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Interleukin-33 (IL-33), an important member of the IL-1 family, plays a pivotal role in regulating immune responses via combining
with its receptor suppression of tumorigenicity 2 (ST2). We have already known IL-33/ST2 axis participates in the pathogenesis of
various diseases, including liver diseases, renal diseases, and neurological diseases. Recently, emerging studies are indicating that IL-
33/ST2 is also involved in a wide range of ocular diseases, such as allergic eye disease, keratitis and corneal regeneration, dry eye
disease, uveitis, vitreoretinal diseases, and neuromyelitis optica spectrum disorder. In this review, we will summarize and discuss
the current understanding about the functional roles of IL-33/ST2 in eyes, with an attempt to explore the possible study

perspectives and therapeutic alternatives in the future.

1. Introduction of the IL-33/ST2 Axis

L.1. Expression of the IL-33 and ST2. Interleukin-1 (IL-1)
family, consisting of 11 cytokines, plays a critical role in
immune regulation and inflammation mediation.
Interleukin-33 (IL-33, previously named as NF-HEV, IL-
1F11) [1, 2] was firstly introduced as a new member of the
IL-1 family in 2005 [3]. It is widely expressed in the nucleus
of endothelial cells in most human tissues [4, 5]. It is also
expressed in other cell types, including fibroblasts, epithelial
cells, smooth muscle cells, macrophages, and dendritic cells
in several organ tissues [3, 6-9]. Different from traditional
cytokines, IL-33 is considered as a dual function protein,
which exerts its pro- or anti-inflammatory effect by acting
as both an intracellular nuclear factor and a cytokine [10].
IL-33 inside the nuclear can dock at the nucleosomal surface
and promote nucleosome-nucleosome interactions and regu-
late chromatin compaction [11, 12]. Additionally, nuclear IL-
33 can also sequester the transcription factor nuclear factor
kappa B (NF-«B), which results in reduced NF-«B-triggered
gene expression and therefore dampen the proinflammatory
signaling [13]. Moreover, cytokine IL-33 can be released out-
side the cells and mediate immune responses via binding to
its receptor.

As the specific receptor of IL-33, ST2 (suppression of
tumorigenicity, also known as Fit-1, T1) is one of the mem-
bers in IL-1 receptor family, coded by gene interleukin 1
receptor like 1. It was originally presented in 1989 as a
serum-inducible secreted protein in mouse fibroblast [14-
16]; then, the signaling complex of ST2 and IL-1R accessory
protein (IL-1RAcP) was discovered. ST2 exists on a wide
spectrum of cell types, such as mast cells, endothelial cells,
innate lymphoid cells group 2 (ILC2s), helper and regulatory
T cells, CD8+ T cells, invariant natural killer T (iNKT) cells,
natural killer (NK) cells, basophils, and eosinophils [17-20].
So far, studies have discovered three variants of ST2 protein
due to alternative splicing in human, namely, a transmem-
brane form (ST2L), a soluble secreted form (sST2), and a
novel isoform (ST2V) [21, 22]. Among which, ST2L was
selectively expressed on the surface of T helper 2 (Th2) cells
and mast cells, but not on that of Th1 or regulatory T (Treg)
cells, while sST2 was secreted by Th2 cells following signaling
activation [23, 24]. The expression and roles of ST2V remain
unclear.

1.2. Molecular Pathways of IL-33/ST2 Axis. IL-1 family mem-
bers are mostly synthesized as precursor proteins with little
or no biological activity, requiring limited protease to process
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cleavage and unlock their full biological potential [25]. How-
ever, full-length pro-IL-33 exhibits basal activity in its imma-
ture unprocessed form, which is similar to IL-la, but
different from IL-1f and IL-18. Moreover, some inflamma-
tory proteases, such as neutrophil elastase, cathepsin G, and
mast cell chymase, could greatly enhance IL-33 bioactivity
via cleaving at the N-terminal part [26, 27]. In contrast, some
proteases including caspase-1, and proapoptotic caspases-3
and -7 could inactivate IL-33 by cutting at its C-terminal
IL-1-like cytokine domain [28, 29].

When cells are damaged or necrotic, bioactive pro-IL-33
is released from cells, and the abovementioned proteases
remove the N-terminal amino acids; then, a mature, 10- to
30-fold-increased-potent IL-33 is created. Once the active
IL-33 is released, it can bind to cells that express ST2L [30]
and recruit IL-1RAcP. The Toll-interleukin 1 receptor
(TIR) domain in IL-1RAcP then combines with a signaling
adaptor including myeloid differentiation primary response
protein 88 (MyD88), IL-1R-associated kinase 1 (IRAK1),
IRAK4, and tumor necrosis factor receptor-associated factor
6 (TRAF6) [31]. Subsequently, the axis activates the tran-
scription factor NF-xB and the mitogen-activated protein
kinases (MAPK) [21], which in turn displays profound
immunomodulatory functions.

The IL-33/ST2L axis also has a negative feedback system
as soluble ST2 and soluble IL-1RAcP complex can reversely
regulate and even prevent the IL-33 activity [33]. Moreover,
extracellular environment [34], single immunoglobulin
domain IL-1R-related molecule [35], and inflammatory pro-
teases [36] can also diminish IL-33 activity.

1.3. Functional Roles of the IL-33/ST2 Axis. IL-33/ST2 axis
could affect cells both of the innate and adaptive immune sys-
tem [37].

First, IL-33/ST2 plays critical roles in the differentiation
and functionality of various T cell subsets and primarily
mediates type 2 immune action. It is well recognized that
IL-33 drives the polarization of naive T cells to Th2 immune
cells and induces the production of Th2 cytokines and che-
mokines, such as IL-5, IL-9, and IL-13 [38]. In addition, IL-
33/ST2 could promote the expansion and function of both
CD8+ cytotoxic T lymphocytes and Thl cells and therefore
mediate a protective antiviral response [39, 40]. The axis also
provokes a Th17 immune response [41]. Besides, IL-33/ST2
displays dual functions in Treg cells in different disease con-
texts. Under autoimmune, inflammatory and tissue injured
circumstances, such as experimental autoimmune encepha-
lomyelitis, graft versus host disease (GVHD), sepsis, and
acute lung injury, IL-33/ST2 axis increases Treg cells num-
bers and enhances its protective function [42-44]. However,
in allergic airway disease and systemic sclerosis, IL-33/ST2
can dysregulate lung and skin Treg cells and impair its sup-
pressive ability, respectively [45, 46].

Second, IL-33/ST2 acts on a wide range of innate
immune cells [42, 47]. Specifically, IL-33/ST2 promotes the
infiltration and activation of neutrophils, eosinophils, baso-
phils, dendritic cells, iINKT, and NK cells, resulting in the
release of cytokines and chemokines accordingly. IL-33/ST2
also stimulates the maturation of mast cells [48], and facili-
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tates the polarization of M2 macrophages [49]. Furthermore,
IL-33/ST2 also influences the activation of innate immune
responses via the induction of ILC2s [50-53]. Consequently,
IL-33/ST2 axis is categorized as an “alarmin” due to its ability
to initiate both adaptive and innate immune defences in the
context of cell damage [4, 20, 54].

1.4. Relationships between the IL-33/ST2 Axis and Diseases.
Due to the comprehensive and pleiotropic involvement of
the IL-33/ST2 axis in immune responses, it has been impli-
cated in a broad range of diseases and suggested as a potential
biomarker for predicting disease severity and activity [47].
Herein, we divided these diseases into two groups, according
to whether they are exacerbated or ameliorated by IL-33/ST2
signaling.

In the basis of current understanding, the IL-33/ST2
pathway primarily plays detrimental roles in various allergic
disorders [55, 56] such as asthma and atopic dermatitis and
in multiple autoimmune diseases [47, 57] such as rheumatoid
arthritis, systemic lupus erythematosus, systemic sclerosis,
and inflammatory bowel diseases [58]. IL-33/ST2 also aggra-
vates chronic obstructive pulmonary disease [59] and fibrotic
diseases [60, 61].

On the contrary, IL-33/ST2 exerts protective effects on
GVHD [62, 63], cardiovascular diseases [64], and several
central nervous system diseases [10, 65] such as Alzheimer’s
disease and stroke. In addition, the axis also promotes tissue
repairment [66].

However, there are still controversies since the IL-33/ST2
axis presents dichotomous roles in a number of diseases. For
instance, the exacerbated or ameliorative effect of the axis
during infection (e.g., bacterial, fungal, parasitic, and viral
infection) depends on factors such as the infectious agents,
involved organs, and cytokine microenvironments [67, 68].
Similarly, IL-33/ST2 shows protumoral or antitumoral func-
tions up to the tumor types, target cells, and microenviron-
mental factors [69, 70].

2. Functional Roles of IL-33/ST2 in
Ocular Diseases

Recently, the relationship between IL-33/ST2 axis and eye
diseases has aroused increasing attention. Accumulating
studies have demonstrated that IL33/ST2 plays critical roles
in several eye diseases (Figure 1), including allergic eye dis-
ease, keratitis and corneal regeneration, dry eye disease
(DED), uveitis, vitreoretinal diseases, and neuromyelitis
optica spectrum disorder (NMOSD). Herein, we summarized
the study progress in the abovementioned areas (Table 1).

2.1. Allergic Eye Disease. Allergic eye disease is a wide spec-
trum of ocular disorders that encompasses keratoconjuncti-
vitis, allergic conjunctivitis, blepharoconjunctvitis, and giant
papillary conjunctivitis, etc. Amongst atopic keratoconjunc-
tivitis (AKC) is a typical Th2-biased chronic inflammatory
disease, involving both conjunctival inflammation and cor-
nea impairment, which may result in severe vision loss, and
is associated with atopic dermatitis and asthma in most cases
[71]. Meanwhile, allergic conjunctivitis (AC) is one of the
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FIGURE 1: Signaling and roles of IL-33/ST2 in eye diseases. Various factors (infection, allergy, tissue damage, and stressful stimuli, etc.) result
in the release of interleukin-33 (IL-33) from the nucleus of endothelial cells, epithelial cells, fibroblasts, and Miiller cells. Binding of IL-33 with
heterodimer receptor suppression of tumorigenicity 2 (ST2L)/IL-1R accessory protein (IL-1RAcP) induces myeloid differentiation primary
response protein 88 (MyD88) recruitment via Toll-interleukin 1 receptor (TIR) domain and downstream activation involving IL-1R-
associated kinase 1 (IRAK1), IRAK4, and tumor necrosis factor receptor-associated factor 6 (TRAF6). Subsequently, the p38-activated
mitogen-activated protein kinases (MAPK), c-Jun N-terminal kinase (JNK), extracellular regulated protein kinases (ERK), and nuclear
factor kappa B (NF-«B) promote the secretion of inflammatory cytokines and chemokines, which in turn exerts pro-/anti-inflammatory
effect and tissue repairment. Upregulated IL-33 in different parts of eyeball and ocular adnexa induces diverse immune responses and

diseases by targeting various ST2+ cells.

most common hypersensitivity eye diseases characterized by
itching, redness, lid edema, tearing and other signs [72].
Patients with AC typically undergo two stages after exposure
to allergens, which are an IgE-dependent prompt response
and a Th2 cytokine-dependent delayed response [73]. Since
the 1990s, it has been widely recognized that IL-1 plays regu-
latory roles in AC. Considering the homologous sequences
and similar receptor sharing between IL-33 and IL-1, accu-
mulating studies have paid attention to the function of IL-
33/ST2 in allergic eye diseases, especially in AKC and AC.
In patients with atopic keratoconjunctivitis, IL-33 protein
expressed at vascular endothelial cells, epithelium cells, and
fibroblasts of giant papillae in vivo [74]. Studies further ana-
lyzed the induction and downstream signals of IL-33/ST2
in vitro. In human corneal epithelial cells (HCECs), it was
revealed that the signaling pathway was initiated by the com-
bination of various viral or bacterial components with Toll-
like receptors (TLR3, -4, -5, -6, and -7), while was largely
blocked by MyD88 inhibitory peptide or TIR domain-
containing adaptor-inducing interferon f inhibitory peptide
[75]. The activated IL-33/ST2 axis can in turn induce proal-
lergic inflammation and promote the expression of proaller-

gic cytokine thymic stromal lymphopoietin and chemokine
(C-C motif) ligand-2 (CCL2), CCL20, and CCL22 on both
mRNA and protein level in the human cornea. Additionally,
the signaling pathway can be significantly stimulated by IL-
33, while suppressed by ST2 antibodies, soluble ST2, NF-«xB
activation inhibitor, and inhibitor of NF-xB-a (IxB-«) inhib-
itor [76]. In mast cells, it was proved that the IL-33/ST2
exerted its functional roles via the phosphorylation of p38
MAPK and IL-13 mRNA induction [74]. To verify the
in vivo pathogenic roles of IL-33/ST2 in AKC, one study
group established a transgenic mouse line, in which IL-33 is
overexpressed in keratinocytes [77]. Results displayed that
transgenic mice spontaneously developed blepharitis and
keratoconjunctivitis strikingly resembling human AKC. The
upregulated level of IL-33 enhanced Th2 cytokine (IL-4, IL-
5, and IL-13) expression and induced eosinophils, mast cells,
and basophils infiltration in mice conjunctiva and cornea.
Furthermore, in the lacrimal fluid, the concentration of IL-
33, Th2 cytokines, and chemokines (CCL2, CCL3, CCL5,
CCL11, C-X-C motif-binding chemokine 1, and
granulocyte-colony stimulating factor) were also abundant.
Interestingly, this study also demonstrated that IL-33/ST2
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TaBLE 1: Involvement of Interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) axis in ocular diseases.

Disease Findings Refs

IL-33 induced recruitment and ST2 expression of eosinophils and promoted T helper 2 (Th2)

. Lo . . s . [73, 81]
cytokines expression in allergic conjunctivitis (AC) mice model.

IL-33 was upregulated in the conjunctival giant papillae of atopic keratoconjunctivitis (AKC).

IL-33/ST2 axis induced the phosphorylation of p38 mitogen-activated protein kinases (MAPK) [74]

and IL-13 mRNA induction in mast cells.

The induction of proallergic IL-33 was triggered by specific Toll-like receptors (TLR) ligands [75]
through innate immunity signaling pathways in corneal epithelium.

IL-33/ST2 mediated proallergic responses via nuclear factor kappa B (NF-«B) signaling pathway

and induced the production of proallergic cytokines and chemokines in human corneal epithelial [76]

cells (HCECs).

Overexpression of IL-33 in keratinocytes induced the onset of AKC, accompanying the activation
of corneal group 2 innate lymphoid cells (ILC2) and the release of Th2 cytokines.

Allergic eye disease
[77]

IL-33 mRNA and protein increased in conjunctival epithelial tissue in AC mice.
Eosinophil and basophil infiltration and Th2 cytokines expression decreased in the IL-33 [78, 79]
knockout mice.

IL-33 augmented CD4+, ST2+, or ILIRAP+ cells infiltration and Th2 cytokines expression in AC
mice model. [80]
Clinical and molecular changes decreased in TLR4 deficient or MyD88 knockout mice.
Total IgE concentration in serum and mast cells infiltration in conjunctiva increased in AC mice
model.

ST2 mRNA and protein levels elevated in the Pseudomonas aeruginosa- (P. aeruginosa-) infected
cornea in Th-2 responsive mice. [83]
Blocking ST2 signaling led to susceptible to P. aeruginosa-induced keratitis.

IL-33 mRNA and protein levels elevated in the P. aeruginosa-infected cornea in Th-2
responsive mice. [84]
Stimulating IL-33 signaling led to resistance to P. aeruginosa-induced keratitis.

IL-33 mRNA and protein levels elevated in the Aspergillus fumigatus-infected cornea in human,

Keratitis and corneal .
mice, and HCECs.

regeneration IL-33/ST2/p38 MAPK axis amplified the proinflammatory responses induced by Aspergillus (85]
fumigatus in HCECs.
IL-33/ST2 induced the production of inflammatory mediators (tumor necrosis factor-«, IL-13, IL-
6, and IL-8), while ST2 antibody, soluble ST2, NF-?B activation inhibitor and inhibitor of NF-«xB [86]
inhibitor suppressed the signaling.
IL-33 increased in cornea tis.sue after corneal epithelial woupding, promoting the number and [87]
function of corneal ILC2s in the healing process.
IL-33 and ST2 protein increased in the cqnjunctival impression cytology of DED patients. [89]
IL-33 mRNA and protein elevated in DED cell model.
Dry eye disease (DED) IL-33 concentration elevated in tears of DED patients. [90]
Elevated IL-33 level in tears of DED patients was posit.iv?ly relate(;l to increased Th2 cytokines (L-4, (89, 91]
IL-5, and IL-13) and clinical severity. ’
Upregulated IL-33/ST2 axis promoted m.acrophages. po'larizatic.)n, altered th.e .cyto.kines production 93]
profile, and reduced the disease severity in autoimmune uveitis mice.
Serum IL-33 level increased in Behget uveitis patients compared to Behget patients without uveitis. [94]
Uveitis A single nucleotide p'olymor})hism—rs37739.78 in gene interlegkin 1 receptor likg 1 significantly [95]
was associated with acute anterior uveitis (AAU) in Chinese population.
No differences of IL-33 level .in aqueous humor and serum were found among HLA-B27 associated [96]
AAU patients, idiopathic AAU patients, and control group.
Increased IL-33/ST2 signaling was .close.:ly correlated with the enhanfe.d expressi{)n levels of IL-1, [97]
Th1, and Th2 cytokines in eyes of Toxoplasma gondii-infected mice.
Vitreoretinal diseases Upregulated mRNA levels of triggering receptor expressed on myeloid cells-1 and TLRs were
correlated with increased IL-33/ST2 signaling in damaged retina and choroid of Toxoplasma [98]

gondii-infected mice.
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TaBLE 1: Continued.

Disease Findings Refs
IL-33 was highly released by Miiller cells in the lesion area in age-related macular degeneration
patients.
Upregulated IL-33/ST2 signaling in Miiller cells resulted in downstream cytokines and [101]

chemokines release, photoreceptor cell loss, and mononuclear phagocytes recruitment after light

exposure.

IL-33 and ST2 expression elevated in retinal pigment epithelium cells of age-related macular

degeneration cell model.
IL-33/ST2 signaling induced inflammatory cytokines secretion via MAPK, c-Jun N-terminal

[102]

kinase, extracellular regulated protein kinases, NF-xB pathways.

IL-33 production, retinal vascular progression, and subretinal fibrosis formation decreased after
antiendoglin and/or antivascular endothelial growth factor-A antibody therapy.
IL-33/ST2 was upregulated by Toll-like receptor activation or hypoxic condition and can
subsequently protect retina degeneration and choroidal neovascularization development.

[103]

[105]

Plasma IL-33 increased in patients with polypoidal choroidal vasculopathy, together with
diminished Tregs and enhanced Th2-like Tregs. [106]
The level of IL-33 was positively correlated with the percentage of Th2-like Tregs.

IL-33 increased in the detached retina in mice.
IL-33 deficiency resulted in exacerbated and sustained retinal inflammation, together with [107]
enhanced retinal degeneration and gliosis.

Serum IL-33 increased in infants with retinopathy of prematurity, and greatly reduced after laser

treatment. [108]
No significant changes were observed in both percent detectable and level of IL-33 in
; creent aeectabe ane : (109, 110]
the serum, vitreous, and aqueous humor of proliferative diabetic retinopathy patients.
Neuromyelitis optica Upregulated level of serum IL-33 was associated with disease status and relapse rate in [111]

spectrum disorder

neuromyelitis optica spectrum disorder.

promoted the activation and proliferation of ILC2, resulting
in markedly elevated levels of ILC2-producing IL-5, IL-13,
and chemokines in the cornea. Therefore, it is obvious that
the IL-33/ST2 axis participates in the initiation and develop-
ment of atopic keratoconjunctivitis in several conjunctival
and corneal cell types.

As for allergic conjunctivitis, current studies were con-
ducted mainly based on various mice models. In AC mice,
a significant increase of IL-33 mRNA and protein was
observed in the conjunctival epithelial cells [78, 79]. The
IL-33 stimulation augmented the expression of ST2 and
IL-1RACP in the conjunctiva and promoted Th2 cells dif-
ferentiation [80]. Consequently, increased release of Th2
cytokines in conjunctiva and corneal epithelium triggered
the infiltration of a large amount of ST2+ eosinophils
and a small proportion of ST2+ CD4+ T cells [73] and
ST2+ mast cells in conjunctiva, leading to an increase in
total IgE concentration in serum [81]. On the contrary,
in TLR4 deficient, MyD88 knockout [80] or IL-33 knock-
out mice [78, 79], clinical manifestation, eosinophils and
basophils infiltration, and molecular concentration (pro-
tein and mRNA levels of IL-33, ST2, ILIRAcP, and Th2
cytokines) were markedly diminished or eliminated in
the conjunctiva compared to those in wild-type mice.
Therefore, we may conclude that IL-33/ST2 plays a pro-
motive role in allergic conjunctivitis. Based on these pres-
ent findings, further studies are necessary to investigate the
possibility of IL-33/ST2-target therapeutic strategy in aller-
gic eye disease.

2.2. Keratitis and Corneal Regeneration. IL-33/ST2 axis also
participates in balancing the corneal inflammation with
organism elimination and cell apoptosis with tissue repair.
Keratitis is a series of corneal inflammation diseases that
is caused by a variety of pathogens. Pseudomonas aeruginosa
(P. aeruginosa) keratitis is one of the most common and dev-
astating bacterial keratitis, which is closely associated with
extended contact lens usage [82]. In this regard, the primary
explorations of the corneal localization and functional roles
of ST2 [83] and IL-33 [84] were separately reported using
P. aeruginosa keratitis mice models. Huang et al. found ST2
and IL-33 mRNA and protein constitutively expressed in
the normal cornea, while the expression level of ST2 and
IL-33 was significantly increased in the P. aeruginosa-
infected cornea. Intriguingly, when treated C57BL/6 mice
(susceptible) with recombinant murine (rm) IL-33 before
infection, upregulated ST2 expression was observed, which
then led to a reduction of bacterial load and polymorphonu-
clear neutrophil infiltration and decreased mRNA levels for
proinflammatory cytokines (IL-1f, human macrophage
inflammatory protein 2, IL-6, and tumor necrosis factor-a)
and Th-1 cytokines (interferon-y and IL-12), together with
upregulated mRNA levels for Th-2 cytokines (IL-4, IL-5,
and IL-10) in the cornea. Moreover, rmIL-33 injection also
shifted macrophage polarization from M1 to M2 phenotype.
Therefore, it is suggested that IL-33 stimulation resulted in
less disease severity and reduced cornea inflammation [84].
However, when tested BALB/c (resistant) mice with rmST2
as a decoy receptor before infection, decreased level of



activated ST2 led to converse molecular changes, and ulti-
mately showed severer disease manifestations [83]. Taken
together, these two studies innovatively revealed the potential
defensive role of both IL-33 and ST2 in bacterial keratitis.

In the case of fungal infection, Aspergillus fumigatus
could greatly provoke IL-33 expression in human corneal tis-
sues, mice corneas, and HCECs. Subsequently, the activation
of IL-33/ST2/p38 MAPK axis promoted the production of
proinflammatory cytokines [85]. Therefore, current evidence
indicated that the IL-33/ST2 axis may exert a detrimental
effect on corneal fungal infection.

Moreover, in cultured primary HCECs, it was revealed
that additional IL-33 can stimulate IL-33/ST2 signaling and
increase the concentration of inflammatory mediators. While
the IL-33/ST2 axis was suppressed by ST2 antibody, soluble
ST2, p38 MAPK inhibitor, NF-«B activation inhibitor, and
IxB-a inhibitor [85, 86]. Collectively, it is of great importance
to further investigate the double-edge functions and regula-
tory mechanisms of IL-33/ST2 in different types of keratitis
and explore clinical strategies based on diverse infectious
pathogens and immune responses.

Apart from corneal infection, corneal injury is another
major cause of blindness worldwide. Understanding the
mechanism of cell proliferation and tissue healing is critical
to restoring vision. At a steady state, only a rare population
of ILC2s was detected to reside in mice corneal limbus. How-
ever, once corneal epithelium was abraded, CD64+CCR2-
M2 type macrophages started to express IL-33 in the cornea,
and thereby, local induction of IL-33 promoted significant
ILC2s expansion and responses, resulting in corneal wound
healing. In contrast, blocking of IL-33 or depleting of
CCR2- macrophages can greatly delay and attenuate the pro-
cess [87]. In addition, IL-33/ST2 was proved to promote cell
proliferation in HCECs in vitro [85]. In summary, limited
study has shed light on the beneficial roles of IL-33/ST2 in
wound healing and corneal regeneration. More studies are
required to elucidate the detailed regulatory pathways involv-
ing more cell types and focus on its potential clinical use in
treating various corneal defective diseases.

2.3. Dry Eye Disease. In recent years, dry eye disease has
aroused great attention due to its high prevalence and signif-
icant impact on visual quality. It is mainly categorized into
two types, namely, aqueous deficient type and evaporative
continuum type [88]. Nevertheless, ocular surface inflamma-
tory response is a key component in the pathogenesis of all
subtypes of DED.

In human conjunctival epithelial cells, the level of IL-33
mRNA and protein was found to be significantly enhanced
in the hyperosmotic state [89]. In the conjunctival impres-
sion cytology specimens obtained from DED patients, both
IL-33 and ST2 protein were increased, compared to those
in healthy people. Furthermore, in tears of DED patients,
the concentration of IL-33 was greatly elevated, together with
various proinflammatory cytokines and chemokines [90].
The elevated IL-33 level was positively correlated with
increased Th2 cytokines (L-4, IL-5, and IL-13), ocular surface
disease index score, and corneal fluorescein staining, whereas
negatively associated with tear film breakup time and Schir-
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mer I test [89, 91]. Interestingly, although the abovemen-
tioned results were observed both in Sjogren syndrome dry
eye and non-Sjogren syndrome dry eye patients, tear IL-33
level was found to be much higher in Sjogren syndrome
group than in the non-Sjogren syndrome group [91].

Thus far, present information has interpreted that the
upregulated IL-33/ST2 might mediate the ocular surface
inflammation in DED via the activation of Th2 responses.
The relationship between IL-33 expression levels and disease
severity may also provide us a novel target for DED diagnosis
and treatment. It is valuable to perform continued research
including identifying the regulatory pathways of IL-33/ST2
in DED, distinguishing the differences of IL-33/ST2 expres-
sion between the aqueous deficient and the evaporative dry
eye and demonstrating the correlation of IL-33/ST2 with
DED-related ocular surface diseases such as corneal superfi-
cial punctate keratopathy.

2.4. Uveitis. Uveitis is a wide spectrum of inflammatory dis-
ease involving anterior or/and posterior of the eyeball and
can result in permanent visual impairment. Although it is
well-recognized that IL-1 family plays crucial roles in mediat-
ing innate and adaptive immune response and could be a
potent therapeutic target in various autoimmune diseases
[92], little was known about the role of IL-1 family member
IL-33 and its receptor ST2 in uveitis, especially in autoim-
mune uveitis. IL-33 was constitutively expressed in the inner
nuclear cells of normal retina and was greatly upregulated in
autoimmune uveitis mice. In addition, in ST2 knockout mice,
the exacerbated immune response can be reversely regulated
by IL-33 treatment, which presented as promoted macro-
phages polarization, altered cytokine production profiles,
and ultimately reduced disease severity [93]. There were also
several clinical researches regarding different subtypes of
uveitis. In patients with Behget’s uveitis, serum IL-33 level
was significantly higher compared to patients without uveitis
[94]. In a Chinese population with acute anterior uveitis
(AAU), a single-nucleotide polymorphism-rs3773978 in
gene interleukin 1 receptor like 1 (encodes ST2) was found
to associate with the presence of disease [95]. However, dif-
ferent results were obtained in another study conducted in
AAU patients: even though multiple cytokines of IL-1 family
exhibited as the specific signatures in HLA-B27 associated
AAU and idiopathic AAU, no significant differences of IL-
33 level in both serum and aqueous humor were observed
between disease group and control group [96]. Hence,
whether the IL-33/ST2 axis involves in regulating uveal
inflammation reaction and by what regulatory networks are
still uncertain. Future investigations could be taken to reeval-
uate the role of IL-33/ST2 among more kinds of uveitis, com-
pare the difference between infectious versus noninfectious
uveitis, or granulomatous versus nongranulomatous uveitis,
and clarify potential reasons for the discrepancy.

2.5. Vitreoretinal Diseases. The current studies concerning
the roles of IL-33/ST2 axis in vitreoretinal diseases mainly
focused on ocular toxoplasmosis (OT) and age-related mac-
ular degeneration (AMD). Notably, its roles in polypoidal
choroidal vasculopathy (PCV), retinal detachment (RD),
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retinopathy of prematurity (ROP), and proliferative diabetic
retinopathy (PDR) have been uncovered lately.

Ocular toxoplasmosis is a vision-threatening disease
caused by Toxoplasma gondii infection, which generally
involves vitreous body, retina, and choroid. In the eyes of
Toxoplasma  gondii-infected mice, IL-33-positive cells
increased, accompanied with enhanced mRNA concentra-
tion of IL-33, ST2, IL-1f3, Th1 (IFN-y and IL-12), and Th2
(IL-4, IL-10, and IL-13) cytokines. The increased IL-33/ST2
signaling was closely related to the higher expression levels
of these inflammatory mediators [97]. The same research
group further revealed that in the damaged retina and cho-
roid of OT mice, the mRNA levels of triggering receptor
expressed on myeloid cells-1 and TLRs also significantly ele-
vated and were positively correlated with the enhanced IL-
33/ST2 signaling [98]. Therefore, current data indicates that
IL-33/ST2 participates in the immune responses of OT and
may exert its regulatory roles by indeterminate signaling
pathways involving triggering receptor expressed on myeloid
cells-1, TLRs, and Th1/Th2 cytokines.

Age-related macular degeneration is another disease
where IL-33/ST2 might involve in [99]. AMD is one of the
preponderant causes of severe visual loss in the ageing popu-
lation worldwide. The main characteristics of AMD include
permanent loss of photoreceptors and retinal pigment epi-
thelium (RPE) cells, formation of drusen, and choroidal neo-
vascularization [100].

Primarily, IL-33 was inferred as a pathogenic factor in
aggravating retina injury and noninfectious immune
responses. In normal human retina tissue, IL-33 was highly
expressed in the nucleus of Miiller cells and RPE cells of mac-
ular area. IL-33 was also positive in astrocytes in the retinal
ganglion cell layer and choroidal endothelial cells [101]. In
AMD patients, IL-33+ Miiller cells increased in the RPE
and photoreceptor loss area, which is analogous to the lesion
in geographic atrophy or advanced dry AMD. IL-33+ cells
also enhanced in the choroid of AMD lesion areas. Further-
more, a higher IL-33 concentration in vitreous was observed.
Next, the functional roles of IL-33/ST2 signaling in RPE cells
or Miiller cells were identified using an AMD cell line in vitro
[102] or a phototoxic retinal mice model in vivo [101],
respectively. Specifically, IL-33 was released by RPE cells
and Miiller cells under stressful stimuli, leading to an increase
in ST2L expression and recruitment of myeloid cells. The
binding of bioactive IL-33 and ST2L thereby activated down-
stream pathways (p38 MAPK, c-Jun N-terminal kinase,
extracellular regulated protein kinases 1/2, and NF-«B), and
induced the secretion of proinflammatory cytokines (IL-6,
IL-8, IL-13, and tumor necrosis factor-a, respectively) and
chemokines. On the other hand, IL-33/ST2 also directly
recruited massive mononuclear phagocytes to the outer
layers of the retina. Thus, these two pathogenic functions
of IL-33/ST2 may ultimately lead to inflammatory injuries
and photoreceptor cell loss in AMD. Besides, after treating
neovascular AMD mice with antiendoglin and/or antivas-
cular endothelial growth factor-A antibody, a significant
reduction of IL-33 production, along with attenuated
development of retinal vascular lesions and subretinal
fibrosis, was observed [103].

However, although various factors such as autophagy and
phototoxic and oxidative stress might aggravate retina injury
and noninfectious immune responses, there were still argu-
ments addressed that IL-33 attenuated this responses [104].
According to a study by Theodoropoulou et al., hypoxic con-
ditions or activation of Toll-like receptor might enhance gly-
colytic metabolic in RPE cells, which resulted in upregulated
activity level of IL-33/ST2 and subsequently reduced the
migration of choroidal fibroblasts and retinal microvascular
endothelial cells, accompanied with inhibited collagen gel
contraction in vitro [105]. In neovascular AMD mice, local
administration of recombinant IL-33 was also proved to
suppress choroidal neovascularization formation via ST2
signaling. Notably, a recent study showed distinct findings.
In the plasma of neovascular AMD patients, IL-33 level
did not differ significantly compared to those in healthy
controls [106]. Thus, more clinical and experimental
research is required to elucidate this discrepancy. Also,
comparing the expression and functional differences of
IL-33/ST2 between different types or severity of AMD will
not only help us better understand the complex mecha-
nism of the disease but also provide new clues about the
immunotherapeutic treatment paradigm.

In patients with PCV, plasma IL-33 level was as twice as
high compared with that in the healthy people, together with
diminished Tregs and enhanced polarization into Th2-like
Tregs [106]. Meanwhile, the increased IL-33 was positively
correlated with the high percentage of Th2-like Tregs in the
peripheral blood. Interestingly, in the subgroup of PCV
patients who could be classified as pachychoroid neovasculo-
pathy, similar results were obtained. Taken together, IL-33
may participate in the immunologic dysfunction in PCV
and pachychoroid neovasculopathy. However, there are
numerous issues remain unknown, such as the mechanism
and causality of IL-33/ST2 in PCV and the difference
between IL-33/ST2 in the pachychoroid neovasculopathy
and neovascular AMD.

One recent study also found that IL-33/ST2 might exert
protective roles in RD [107]. In healthy mice, the expression
level of IL-33 and several inflammatory mediators (IL-13, IL-
18, CCL2, complement components Clra and Cls, and glial
fibrillary acidic protein) quickly increased in the detached
retina after the induction of RD and reduced gradually. How-
ever, in IL-33 knockout RD mice, an exacerbated and sus-
tained inflammatory response together with persistent retinal
gliosis were detected. These aggravated immune actions con-
sequently led to a more severe photoreceptor degeneration
and synaptophysin loss, when compared to control mice.
Interestingly, IL-33 deletion suppressed the expression of
CCL2 and IL-6 in Miiller cells, whereas promoted the expres-
sion of proinflammatory IL-1/3, CCL2, tumor necrosis factor-
a, and nitric oxide synthase in macrophages.

In the context of ROP, serum level of IL-33 was increased
in ROP infants who need laser therapies and was found to
greatly reduced after the treatment. On the other hand, in
the cord blood, IL-33 value was similar in ROP infants
and healthy infants. Hence, serum IL-33 is preferred as a
novel and sensitive biomarker for the prediction of severe
ROP [108].



Nevertheless, IL-33 was rarely detectable in the serum,
vitreous, and aqueous humor samples collected from patients
with PDR. Moreover, the level of IL-33 did not alter signifi-
cantly in all of these bodily fluids [109, 110].

There is also one research showed that IL-33 was signifi-
cantly increased in the serum of NMOSD patients and was
associated with disease status and relapse rate [111].

3. Discussion and Conclusions

We now have a deeper understanding about the expression,
signaling pathway, and immunoregulatory mechanism of
IL-33/ST2 axis in different parts of the eye. The current stud-
ies reaffirmed the previous findings that were obtained in
other body systems or organs and extended to a broader field,
involving a greater variety of cell types and immune
responses. IL-33/ST2 may exert detrimental effects on aller-
gic eye disease and corneal fungal infection, while play pro-
tective roles in bacterial keratitis, corneal wound healing,
and RD. IL-33/ST2 also regulates the immune responses in
DED, OT, AMD, PCV, ROP, and NMOSD. However, the
deterioration/amelioration effects and specific signaling
pathways of the axis still require further elucidation among
these diseases. Additionally, whether IL-33/ST2 participates
in uveitis and PDR remains unclear.

Apart from the unsolved questions stated in the above-
mentioned diseases, there is still much to be identified in
future studies. For instance, genome variations are consid-
ered as important factors contributing to numerous auto-
immune and inflammatory diseases. Nevertheless, few
studies have reported the association between IL-33 and
ST2 with ocular diseases in gene level to date. Besides, little
is known about the role of IL-33/ST2 in corneal allograft rejec-
tion, considering it has been documented that IL-33/ST2
regulates the graft versus host disease-related immune
responses in various organs. In summary, IL-33/ST2 is a
promising axis in ocular diseases, which deserves more
and consistent attention.
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