha_

else
validity: =fadse

end if

ii=i+1
end if
end while

Fig. 5. Algorithm Step n.

Figure 6 describes the function find of fender() executed by agent b when it detects an attack before
step n, while Fig. 5 presents the algorithm executed on step n in the absence of attack detection in the
previous steps. When identifying the offender, the algorithm does not consider the man-in-the-middle
attack as the protocol supposes that the communication channels between agents a and b are authenticated
and secured (e.g., using SSL [3]).



G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures 137

offenderl: = person
offender2: = person
if verify_signature ( preva || nexta , signhs) = false then
offenderl: = ha
else
if id(ha) # nexta_;then
offenderl: = ha_
else
if preva #id (ha _;) then
if id (SiQNhai—1 ) = Nexta_, then
offenderl: = preva
offender2: = ha_;
else
offenderl: = ha_,
offender2: = hb;_;
end if
end if
end if
end if

Fig. 6. Function find offender().
3.3. Protocol security

The protocol we propose functions similarly to Roth’s protocol [15], in that it detects the same
attacks when we uphold Roth’s assumptions, i.e., if we suppose there is no collaboration. However,
with the weaker assumptions that we stated, we obtain identical results at the level of detected attacks.
The possibilities for collaboration between two hosts ha; and hb; fall into one of the four subsets:
1<j—1,i=75—1,i= 7, andi > 5. We will also consider the case of collaboration among the three
hosts ha;, hb; 11 and hb;1o. The other attacks with this type of collaboration can be modeled as two
different attacks with collaboration between «’s itinerary platform and agent b’s itinerary platform.

3.3.1. Attack with Collaboration between ha; and hb;, withi < j — 1

In this scenario, the platforms ha; and hb;(i < j — 1) collude in order to attack the mobile agent by
modifying its itinerary. Let’s suppose that the mobile agent decides to migrate to platform h’ (refer to
Fig. 7) while running on platform ha;. Platform ha; attacks the mobile agent a by sending it to platform
ha;y1 and modifies the message sent by mobile agent a to the cooperating agent b (i.e. replaces the
identity of platform A’ by the identity of platform ha;; in the variable nexta;). With this modification,
co-operating agent b cannot detect the attack. However, it will be detected by the platform of origin upon
the agents’ return to it because the platform of origin will detect that agent « is executed on platform
ha;y1 instead of A’. In order to prevent the platform of origin from detecting this attack, platform ha;
will ask platform hb; to modify the entry corresponding to platform ha;4q in agent a’s itinerary.

Replacing an entry in the itinerary record is impossible, since this latter resists to the modifications. An
entry is simultaneously signed by platform ha; and hb;. If platform hb; attempts to modify an entry with
j > 1, it could not create a valid entry at the signature level as it cannot imitate the signature of platform
hb;. Therefore, if it modifies nextai; the signature will be invalid and the attack will be detected when
signatures are checked. However, the platform of origin cannot find the offender. If hb; collaborates with



138 G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures

bt carresponds to the platform
where the agert a wanted to go

ha. ha .
i i+1

Brevs |
nexta |

i
modifiec

o @

i Rl weithi=
ey i+1 j e

Ao Possible collaboration This plattarm will try to modify
the ertry i of the route's

Platform visted by agent a recording

@ Platform visited by agent b

Fig. 7. Attack with collaboration between ha; and hb; (i < j — 1).

hb; to counterfeit its signature, the attack will, nevertheless, be detected upon the agent’s return, since
the correspondence between nexta; and the identity of the platform that signed entry 7 + 1 is invalid.

If platform hb; (j > 4) could create its own agents and collect suitable records from the correct
itinerary of agent q, it could replace the entry ;. Consequently, the protocol cannot detect this scenario
of attack due to the fact that the information route recorded by agent b are not linked to a particular agent
instance.

3.3.2. Attack with collaboration between ha; and hb; 11

If ha; sends agent a to platform ha; 11 withid(ha;11) # nexta;, platform hb; 41 will receive id(ha; 1),
preva;4+1 and nexta;4q information, then verify the equality of id(ha;11) = nexta;. However, unless
the authentication key was stolen, this equality cannot be confirmed. Therefore, agent b (on platform
hb;+1) detects a problem on the itinerary. However, it is possible that this platform collaborates with
hai to have agent b believe that this equality is true. Therefore, ha; collaborates with hb; 1. Agentb
carries out equality verifications at step 7 + 1, although the error remains undetected due to manipulation
from the platform on which it is executed, hb;1. Agent b finds that the two equalities are verified.
Once on platform hb; o, the verification of the equality preva;;o = id(ha;+1) indicates an error since
platform ha; did not send the agent to nexta;1. Unmasking the offender would be problematic since
this equality is not verified. Moreover, this corresponds to the case where host ha ;1 sends the agent to
a wrong platform, which would attempt to put it on its track. Figure 8 illustrates this attack scenario.
Indeed, if ha; 11 Sends agent a to a different platform than nexta; 1, and that this platform sends agent
a towards identity platform nexta;41 to put the agent on its track, once on platform ha;, o, the equality
previyo = id(ha;11) Will not be verified, because the latter authentically knows the identity of the
platform that sent it to agent a.



G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures 139

h' iz recorded as a platfarm
FECENING &

hia

ha
itZ

preva;,

nexta
i+

RNEvE | o
nexta,
i+2

Attack detected
prevama: id (ha i+1)

hiky
i+1 hhi 7

hty,  manipulstes b o render the equality
1+1

icd(ha g, 1= nexta. verified

Platform visited by w- - o-om Collaboration in sttack
agent a

Platfarm vizited by
agent b

Fig. 8. Attack with collaboration between ha; and hb;1.

Thus, finding a culprit is problematic: we know it is possible that the offender would be ha;, this is
the case we studied with hb; 1 collaboration, or it could be that ha; 1 (with an accomplice) tried to put
the agent on its track. Agent b verifies nexta; ;1 Signature by ha;1 and compares this identity with
nexta;. This is carried out in the function find of fender(), which is executed when the agent detects
the attack. If this is a first attack, the identity of the platform that signed nezta, 1 is different from both
nexta; and offender ha;, with the collaboration of hb;, 1. In the case of a second attack, the result is an
equality between these two entities and the offender is ha ;. 1.

Another attack with collaboration between ha; and hb; .1 can occur. Platform ha; sends agent a to ’,
whose identity is different from the host where it would really like to send agent a. Then, host 2” would
try to put the agent on its track by sending it to ha;,1. Once on ha,1, agent a communicates with agent
bto give it preva;;1 and nexta;1. Agent b carries out its verifications and would normally deduce that
the agent deviated from its trajectory since preva; 1 # id(ha;). However, hb; 1 manipulates it in order
to confirm this equality.

Although this attack is not immediately detected, it will be noticed when the agent returns to its platform
of origin. On step n, the verification of the itinerary record will establish that id(signpq;) # preva;+1
and offenders ha; and hb;;1 will be unmasked. If hb; 1 modifies the record of entry ¢ + 1, it will be
incapable of reproducing ha; signature. Thus, hb; 1 cannot do so without detection upon the agent’s
return as the validity of the signatures is verified on step n. However, in this case, the identity of the
offender is revealed.



140 G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures

h' iz the platform where the agent
weant to go.

ha
i+1

preva;,

nexta
tal

. hi
hbl i+1

hb  records ha. xta. instead of b
jfEEOMES 3, q B3 NExIa, NSteat o b does not detect the attack

because the equality
nertai = idtha i1 1is verified

Platform visited by w- - o-om Collaboration in sttack
agent a

@ Platform visited by
agent b

Fig. 9. Attack with collaboration between ha; and hb;.

3.3.3. Attack with collaboration between ha; and hb;, for j = ¢ and for i > j

Suppose that ha; collaborates with hb; so that agent b records h ¢ (where the attacking platform ha;
would like to send agent a) as the identity of platform ¢ + 1 visited by agent « instead of A’ (where
a would like to go). Then, agent b records a nexta; which is false, and platform ha; sends the agent
to the platform that was recorded. In this case, when b will be on platform hb,, (that we suppose
to be honest), it will receive the following information from a: nexta;;1,preva;y1,id(ha;+1). The
verification of equality nexta; = id(ha;41) is carried out and does not allow immediate detection of
the attack since platform hb; recorded where platform ha; sent it (ha; 1) rather than agent a’s original
destination (h’). However, this type of fraud will be detected upon the agent’s return to its platform of
origin, since agent b kept the complete itinerary of a and the agent’s owner verifies this itinerary. Figure 9
shows this scenario of attack. This is not a drawback of our protocce this type of fraud is similar to the
case where a malicious platform counterfeits nexta;, in the communication between a and b to send
agent a toward another platform than its destination, without b being able to detect the attack. This attack
was called “attack with modification of communication between a and b” in Roth’s protocol. The latter
also does not allow for an immediate detection of this attack, although it detects the attack on step n, by
verifying agent «’s itinerary upon agent b’s return. If ha; 4 is dishonest, the platform must attempt to
replace the agent on its track. This is detected with kb, since the equality preva + i + 2 = id(ha;+1)
will not be verified. A collaboration between ha; and hb; for i > j prevents an attack. Indeed, agent b
is executed on host hb; before agent a migrated to host ha;.



G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures 141

3.3.4. Attack with collaboration between ha;, hb; 1 and hb; 1o

The principle of this attack is identical to the attack with collaboration between ha; and hb;11: ha;
sends agent a towards a different platform than its original destination; once on the platform, agent a
communicates with agent b to access the identities of the platform, as specified in the protocol. Figure 10
illustrates this scenario of attack. Usually, b would detect the attack, but in this instance, it has been
manipulated by platform hb;,; that collaborates with ha;. Therefore, it does not detect the attack and
migrates towards host hb; 2. In the case where hb; o was honest, we would have immediately detected
the attack and found the offender. Here, hb;. o collaborates and manipulates agent b to have it believe
that equality preva; 2 = id(ha;+1) is verified. In this case, the agents’ return to their owner’s platform
should be expected. The algorithm executed upon the return of the agent to their owner’s platform (step
n) compares the identity of the platform on agent «’s itinerary, who signed the entry ¢ + 1 with nextai
identity. nexta; is different from the identity of the platform that signed entry i + 1 of itinerary (ha;+1).
If this attack was previously undetected, it is due to the collaboration between ha;, hb; 1 and hb; 9. AS
indicated earlier, if hb; o is honest, the platform will detect the attack and unmask the offenders.

3.3.5. Other attacks

Some other attack scenarios could be imagined. However, they will involve the collaboration of several
platforms, and are consequently not addressed in this paper. For example, spoofing agents «’ and b’ could
be created by ha,,_1 and hb,,_1. The aim of these agents would be to revisit the itinerary and correct it.
This scenario involves the collaboration of ha,,_1, hb,_1, hay, hb; and hb; (the platform that modifies
the agent’s itinerary). The protocol cannot detect the modification of agent a’s itinerary. Nevertheless,
even if this latter could be corrected, the results obtained inside the visited platform remain invalid in the
case where they are signed by the platform.

4. Implementation and Results

The platform used to implement our protocol is Grasshopper2.2.3,! which uses Java as the agent
programming language. To carry out the tests, we used 5 machines running Windows 2000. The
machines are identified with the name used for the shopping application. The network used is a local
network, Ethernet 100 Mbps. The mobile agents are implemented using JDK 1.3.2 The security package
IAIK-JCE 3.01 [10] was used; it offers a set of different cryptographic algorithms implemented in pure
Java.

It was deemed important to test our protocol in a relatively realistic environment and we decided to
implement an application where the recording and itinerary verification could help secure the application.
Our agent shops for a certain number of products on the user’s behalf. Provided with a description of
the products required by the user, it moves to the platform of many vendors to inquire about their prices.
In order to simplify the presentation, the list of products is supposed to be known by the vendors.

The itinerary is dynamic: initially, the user starts the search by entering a certain number of vendor
addresses. However, while shopping, if a vendor does not have the listed products, the agent is referred to
another vendor with whom trade agreements have been established. These agreements contain financial
compensation clauses for the benefit of the vendor who routed the agent to another address.

! http://www.grasshopper.de/ (July 2003).
2http://java.sun.com/j2se/1.3/ (July 2003).



142 G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures

h'is recorded as a platform
receiving a

preva; o

nextai +2

Attack non detected

prevai+2= id (ha i+1 1

i+2

hb manipulstes b to render the equality
I+

idtha ;4 1= nextai werified

@. Platform visited by A-o-oo--w o Collabaration in attack
agent a

Platform visited by
agert b

Fig. 10. Attack with collaboration between ha;, hb;11 and hb;4o.

The mobile agent records the three best offers for each product sought. It could save the entire set
of offers, but if they are too numerous, the result size would become too large. In this case, the agent
could lose some of its advantages over the client-server approach. We chose to save the best three results
instead of a single one, since factors other than prices may influence the user’s choice (the user could
choose a slightly more expensive product if it came from a more reputed company for instance). The
Grasshopper’s transport service allows for the agents’ transport via SSL (Secure Sockets Layer).

4.1. Implementation tests

First, we tested the agent’s authenticated transport communication. For the client, as well as for the
server, we tested three different cases:

— the client or the server has a signed certificate issued by the certification authority, which is considered
trustworthy by the other entity;

— the client or the server has a signed certificate issued by the certification authority that is not
considered trustworthy by the other entity;

— the client or the server does not have a certificate.

The SSL connection is refused when the client’s or the server’s certificate is not trustworthy. Since the
mutual authentication was forced through our SSL connection, this confirms our assumptions.

Then, we tested the authenticated communication between the two agents. The agent transport is
carried out only if the agent and server have a certificate signed by a trustworthy certification authority.
In the other cases, the SSL connection is refused and the message is not sent from agent a to agent b.



G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures 143

~ e —

Fig. 11. Experimental environment.

Finally, we tested the detection of the attacks on the itinerary. We carried out the attack where platform
ha; sends agent a to a different platform than agent a’s original destination. In the same way, we tested
the same attack with an attempt to put the agent on its track. In both cases, the attack was detected during
the same step 7. However, the tests carried out on the other attacks were limited in terms of security
features to be verified. Indeed, attacks where there is collaboration between a host on agent a’s itinerary
and a host on agent b’s itinerary consist of manipulating the agents. The purpose of this manipulation is
to modify the equality result or to alter communication between the agents.

We chose to measure the cost of our protocol on a prototypical mobile agent application — the shopping
application described earlier. As seen earlier, the agent departs with a shopping list of three products.
It only knows the address of one vendor, called supplierl. The first vendor sends the agent to another
vendor since he does not carry one of the products and has trade agreements that allow forwarding the
agent to another vendor, called supplier2. Agent a has a list of hosts that agent b will visit.

Five machines are used to conduct the experimental study. A Grasshopper platform is installed on
each machine. Each platform represents a different site. Two platforms, called Supplierl and Supplier2
constitute agent a’s itinerary. Two other platforms, called B1 and B2 constitute agent b’s itinerary. A
fifth platform, called Home, represents the platform of origin. Consequently, agents a and b are created
within the Home platform which sends agent a to Supplierl’s platform and agent b to B1’s platform.
Agent a moves from Supplierl to Supplier2 before returning to Home platform. Agent b moves from
B1 to B2 before returning to Home platform. Figure 11 illustrates this experimental environment.

Our tests measured both:

— the execution time for each vendor machine visited by the shopping agent;
— the total execution time for the shopping agent and its cooperating agent.

We chose to measure these variables as they reflect some of the advantages of the mobile agent
paradigm over the client-server approach. We measured the execution time with the Java method
System.currentTimeMillis(). For the first measurement, we call this method upon the arrival of the agent



144 G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures

A\ 4 L
\\./ —&— Our protocol

—— Roth's protocol
Shopping agent alone

Total execution time on platform
supplier 1 (s)

O P N W M 01 O N 0O ©

1 2 3 4 5 6
Measure' number

Fig. 12. Execution time on platform Supplierl.

w
()]

5}

N
a1

—&— Our protocol
—— Roth's protocol
Shopping agent alone

N
o

=
4]

=
o

Total execution time (s)

(6]

o

1 2 3 4 5 6

Measure's number

Fig. 13. Total execution time.

on the platform and before it migrates to the next platform. The second measurement corresponds to
the difference between the time the agents were created and and the moment where agent b finished the
verifications after having returned to its owner’s platform. Hence, this measurement corresponds to the
total time the task required. We did measurements with three types of agents:

— the shopping agent and its cooperating agent, using our itinerary recording protocol,;
— the shopping agent and its cooperating agent, using Roth’s protocol;
— only the shopping agent.

Figure 12 shows the execution time for these three situations. It should be noted that there are some
important differences in a given category. For example, measurement 3 of our protocol indicates the
highest results. We noticed (via Grasshopper) that the thread executing the agent used a minimal priority.
The fact that the other threads were executed on the process platform explains the variations in execution
time. Moreover, while the execution time differs little between our protocol and Roth’s (around 7 s in
both cases), it is much lower for the shopping agent. This is explained by the fact that, in both our
protocol and Roth’s, the shopping agent establishes an SSL connection with its cooperating agent, while
this is not required by the shopping agent alone. However, establishing this connection requires time,
since the virtual machine must load many classes in memory and initialize the SSL session.



G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures 145

Figure 13 shows the total execution time for the three cases. Just as with the execution time on a vendor
platform, although our protocol and Roth’s have similar values, the shopping agent alone requires less
execution time. These results are related to the platform execution time. Note that the total execution
time reflects both the execution time on each platform and the total migration time. Since the network’s
features do not change, the migration time would vary little from one measurement to another. Similarly,
the difference among the migration times of three agents is small, since the agents are of similar sizes
in relation to the network flow; moreover, in all three cases, we use an SSL connection to transport the
agents.

We also find a large difference between the relative gap of our protocol and the shopping agent, for
the execution on the vendor’s platform (700%) and the total execution time (70%). As mentioned above,
this is due to the SSL connection which requires much more time.

5. Conclusion

This paper presented a mobile agent itinerary recording protocol. This protocol gives a secure method
of recording the identities of the platforms on which a mobile agent is executed. This problem is difficult
to solve with a single agent since the data transmitted are prone to manipulation by malicious platforms,
which is the reason why Roth [15] introduced the concept of cooperating agents.

We have designed an itinerary recording protocol using the concept of cooperating agents and described
in details the behavior of each of the two cooperating agents, as well as the procedures selected to establish
the identities of the offenders when an attack is detected, as already done by Roth. To show the security
properties of our protocol, we reviewed a set of potential attacks. For each attack, we described the
moment of detection and, when possible, we designated the offenders. Thus, we have been able to
verify that our protocol detects the attack in cases where there is collaboration between a platform on
the cooperating agents’ itinerary and another on the agent’s itinerary. This type of attack is outside the
scope of those addressed by Roth.

Finally, we implemented our protocol and Roth’s on a mobile agent platform. To test these imple-
mentations, we chose a mobile agent shopping application with a random itinerary. This is a classical
application using the mobile agent paradigm where itinerary recording is critical. We tested our protocol
on a set of possible attacks and the results confirm our assumption in terms of offender designation and
moment of detection. We compared three implementations (the shopping agent with our protocol, with
Roth’s protocol, and the shopping agent alone) and measured the execution time of the shopping agent
on each platform and the total execution time. Results show that our protocol costs slightly more than
Roth’s in terms of execution time; however, our protocol detects more attacks than Roth’s. The use of
an itinerary recording protocol (either ours or Roth’s) adds a significant cost in terms of execution time
as well as in terms of network load. Thus, our protocol is not suitable in cases where cost is critical.

Future research could strive to create an algorithm that would allow unmasking the offender of a
kidnapped mobile agent: the case in which the cooperating agent’s timer expires. With our protocol, we
know that the kidnapping offender is either the platform from which the agent communicates before the
latter could migrate, or the platform where the agent was meant to be sent the last time it communicated
with the cooperating agent.

References

[1] A.O. Freier, P. Karlton and P. Kocher, The SSL Protocol, Version 3.0, Internet Draft, March, 1996, http://home.netscape.
com/eng/ssl3/ssl-toc.html.



146 G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures

[2] C.Meadows, Detecting Attacks on Mobile Agents, DARPA Workshop on Foundations for Secure Mobile Code Workshop,
March, 1997, http://www.cs.nps.navy.mil/research/languages/statements/meadows.ps
[3] D. Chess, Security Issues in Mobile Code, in: Mobile Agents and Security, G. Vigna, ed., Springer-Verlag, Berlin,
Germany, 1998, pp. 1-15.
[4] D. Westhoff, M. Schneider, C. Unger and F. Kaderali, in: Protecting a Mobile Agent’s Route Against Collusions, Heys
and Adams, eds, SAC’99, Springer-Verlag, LNCS, 1758, pp. 215-225.
[5] F.B. Schneider, Towards Fault-Tolerant and Secure Agentry, in Proceedings of the 11th International Workshop on
Distributed Algorithms, Germany, September, 1997, pp. 1-14.
[6] F. Hohl Time Limited Blackbox Security: Protecting Mobile Agents from Malicious Hosts, in: Mobile Agents and
Security, G. Vigna, ed., Springer-Verlag, Berlin, Germany, 1998, pp. 92-113.
[7] F Hohl, A Framework to Protect Mobile Agents by Using References States, in Proceedings of ICDCS 2000, 2000,
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart fi/TR-2000-03/TR-2000-03.ps.gz.
[8] G. Cugola, C. Ghezzi, G. Picco and G. Vigna, Analyzing Mobile Code Languages, in Mobile Objet Systems: Towards
the Programmable Internet, Springer-Verlag, Berlin, Germany, 1997, 93-111.
[9] G.C. Necula and P. Lee, Safe, Untrusted Agents Using Proof-Carrying Code, in: Mobile Agents and Security, G. Vigna,
ed., Springer-Verlag, Berlin, Germany, 1998, pp. 61-91.
[10] Institute of Applied Information Processing and Communications, Javadoc for IAIK-JCE 3.01, Online Documentation,
2002, http://jce.iaik.tugraz.at/products/01 jce/documentation/index.php.
[11] M.S. Greenberg, J.C. Byington, T. Holding and D.G. Harper, Mobile Agents and Security, IEEE Communications
Magazine (July, 1998), 76-85.
[12] R. Oppliger, Security Issues related to mobile code and agent-based systems, Computer Communications 22 (1999),
1165-1170.
[13] T. Sander and C.F. Tschudin, Protecting Mobile Agents Against Malicious Host, in: Mobile Agents and Security, G.
Vigna, ed., Springer-Verlag, Berlin, Germany 1998, pp. 44-60.
[14] V. Pham and A. Karmouch, Mobile Software Agents: An Overview, IEEE Communications Magazine (July, 1998),
26-37.
[15] V. Roth, Mutual Protection of Co-operating Agents, in: Secure Internet Programming, Vitek and Jensen, eds, Springer-
Verlag, Berlin, Germany, 1998, pp. 26-37.
[16] V. Roth, On the Robustness of some Cryptographic Protocols for Mobile agent Protection, in Proceedings of the 5th
International Conference on Mobile Agent, MA 2001, Atlanta, GA, USA, December 2001, Springer-Verlag, 1-14.
[17] V. Roth, Empowering Mobile Software Agents, in Proceedings of the 6th IEEE Mobile Agents Conference, MA 2003,
Springer-Verlag, October, 2002, 47-63.

Guillaume Allée received the B. Eng. degree in Computer Engineering at Ecole Supérieure d’électricité (Supélec), Paris, and
a master degree in Computer Engineering at Ecole Polytechnique de Montréal. His research interest include mobile computing
and networking.

Samuel Pierre received the B. Eng. degree in civil engineering in 1981 from Ecole Polytechnique de Montréal, Québec, the
B. Sc. and M.Sc. degrees in mathematics and computer science in 1984 and 1985, respectively, from the UQAM, Montréal,
the M.Sc. degree in economics in 1987 from the Université de Montréal, and the Ph.D. degree in Electrical Engineering
in 1991 from Ecole Polytechnique de Montréal. Dr. Pierre is currently a Professor of Computer Engineering at Ecole
Polytechnique de Montréal where he is Director of the Mobile Computing and Networking Research Laboratory (LARIM)
and NSERC/Ericsson Industrial Research Chair in Next-generation Mobile Networking Systems. He is the author of four
books, co-author of two books and seven book chapters, as well as over 250 other technical publications including journal
and proceedings papers. He received the Best Paper Award of the Ninth International Workshop in Expert Systems & their
Applications (France, 1989), a Distinguished Paper Award from OPNETWORK’2003 (Washington, USA). One of these co-
authored books, Téléecommunications et Transmission de données (Eyrolles, 1992), received special mention from Telecoms
Magazine (France, 1994). His research interests include wireline and wireless networks, mobile computing, performance
evaluation, artificial intelligence, and electronic learning. He is a Fellow of Engineering Institute of Canada, senior member of
IEEE, a member of ACM and IEEE Communications Society. He is an Associate Editor of IEEE Communications Letters and
IEEE Canadian Review, and he serves on the editorial board of Telematics and Informatics published by Elsevier Science.

Roch H. Glitho [SM] (http://www.ece.concordia.ca/~glitho/) received a Ph.D. (Tekn. Dr.) intele-informatics (Royal Institute of
Technology, Stockholm, Sweden) and M.Sc. degrees in business economics (University of Grenoble, France), pure mathematics
(University Geneva, Switzerland), and computer science (University of Geneva). He works in Montreal, Canada, as an expert in
service engineering at Ericsson, and as an adjunct associate professor at Concordia University. In the past he worked as a senior
specialist in network management for Ericsson Telecom in Stockholm, and as an R&D engineer for a computer manufacturer



G. Allée et al. / An improved itinerary recording protocol for securing distributed architectures 147

in Oslo, Norway. His industrial experience includes research, international standards setting (e.g. contributions to ITU-T,
ETSI, TMF, ANSI, TIA, and 3GPP), product management, project management, systems engineering and software/firmware
design. He is the Editor-in-Chief of IEEE Communications Magazine and serves as a Technical editor for the Journal of
Network and Systems Management (JNSM) published by Plenum/Kluwer. He is also an IEEE distinguished lecturer. In the
past (1998-2000), he served as the Editor-In-Chief for the IEEE Communications Surveys & Tutorials on-line magazine. His
research areas include service engineering, network management, signaling and mobile code. In these areas, he has authored
more than 30 peer-reviewed papers, more a dozen of which have been published in well-known refereed journals. He has also
guest-edited some 10 special issues of refereed journals and has more than 20 patents in the aforementioned areas.

Abdelmorhit EL RHAZI received a bachelor degree in computer engineering from Ecole Mohammadia d’Ingenieurs (Morocco)
in 1995, an M.Sc. degree in computer engineering in 2003 from Ecole Polytechnique of Montreal. He worked as an computer
engineer for seven years. He is currently completing his Ph.D. at Ecole Polytechnique of Montreal. His research interests
include security of computer systems, mobile agents and Sensor Networks.



Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering




