
Mobile Information Systems 1 (2005) 109–127 109
IOS Press

On the design of energy-efficient location
tracking mechanism in location-aware
computing1

MoonBae Song∗, Sang-Won Kang and KwangJin Park
Distributed Systems Laboratory, Department of Computer Science & Engineering, Korea University 1,
5-Ga, Anam-Dong, Sungbuk-Gu, Seoul 136-701, Korea

Abstract. The battery, in contrast to other hardware, is not governed by Moore’s Law. In location-aware computing, power is
a very limited resource. As a consequence, recently, a number of promising techniques in various layers have been proposed
to reduce the energy consumption. The paper considers the problem of minimizing the energy used to track the location of
mobile user over a wireless link in mobile computing. Energy-efficient location update protocol can be done by reducing the
number of location update messages as possible and switching off as long as possible. This can be achieved by the concept
of mobility-awareness we propose. For this purpose, this paper proposes a novel mobility model, called state-based mobility
model (SMM) to provide more generalized framework for both describing the mobility and updating location information of
complexly moving objects. We also introduce the state-based location update protocol (SLUP) based on this mobility model.
An extensive experiment on various synthetic datasets shows that the proposed method improves the energy efficiency by 2 ∼
3 times with the additional 10% of imprecision cost.

Keywords: Location update protocol, energy efficiency, moving objects database, mobile computing, location-aware computing

1. Introduction

In mobile computing environments, the mobility of mobile client (MC) is emerging in many forms
and applications such as database, network and so on. MCs can dynamically change their locations over
time. The objects which continuously change their location and extent are called moving objects 2 [6,16,
17]. Thus, one of the most important issues in mobile computing is how to model and track the location
and the movement of moving objects efficiently [11]. Therefore, a software infrastructure for providing
location information, called moving objects database (MOD), is significantly needed.

The “doubling time” of hardware such as microelectronics, memory, and secondary storages is gov-
erned by so-called Moore’s Law. Although such an improvement on computer hardware, the lifetime
of a battery is expected to increase only 20% over the next 10 years [7]. As a result, attention to power

∗Corresponding author: MoonBae Song. Tel.: +82 2 924 0547; Fax: +82 2 953 0771; E-mail: mbsong@disys.korea.ac.kr.
1A preliminary version of this paper has appeared in The Sixth International Conference on Information Integration and

Web-based Applications & Services (iiWAS2004), Jakarta, Indonesia, September 27–29, 2004.
2The term “moving object” is used as a more general term/concept. So, it may be mobile clients, car, air plane, soldiers in

battle field, wildfire, hurricanes, and so forth. In this paper, for the theoretical reason, moving objects (MOs) is more prefer
than mobile clients (MCs).

1574-017X/05/$17.00 © 2005 – IOS Press and the authors. All rights reserved

110 M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing

consumption must span many levels of hardware and software to be fully effective. Especially, the
location update protocol is ever-running process for MCs. Therefore, it is very important to achieve
energy efficiency. Basically, the energy efficiency in location update protocol can be done by

– Reducing location update message as possible: Transmitting a message consumes more power
than receiving. Moreover, this power grows as the fourth power of the distance between the client
and the server [7]. In the viewpoint of location update policy, the uplink message is issued when
the difference between actual location and database location exceeds a predefined threshold δ. 3

Reducing the imprecision is, therefore, reducing the number of update messages as possible. Such
a “laziness” to the location update is very helpful to the energy efficiency.

– Switching to doze mode as possible: By exploiting stationary state, location tracking for a stationary
host can be done in doze mode. The doze mode has extremely low power consumption. The network
interface card (NIC) can neither transmit nor receive until it is woken up. Then, how to decide when
an MC switch-off itself? For this purpose, an MC should be aware of its movement.

Eventually, an MC should be aware of its own mobility. This is what we called mobility-awareness. In
order to be aware of the mobility, we have to develop a model which describes a per-user movement. This
is called mobility modeling. In this paper, we look at the mobility model for MOD and an appropriate
location update protocol. The purpose of our model is to model the overall movement patterns in a
probabilistic manner. In a previous work [14], a preliminary model for location tracking and modeling
was presented. This paper extends our previous work to analyze and reduce the energy consumption of
MCs.

Recently, there is a lot of work on the representation and management of moving objects [6,16,17].
Wolfson et al. present the well-known data model called Moving Object Spatio-Temporal (MOST) for
representing moving objects [17]. In this model, the location of moving objects is simply given as a
linear function of time, which is specified by two parameters: the position and velocity vector for an
object. Thus without frequent update message, the location server can compute the location of a moving
object at given time t by linear interpolation: y(t) = y0 + v̄(t − t0) at time t > t0. The update message
is only issued when the parameter of linear function, e.g. v̄, changed. In general, we say that this update
approach is dead-reckoning. The dead-reckoning approach can provide a great performance benefit in
linear mobility patterns. But the performance is decreased when the randomness of mobility pattern
increases. Another major drawback is the inaccuracy of the predicted location by linear interpolation.

To the best of our knowledge, very few contributions to energy-efficiency in location tracking mecha-
nism have been reported in the literature. In existing approaches, MCs always check where they are and
whether or not to transmit a location update message in each time unit. Therefore, MCs cannot doze-off
its processor, and switch off NIC.

The remainder of this paper is organized as follows. In the next section, we discuss the location update
policies in location-aware computing. In Section 2.1, we introduce the characteristics of mobility patterns
of real-life objects. Then, the proposed mobility model, called state-based mobility model (SMM), will
be described. In Section 4, we present a new location update protocol, called state-based location
update protocol (SLUP), considering mobility patterns on a per-user basis. The extensive performance
evaluation and comparison of proposed scheme with traditional update strategies are also included in
Section 5. Finally, the summary and future work are presented in Section 6.

3The database location is the location information stored in the database. The difference and its threshold are called
“imprecision” and “uncertainty” respectively.

M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing 111

2. Modeling user movement

A mobility model, in the context of location management, is an understanding of daily movements
of a user and formal description of this understanding. The mobility modeling in MOD is tricky by
reason of the higher location granularity than that of PCS. Moreover, a matter of concern in MOD is not
a logical/symbolic location, like cell-id, but the very physical/geographical location of moving object
obtained by a location-sensing device such as GPS. Thus, a mobility model in MOD is essentially needed
to consider a complex movement containing both a random and a linear movement patterns.

2.1. Motivation

Consider a traveling salesman who travels several cities for selling commodities. He starts from his
company, and moves through an expressway. When he reaches its destination, he strolls around the city
selling commodities, then finds a new destination. We anticipate that this model will be able to capture
a large part of real-life objects’ movements. And it would include the essential elements of mobility
patterns such as linear movement, random movement, and stationary state. Whereas, existing mobility
models have not express the realistic movements of real-life objects [3,4,15,17]. Thus, it is inevitable
that the update cost of a moving object and the average error of accuracy will be increased. In our work,
we will classify the whole trajectory of a user into ‘pause’, ‘linear movement’, and ‘random movement’.

Basically, our scheme was motivated by the observation that the behavior of real-life moving objects
can be interpreted as a set of movement components (repeatedly) such as linear, pause, and random.
For example, in the linear movements, the trajectory of an object is almost a line in d-dimensional
space. Otherwise, if we can’t find the implicit knowledge of a specific pattern, let us identify the portion
of trajectory as a random walk or a Brownian movement. And we consider the temporal pattern of
movements as Markovian process.

2.2. Basic definitions

In this section, we propose the basic definitions of state-based mobility model (SMM) considering a
complex mobility pattern as a set of simple movement components using a finite state Markov chain
based on the classification discussed in Section 2.1.

Definition 1. (Movement State) A movement state si is a 3-tuple (vmin, vmax, φ), where vmin and vmax

are the minimum and maximum speed of a moving object respectively. φ is a function of movement
which is either probabilistic or non-probabilistic function. S is a finite set of movement states.

Definition 2. (SMM Model) The state-based mobility model (SMM) describes a user mobility patterns
using a finite state Markov Chain {staten}, where staten denotes the movement state at step n, staten ∈
S. And, the chain can be described completely by its transition probability as p ij ≡ Pr{staten+1 =
j|staten = i} for all i, j ∈ S. These probabilities can be grouped together into a transition matrix as
P ≡ (pij)i,j∈S , where

∑
j∈S pij = 1 for all i ∈ S.

In this paper, we assume only that the whole mobility patterns are divided into three basic movement
states such as pause, linear, and random. Each state has the self-transition probability p ii. In the
SMM model, we also assume that a moving object has tendency to remain in the same state rather than
switching states [18]. This is generally called temporal locality.

112 M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing

Definition 3. (Self-transition Probability Vector) The self-transition probability vector (STPV) π̃ of a
transition probability matrix is defined as π̃ = (pii)i∈S . And the temporal locality (or locality) τ is
defined as

τ =

(∏
i∈S

({
1, if pii = 0;
pii, otherwise.

))1/|S|

, (1)

where |.| denotes the cardinality of a set.

2.3. A practical instance of the SMM model

As we mentioned before, the complex mobility patterns in the real world can be interpreted as a set
of basic movement states. The most definite movement states are pause, linear movement, and random
movement. In this section, we present a practical instance of the proposed SMM model based on the three
states described above, the state space S0 = {P ≡ pause, L ≡ linear, R ≡ random}. Let us define a
measurement that estimates how much each state has an influence on the whole movement patterns in
this simplified model.

Definition 4. (Dominancy) The dominancy ηs of state s ∈ S is defined as

ηs =
∑

i∈S pis∑
i,j∈S,j �=s pij

.

As a special case of dominancy, the ηP , ηL, and ηR are called stationarity (ρ), linearity (�), and
randomness (γ) respectively. For a practical purpose, the above parameters are quite important to
describe the various features of mobility patterns.

2.4. Determining the transition matrix

One of the most important things in the SMM model is to determine the transition matrix P. The
matrix can be determined by the user profile, the spatiotemporal data mining process, or in an ad hoc
manner. The simplest way to determine the transition matrix P is to set pij = 1

|S| for all i, j ∈ S. A
more reasonable solution is to use statistical techniques to infer the values of the transition probabilities
empirically from past data [2,10]. For example, suppose the optimal state for each time unit is a Markov
chain having state space S0. Furthermore, assuming that the optimal state4 for 36 time units has been
“PPPLLLLRRLPLLLRRRPPPRLLRLLLLRPPRRRRP”. Counting the number of transitions N ij

5

4The meaning of optimal state is a quite application-specific. For instance, the meaning of this term is a minimal-cost of
location management/update, where the precision function of location information associated with each state is need to satisfy
a threshold called location uncertainty δ.

5We only assume first-order Markov chain model. So, Nij is defined as

Nij =

m−1∑
k=1

({
1, if ok = i and ok+1 = j
0, otherwise.

)
,

where a sequence of optimal states O = o1o2 . . . om.

M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing 113

from state i to state j gives

[Nij]i,j∈S =

P L R

P

L

R

⎛
⎝5 2 2

1 9 4
3 3 6

⎞
⎠ .

(2)

The transition probability pij can now be estimated as p̂ij = Nij∑
k∈S

Nik
giving the maximum-likelihood

estimator of P as

P̂ =

P L R

P

L

R

⎛
⎝0.5556 0.2222 0.2222

0.0714 0.6429 0.2857
0.2500 0.2500 0.5000

⎞
⎠ .

(3)

From this estimated matrix, we can calculate the movement parameters such as � = 0.59160, γ =
0.50595, ρ = 0.41309, and τ = 0.56320 by Definition 3 and 4. Let π = (πP , πL, πR) be the
steady-state probability vector or equilibrium [10]. Solving for π = π×P, we obtain πP = 0.257,
πL = 0.4, and πR = 0.343 as estimates of residence probabilities of each movement state [10]. By
means of this statistical technique, the reasonable estimation of P can be estimated from user’s past
movement. Obviously, it is possible to dynamically instantiate a SMM model corresponding to the
realistic movement.

3. Preliminaries

3.1. Energy-efficient approaches in application layer

In this section, we begin by quoting the insight of Imielinski et al. for the design of energy-efficient
approach for mobile computing environments [7, p. 355]:

“The ability to selectively switch off the receiver and avoid transmitting as much as possible will be
very important to conserve battery power . . . Cordless phones listen to the base stations only for a
small fraction of time and they keep their receivers switched off most of the time. A slight delay in
receiving a call is not noticeable by humans. This idea of switching off the receiver most of the time
increases the battery life of cordless phones from hours to a week. Similar ideas can be used for
palmtops and data transmission in general.”

Energy-efficient technique is a class of adaptation technique for mobile computing environment in
which mobile clients have scare resources such as limited battery, bandwidth, computation power. Energy
efficiency at the application layer is becoming increasingly important area of research. Most of existing
works have focused on load partitioning in which applications may be selectively partitioned between
the mobile client and base station [8].

Also, like other layers, another technique for conserving energy is to turn off the transceiver most of
time and doze off the processor selectively. Imielinski et al. [7] propose so-called “air indexing” scheme
(to reduce the energy consumption of mobile clients) in which a data server periodically broadcasts a
pre-computed directory information that contains data transmission starting times for each MC. Thus,

114 M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing

MCs can stay in the power saving mode most of the time and tune into the broadcast channel only when
the requested data arrives. This is called selective tuning mechanism [7].

In addition, caching frequently accessed data at the mobile clients can also save the energy and
bandwidth used to retrieve the repeatedly requested data at client side. When the data items are available
in the cache, mobile clients can reduces not only the uplink and downlink bandwidth consumption but
also the average data access delay. Cai and Tan propose three cache invalidation schemes [5]. In these
approaches, like in [7], the server periodically broadcasts object invalidation reports (IR). And clients can
selectively tune to the portion of the invalidation reports that are of interest to them. So, this allows the
clients to increase the cache hit ratio, and consequently the energy consumption of MC will be reduced.

Jones et al. provides a good survey of energy efficient network protocol for each layer of the protocol
stack [8].

3.2. Location update policies in location-aware computing

Location update policy is a compromise between the location update cost and the precision of location
information stored in the location database. Because of the continuous movement of a moving object, the
location information is inherently imprecise regardless of the policy used to update the database location
of the object [17].

Suppose that there are a huge number of moving objects in d-dimensional space R
d = [−∞,+∞]d.

For any time t, the position of the ith object is given by oi(t), which is a point in a d-dimensional
space. Then, the movement history of the object o i is described as a trajectory in (d + 1)-dimensional
space, which consists of 〈oi(0), oi(1), . . . , oi(now)〉. For location-dependent query processing, the
location server (LS) should track the trajectory of network-registered moving objects. Thus, an efficient
protocol, which updates their location information in the location server, is highly needed. The goal of
a location update protocol is to provide more accurate location information with fewer update messages
to LS. Clearly, this issue has a tradeoff between accuracy and efficiency. The more update messages we
transmit, the more precise location information we get. In spite of this tradeoff relationship, each policy
will offer a different opinion for whether the current location information has to transmit to the server or
not.

The abstracted form of location update policy is as follows:

procedure LocationUpdatePolicy() {
forever do {

1: Every tsample time, get the actual location
2: Estimate the current location using an estimation

function based on a location update message
previously reported

3: Compare the actual location with estimated location
based on a constraint

4: if a trigger condition is true
5: then send update message

}
}

And the classes of location update policies and their relationships are shown in Fig. 1 on the basis of
estimation function (step 2) and trigger condition (step 4).

M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing 115

location update policies

always-update demand-update never-update

distance-triggered

energy-aware

How to trigger

How to estimate

time-triggered

distance-based
movement-based
dead-reckoning

simple sampling
dynamic sampling

Fig. 1. The taxonomy of location update policies.

The simplest approach is the periodic sampling of a location source (always-update policy). In this
way, redundant update messages and server overload is inevitable. In other extreme, an approach is
called never-update policy, if the LS decides when to request the location information from the source.
In demand-update policy, transmitting the location update message is performed on demand along with
three trigger-points: distance, time, and energy. Such update policies are classified into four major
classes in terms of when the update message is transmitted: time-based, distance-based, movement-
based, and dead-reckoning [3]. In time-based policy, each MC transmits an update message every T̂ time
unit. Distance-based policy sends an update message whenever the (geographic or symbolic) distance
between the current location and the last updated location exceeds a given threshold D. Movement-
based policy interpreted as an accumulated version of the distance-based policy. The dead-reckoning is
a predictive version of distance-based policy exploiting the linear interpolation: y(t) = y0 + v̄(t − t0)
at time t > t0. And the distance-based policy can be interpreted as a special case of dead-reckoning, i.e.
v̄ → 0. Each update protocol has its own characteristics and different performance behaviors depending
on the underlying mobility model. In other words, these algorithms need different amounts of update
messages satisfying the same location precision or uncertainty.

Recently, there is a lot of work on the representation and management of moving objects [6,16,17].
Wolfson et al. present the well-known data model called Moving Object Spatio-Temporal (MOST) for
representing moving objects [17]. In this model, the location of moving objects is simply given as a
linear function of time, which is specified by two parameters: the position and velocity vector for an
object. Thus without frequent update message, the location server can compute the location of a moving
object at given time t by linear interpolation: y(t) = y0 + v̄(t − t0) at time t > t0. The update message
is only issued when the parameter of linear function, e.g. v̄, changed. In general, we say that this update
approach is dead-reckoning. The dead-reckoning approach can provide a great performance benefit in
linear mobility patterns. But the performance is decreased when the randomness of mobility pattern
increases. Another major drawback is the inaccuracy of the predicted location by linear interpolation.

To the best of our knowledge, very few contributions to energy-efficiency in location tracking mecha-
nism have been reported in the literature. In existing approaches, MCs always check where they are and
whether or not to transmit a location update message in each time unit. Therefore, MCs cannot doze-off
its processor, and switch off network interface card (NIC).

116 M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing

4. The proposed protocol

4.1. Cost model and initial experiment

Firstly, we introduce a new criterion to compare the efficiency of update protocols using a simple
formula by measuring the update cost and the imprecision cost for a certain amount of time. This
criterion is called UIT R (update-and-imprecision to time ratio) (Eq. 4).

CUIT R(∆, wu, wε) =

∆∑
k=1

(wuuk + wε
εk
δ)

∆
(4)

To compute the value ofUIT R efficiently, we employ the update window (UWin) and the imprecision
window (IWin) in the form of a circular queue. Each update flag (uk) in UWin is 1 if an update message
is transmitted, or 0 if it does not. Each item εk of IWin is the Euclidean distance between the actual
location and the estimated location by an update policy. For the computation of CUIT R, εk is normalized
by the predefined uncertainty δ. Both the UWin and the IWin contain ∆ cost items from the time t i and
the current time (ti+∆−1). The relative importance between update cost and imprecision cost in the cost
model is controlled by two weights wu and wε. The CUIT R model can be interpreted as an integration
of location update cost and imprecision cost, and an indirect approach to measure energy consumption
by setting wu � wε.

Based on this cost model, we can identify the behavioral difference of existing location update policies.
Figure 2 shows the comparison of distance-based approach, dead-reckoning, and time-based approach
in terms of CUIT R model. In this comparison, the movement of whole objects is random-walk or linear
mobility patterns by turns with a fixed time interval 200. For random-walk, the distance-based approach
outperforms the dead-reckoning in which the frequent update of motion vector may cause the increased
location imprecision and the resulting increased update cost as well. For linear movement, in contrast,
the dead-reckoning approach performs very well. But, the performance of the distance-based approach
extremely degraded, since average movement distance per unit time highly increased.

This initial experiment shows that the mobility-awareness is the key to reducing the number of location
update messages. Exhibiting complementarity with respect to mobility patterns, different – mutually
complement – update policies can be applied to the aforementioned states: pause (P), linear (L), and
random (R).

4.2. Protocol details

After power-up, each moving object makes transitions through various states depending on its mobility
patterns and terminal states, and updates its location information in location databases using the current
update policy (Fig. 3). The object should examine the UIT R value of all update policies in order to
determine an optimal policy over the whole set of update policies.

The behavior of a moving object is modeled as a state-transition diagram. Each moving object begins
in the INITIAL state. The initialization process starts with the bootstrapping phase, then, carries out
a self-test, performs the RP discovery by network layer functionality, and then enters the WARMUP
state. While in the WARMUP state, each moving object will choose the beginning update policy
according to their current mobility patterns. Exploiting temporal locality of mobility patterns, the update
policy phase is decomposed into small fraction of update state such as UP PAUSE, UP LINEAR, and

M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing 117

Fig. 2. Initial Experiment: An example variations of CUIT R(5, 1, 0.1).

update states

UP_LINEAR

UP_PAUSE

UP_RANDOM

linear state

pause state

random state

time-triggered

distance-triggered

initialization,
local RP discovery

registration &
authentication

INITIAL WARMUP

DISCONNECTED

END

temporary disconnection

ending point

t - t < T

re-warmup

Fig. 3. The state transition diagram for the SLUP protocol.

UP RANDOM. Each update state consists of an update policy that is how the location information of
an object is reflected in the location databases, the state-transition function determining the next states
of the object, and information related to the state.

As mentioned previously, each moving object performs not only the current update policy but also the
others. Then the optimal update policy with the minimum UIT R can be decided without any difficulty.
The additional cost, a few memory and a small number of operations, is acceptable owing to its reflective
effectiveness in the number of update messages and the development of hardware technology.

Definition 5. (State-based Location Update Protocol) The SLUP Protocol is based on the SMM model
and is represented by a finite set of update policy called update policy list UPL = {µ1, µ2, . . . , µN} and

118 M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing

Table 1
Behaviors of each device in terms of various energy states of
proposed protocol

Energy state\device Processor NIC GPS
DOZE Doze-off Switch-off Power saving
IDLE Normal Idle Continuous

TRANSMIT Normal Transmit Continuous

the optimal update policy index opt.

Definition 6. (Update policy) An update policy µ is a 6-tuple (l̂, f, C, UWin, IWin, δ) consisting of
the estimated location l̂ by f , a location estimation function f , the cost function C , the update window
UWin, the imprecision window IWin, and a predefined location uncertainty δ.

We provide a detailed algorithm in Fig. 4. From the starting state R, location update is performed
with state transition through P, L, and R. If the optimal state is P, then the SLUP protocol will be in
time-triggered manner in period T̂ and be in the doze mode in the remainder of time. Otherwise, it
will performs a distance-triggered manner with distance threshold δ. If the opt state is stale, then call
ChooseOptimal() to choose a new (predicted) optimal state and transmit location update message.6

Otherwise, check the current opt is R and still remains for a certain amount of time Tp, then state station
to the state P is performed.

To the best of our knowledge, few studies on the location update policy for stationary state found in
the literature. For this reason, every MC should operate even in stationary state. Under the pause mode,
the moving object is perhaps located at his/her home, office, or meeting room for a long time. It is quite
reasonable to consider a location update policy for stationary state as well as moving state. This insight
has been tried in the location management of PCS, called Stop-or-Move mobility model [18]. We can
assume that an object is in a stationary state if the moving object remains still its location for a certain
amount of time Tp. Then, in this “doze mode”, it is great benefit in terms of the power consumption
of mobile clients by turning off the transceiver and dozing off the processor. The proposed approach
performs location updates and makes transitions through different energy states depending on user’s
movement. These energy states are DOZE, IDLE, and TRANSMIT. In Table 1, behavioral differences
of each device in terms of various energy states is presented.

5. Performance evaluation

5.1. Simulation model and workload generation

We evaluate the performance of three traditional approach, and the proposed approach with vari-
ation. The traditional approaches include distance-based, time-based with threshold(T̂time) 3, and
dead-reckoning. We consider a range of dominancy and temporal locality. The performance metrics
include both energy cost and average imprecision.

Since the real datasets in spatio-temporal database are very hard to achieve, the method of synthesizing
data has widely been used in various area [4,15]. By exploiting the SMM model in Section 2, we can

6A state is called stale (or inconsistent) if the location information of a state has more location imprecision than a predefined
uncertainty δ. In this paper, we assume that ChooseOptimal() is return state R if current optimal state is L and vice versa.

M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing 119

Fig. 4. Algorithm for SLUP protocol. Most of notations in this algorithm is based on Definition 4.2, 4.2. For example, ls
denotes the estimated location by state s. The current time is denoted by t, and lnow is the very current location determined by
a location sensing device such as GPS. The function computeUITRCost(UWini, IW ini) is UIT R cost function of state
i performed by Eq. (4).

120 M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing

Table 2
Simulation parameters

Parameters Meaning Values Used
N The number of objects 10,000

vmax Maximum speed 1
δ Distance threshold 2.0
T Simulation time 1,000
τ Temporal locality 0.0 ∼ 1.0 (spacing 0.1)

�, ρ Dominancy 0 � �, ρ � ∞
(ic, tc) Energy coefficient (48.61, 71.23)

Tp Time threshold to switch into pause mode 5
T̂ Time threshold of the proposed approach in pause mode 5

T̂time Time threshold of time-based approach 3

generate synthetic datasets which is simulating the realistic movement of real-life objects. We classify
the transition matrices for the probability into three types: T(τ), L(�), and S(ρ). These are shown in
below:

T(τ) =
L R

L

R

(
τ 1 − τ

1 − τ τ

)
,
where 0 � τ � 1. (5)

L(�) =
L R

L

R

(�
�+1

1
�+1

�
�+1

1
�+1

)
,
where 0 � � � ∞. (6)

S(ρ) =

P L R

P

L

R

⎛
⎜⎝

ρ
ρ+1

1/2
ρ+1

1/2
ρ+1

ρ
ρ+1

1/2
ρ+1

1/2
ρ+1

ρ
ρ+1

1/2
ρ+1

1/2
ρ+1

⎞
⎟⎠ ,

where 0 � ρ � ∞. (7)

Using these matrices, we can generate realistic workloads in the viewpoint of �, τ , and ρ. The type
T(τ) has various characteristics with changing τ from 0 to 1 within � = 1. As τ increases, the generated
mobility patterns has a tendency to remain in the current state. The type L(�) has linearity �. The
temporal locality of L matrix is

√
�/(� + 1)2 by definition, and its maximum value is 0.5. The matrix

L(0) is used to generate the pure random-walk. On the other hand, L(∞) is for the extremely linear
movement. The type S(ρ) has various characteristics with changing the stationarity ρ from 0 to ∞. The
matrix S(∞) can be used to generate stationary objects. In our simulation, we use the movement vector
by the real number extracted from uniform distribution within in the range of [−vmax,+vmax] in each
dimension. Table 2 summarizes setting for the parameters.

5.2. Energy consumption model

In this paper, there are three energy states such as DOZE mode, IDLE mode, and TRANSMIT mode.
We now describe the ratio of energy consumption for these states. Es describes the amount of energy
consumption in an energy state s per unit time.

EDOZE : EIDLE : ETRANSMIT = 1 : ic : tc (8)

M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing 121

Table 3
The components of Example Mobile Client we examined (in mW) [9]

Model doze normal/active receive transmit
CPU StrongARM SA-1100 0.16 400 (2,500)
NIC RangeLAN2 7401/02 25 750 (30) 1,500 (60)
GPS µ-blox GPS-MS1E 33 462 (14)

In this paper, the amount of energy consumed in doze mode for unit time is denoted as unit energy.
In many processors, the doze mode has extremely low power consumption. In the Hobbit chip from
AT&T, for example, the ratio of power consumption in the active mode to the doze mode is 5,000 [7]. In

brief, the “ic” stands for idle coefficient which means the idle-to-doze ratio
EIDLE
EDOZE

. Similarly, the “tc”

stands for transmission coefficient which means transmission-to-doze ratio
ETRANSMIT

EDOZE
.

In this paper, the average energy consumption can be measured by the amount of unit energy in a
given time. Undisputedly, this experiment depends sensitively on the pair of (ic, tc). In order to choose
reasonable coefficients, we should have some reference values. Table 3 shows the parameters of energy
consumption for our experiment [7,9]. From Table 3, we can estimate these coefficients as followings.

îc =
The total amount of energy consumption in IDLE state

The total amount of energy consumption in DOZE state
(9)

=
(400 + 750 + 462) mW
(0.16 + 0 + 33) mW

= 48.61

t̂c =
The total amount of energy consumption in TRANSMIT state

The total amount of energy consumption in DOZE state
(10)

=
(400 + 1, 500 + 462) mW

(0.16 + 0 + 33) mW
= 71.23

5.3. Effect of dominancy: � and ρ

In this experiment, we vary the two dominancies (� and ρ) from 0 to ∞ and examine how the
proposed approach reduces the energy consumption. Figure 5 shows the average energy consumption
in unit energy, average update cost, and the average imprecision for an object with varying linearity
�. For the distance-based approach, increasing � gave rise to increasing the energy consumption. In
contrast, dead-reckoning has a better performance than the distance-based approach in the case of higher
�. The time-based approach, unlike distance-triggered approaches (distance-based and dead-reckoning),

yields constant energy consumption of tc+T̂time−1

T̂time
. The proposed approach outperforms the traditional

ones under all conditions.
In Fig. 6, we consider user’s stationarity ρ. When ρ is 0, all moving objects are always moving.

As shown in the figure, the energy efficiency has increased as the parameter ρ increased. In the
case of ρ = ∞, all objects stay at their initial position and the performance of the proposed approach is
approximated to ic+T̂−1

T̂
. Moreover, the performance of distance-triggered and time-triggered approaches

are approximated to ic and tc+T̂time−1

T̂time
respectively. Such efficiency inherently leads some additional

cost of increased location imprecision.

122 M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing

Fig. 5. Effect of linearity �: average energy cost in unit energy (first), average update cost (second), and average imprecision
cost (third).

M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing 123

Fig. 6. Effect of stationarity ρ: average energy cost in unit energy (first), average update cost (second), and average imprecision
cost (third).

124 M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing

Fig. 7. Effect of temporal locality τ : average energy cost in unit energy (first), average update cost (second), and average
imprecision cost (third).

M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing 125

(a) Varying linearit y l : (25,50), (25,75), (75,100), and (25,100)

(b) Varying stationarit y ρ: (25,50), (25,75), (75,100), and (25,100)

(c) Varying temp oral locality τ : (25,50), (25,75), (75,100), and (25,100)

Fig. 8. Effect of energy coefficients (ic, tc) in terms of the three mobility parameters, e.g., linearity �, stationarity ρ, and
temporal locality τ .

5.4. Effect of temporal locality τ

In this experiment, we examine the impact on the temporal locality τ . In Fig. 7, we consider the
temporal locality of user movement. Due to fixed linearity 1, a transition matrix with higher τ is likely
to have more linear movements than the opposite one. The dead-reckoning approach, therefore, will be
advantageous for a higher τ under the same �. The proposed approach outperforms the traditional ones
under all condition of varying τ .

5.5. Effect of energy coefficients (ic, tc)

In Fig. 8, we consider different energy coefficients such as (25,50), (25,75), (75,100), and (25,100) in
terms of the three mobility parameters, e.g., linearity �, stationarity ρ, and temporal locality τ . In every
cases the time-triggered (or time-based) approach achieves the same performance, while the distance-
triggered approaches (including SLUP) have different performance characteristics in different energy
coeffcient (ic, tc). The SLUP protocol outperforms other protocols except in the case of (75,100).
Especially in the case of stationarity ρ = ∞, the average energy consumption of distance-triggered,

time-triggered, and SLUP protocols are ic, tc+T̂time−1

T̂time
, ic+T̂−1

T̂
respectively. Satisfying the inequality

126 M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing

ic+T̂−1
T̂

< ic and ic+T̂−1
T̂

< tc+T̂time−1

T̂time
, therefore, the proposed SLUP protocol always outperforms the

existing protocols. Solving the inequality ic+T̂−1
T̂

< ic, we get 1 < ic. And, solving the inequality
ic+T̂−1

T̂
< tc+T̂time−1

T̂time
(assuming that T̂ = T̂time), we get ic < tc. Consequently, if the inequality

of 1 < ic < tc is meet, the proposed SLUP protocol always outperforms the existing protocols. As
developing mobile devices is trying to minimize the energy consumption in hardware design, we think
these energy coefficients will continuously increases.

6. Conclusions

The energy efficiency in mobile computing is considered to be an eternal subject in various layers
such as processor, network layer, application layer, and so on. In particular, an energy efficient location
tracking mechanism for location-aware computing is desperately needed. In this paper, we have presented
a new mobility model called SMM to describe movement patterns of real-life objects in probabilistic
manners. Based on this model, we have proposed an energy-efficient location tracking strategy called
SLUP. Inherently, this protocol has a tradeoff between accuracy and energy consumption. In our
experiment, the additional 9 ∼ 10% of imprecision leads to about 80% reduction of energy consumption
at maximum.

Future research directions include the generation of spatio-temporal datasets based on our SMM model.
We will also extend the proposed approach to dynamically change the distance threshold δ so as to make
the best of energy efficiency in location tracking.

References

[1] D. Barbara, Mobile computing and database – A survey, IEEE Transactions on Knowledge and Data Engineering 11(1)
(1999).

[2] A. Bhattacharya and S.K. Das, LeZi-update: An information-theoretic framework for personal mobility tracking in PCS
networks, Wireless Networks 8 (2002).

[3] A. Bar-Noy, I. Kessler and M. Sidi. Mobile Users: To Update or Not To Update?, Wireless Networks 1(2) (1995).
[4] T. Brinkhoff, Generating Network-Based Moving Objects, Proc. of SSDBM, July, 2000.
[5] J. Cai and K.-L. Tan, Energy-efficient selective cache invalidation, Wireless Networks 5 (1999).
[6] R.H. Guting et al., A foundation for representing and querying moving objects, ACM Transactions on Database Systems

25(1) (March, 2000).
[7] T. Imielinski, S. Viswanathan and B.R. Badrinath, Data on air: Organization and access, IEEE Transactions on Knowledge

and Data Engineering 9(3) (1997).
[8] C.E. Jones, K.M. Sivalingam, P. Agrawal and J.C. Chen, A survey of energy efficient network protocols for wireless

networks, Wireless Networks 7 (2001).
[9] O. Kasten, Energy consumption, ETH-Zurich, Swiss Federal Institute of Technology. Available at http://www.

inf.ethz.ch/∼kasten/research/bathtub/energy consumption.html.
[10] D.L. Minh, Applied Probability Models, Brooks/Cole Pub., 2001.
[11] E. Pitoura and G. Samaras, Locating objects in mobile computing, IEEE Transactions on Knowledge and Data Engi-

neering 13(4) (2001).
[12] D. Pfoser and Y. Theodoridis. Generating Semantics-Based Trajectories of Moving Objects, Int’l Workshop on Emerging

Tech. for Geo-Based App., May, 2000.
[13] J.-M. Saglio and J. Moreira, Oporto: A Realistic Scenario Generator for Moving Objects, DEXA Workshop on Spatio-

Temporal Data Models and Languages, 1999.
[14] M. Song, J. Ryu, S. Lee and C.-S. Hwang, Considering Mobility Patterns in Moving Objects Database, Proc. of ICPP,

October, 2003.
[15] Y. Theodoridis, J.R.O. Silva and M.A. Nascimento, On the Generation of Spatiotemporal Datasets, Proc. of SSTD, 1999.

M. Song et al. / On the design of energy-efficient location tracking mechanism in location-aware computing 127

[16] O. Wolfson, Moving Objects Information Management: The Database Challenge, Proc. of NGITS, 2002.
[17] O. Wolfson, A.P. Sistla, S. Chamberlain and Y. Yesha. Updating and querying databases that track mobile units, Distributed

and Parallel Databases 7(3) (1999).
[18] Y.-C. Tseng, L.-W. Chen, M.-H. Yang and J.-J. Wu, A Stop-or-Move mobility model for PCS networks and its location-

tracking strategies, Computer Communications 26 (2003).

MoonBae Song received his B.S. degree in computer science from Kunsan National University in 1996, and his M.S. degree
in computer science from Soongsil University in 1998. He received his Ph.D. in computer science from Korea University
in 2005. He is a researcher in the Research Institute of Computer Information and Communication at Korea University.
His research interests include moving object databases, location-aware services, context-awareness, and data management for
mobile computing.

Sang-Won Kang received his BS degree in Computer Science and his MS degree in Computer Science and Engineering from
Korea University, Seoul, Korea in 1998 and 2003, respectively. He is currently a Ph.D. candidate in Computer Science and
Engineering and a researcher in the Research Institute of Computer Information and Communication, Korea University, Korea.
His academic interests include Mobile Computing Systems, Mobile Data Management, Location Dependent Data, Semantic
Prefetching & caching, Sensor Data Networks, Indexing & Query Processing for Moving Objects.

KwangJin Park received his B.S. and M.S. degree in computer science from Korea University, Korea in 2000 and 2002,
respectively. He is currently a Ph.D. candidate in Computer Science and Engineering and a researcher in the Research Institute
of Computer Information and Communication, Korea University, Korea. His research interests include location-dependent
information systems, mobile databases, and mobile computing systems.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

