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Addressing to the problems of few annotated samples and low-quality fused feature in visible and infrared dual-band maritime ship
classification, this paper leverages hierarchical features of deep convolutional neural network to propose a dual-band maritime ship
classification method based on multilayer convolutional feature fusion. Firstly, the VGGNet model pretrained on the ImageNet
dataset is fine-tuned to capture semantic information of the specific dual-band ship dataset. Secondly, the pretrained and fine-
tuned VGGNet models are used to extract low-level, middle-level, and high-level convolutional features of each band image, and
a number of improved recursive neural networks with random weights are exploited to reduce feature dimension and learn
feature representation. Thirdly, to improve the quality of feature fusion, multilevel and multilayer convolutional features of
dual-band images are concatenated to fuse hierarchical information and spectral information. Finally, the fused feature vector is
fed into a linear support vector machine for dual-band maritime ship category recognition. Experimental results on the public
dual-band maritime ship dataset show that multilayer convolution feature fusion outperforms single-layer convolution feature
by about 2% mean per-class classification accuracy for single-band image, dual-band images perform better than single-band
image by about 2.3%, and the proposed method achieves the best accuracy of 89.4%, which is higher than the state-of-the-art

method by 1.2%.

1. Introduction

Object classification is a fundamental problem with numer-
ous applications in computer vision and has been extensively
studied for visible (VIS) image in the past decades. Because
infrared (IR) image provides additional information of the
same scene, it helps address various challenges in VIS image,
such as variation illumination and occluded appearances.
Thus, dual-band data consisting of VIS and IR images has
been successfully applied to face recognition [1-3]. Many
recent works in object classification [4], person reidentifica-
tion [5], and pedestrian detection [6] show that dual-band
data can improve performance and offer competitive advan-
tages over single band.

After the breakthrough research in image classification
by Krizhevsky et al. [7], deep convolutional neural network
(CNN) has achieved remarkable success on the ImageNet
challenge [8] and produced a number of excellent CNN

models like AlexNet [7], VGGNet [9], GoogleNet [10], and
ResNet [11]. Researchers found that features learned from
CNN are hierarchical in the whole network [12]; that is, the
low-level layer features are similar to Gabor filters and color
blobs, the middle-level layer features include fine visual
details and semantic information, and the high-level layer
features are distinctive semantic features. Furthermore, they
also demonstrated the generality and specificity of convolu-
tional feature [13]; that is, first-layer features are general to
many datasets and tasks, and last-layer features are specific
to a particular dataset or task. However, large-scale datasets
like ImageNet are expensive or difficult to collect and time-
consuming to train in practical maritime applications. Thus,
in order to improve performance for various practical tasks,
such as ship classification, the well-known pretrained CNN
models like AlexNet and VGGNet have been widely used to
fine-tune on ship image [14-16] and extract meaningful ship
features [17, 18].
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Shi et al. [19] combined low-level features obtained by
Gabor filter and multiscale completed local binary patterns
(MS-CLBP) with high-level features extracted from the pre-
trained CNN model with fine-tuning and classified ship
categories on VIS images. Shi et al. [20] also proposed a clas-
sification framework, which consists of a multifeature
ensemble based on convolutional neural network (ME-
CNN), and improved the classification accuracy of VIS
images. Zhang et al. [21] combined the pretrained VGG-16
model with gnostic fields to improve dual-band maritime
ship classification performance. Santos and Bhanu [22]
extracted features from the 5th convolutional layer of the
pretrained VGG-19 model [9] for both VIS and IR images
and proposed a decision level fusion of convolutional net-
works using a probabilistic model. Due to being limited by
high dimension of each layer, most of these methods
extracted feature from only one convolutional layer or one
fully connected layer. Zhang et al. [4] exploited linear dis-
criminant analysis (LDA) to reduce feature dimension of a
convolutional layer, then presented a multifeature fusion
method, which combines structure fusion with spectral
regression discriminant analysis (SF-SRDA) to learn struc-
ture information of convolutional feature, and achieved a
promising result. However, features of single layer cannot
provide sufficient information. Besides, LDA is a supervised
dimensionality reduction technology, and thus, it requires
the additional class labels. Although the combination of mul-
tilayer features provides richer information, it produces
higher-dimensional data and requires more calculations. To
address the above problems, recursive neural networks
(RNNs) [23] provide one possible solution through a system-
atic feature learning strategy.

RNN comprises a class of architecture in which the same
set of weights is recursively applied within a structural setting
and, in particular, on directed acyclic graphs [24]. The main
idea of RNN is to learn distributed feature representation by
exploiting the same neural network recursively in a tree
structure, and it is suitable for processing structured data
such as natural language processing [25]. In order to process
feature extracted from CNN, a fixed-tree RNN with blocks
was presented for multiclass object classification tasks in
[23]. The RNN uses nonoverlapping receptive fields instead
of overlapping receptive fields in CNN. Besides, it not only
reduces the dimension of convolutional feature but also
learns feature representation to improve classification perfor-
mance. Thus, the RNN allows us to transfer information
from multiple layers effectively [23]. This characteristic is
particularly helpful in feature fusion of multiple layers.
Recently, it is also extended to object classification [25, 26]
and image super-resolution [27, 28].

In this paper, we present a multilayer convolutional fea-
ture fusion method for dual-band maritime ship classifica-
tion by taking advantage of CNN and RNN. The pretrained
and fine-tuned VGGNet models are used to extract convolu-
tional feature of each band image. A number of RNNs with
random weights are applied to reduce feature dimension
and learn feature representation. The concatenation of low-
dimensional hierarchical convolutional features provides
abundant information; thus, the proposed method has the
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potential to significantly improve classification performance
while speeding up the network adaptation process. The main
contribution can be concluded as follows:

(1) A multilayer convolutional feature fusion method is
proposed for dual-band maritime ship classification,
and three combinations of two feature extractors
are investigated

(2) A number of improved RNNs with random weights
are exploited to reduce convolutional feature dimen-
sion and learn feature representation

(3) Multilayer convolutional features of the pretrained
and fine-tuned VGGNet models are fused to improve
classification performance. The proposed dual-band
feature fusion method achieves the best classification
accuracy of 89.4% and outperforms state-of-the-art
method by 1.2%

The remainder of the paper is organized as follows: the
next section introduces the proposed method and improved
RNN in details, Section 3 shows and analyzes the experimen-
tal results, and Section 4 draws the conclusions.

2. Proposed Method

In our work, we explore the effectiveness of using CNN
together with RNNs to recognize maritime ship categories
of dual-band data. Especially, the pretrained VGG-f model
[29] is applied to extract raw convolutional feature, and the
multiple improved RNN s are used to learn feature represen-
tation. The proposed framework is illustrated in Figure 1. As
is known to all, due to over-fitting, fine-tuning directly the
pretrained CNN model in small-scale dataset may not
achieve the well classification performance [21]. However,
fine-tuning the CNN model on specific dataset can learn spe-
cific semantic information of middle and high layers [12].
Therefore, we also take the pretrained VGG-f model with
fine-tuning as feature extractor. A classification architecture
forwards through five steps, as shown in Figure 1. Firstly,
dual-band data including VIS and IR image is taken as the
inputs. Secondly, multilevel features of each band image are
extracted from the pretrained VGG-f models. Thirdly, a
number of improved RNNs without training are employed
to learn feature representation, which are hierarchically
concatenated for each band image, respectively. Fourthly,
the final feature representation of VIS and IR images is fused
in the way of concatenation or summation and fed into a lin-
ear support vector machine (SVM) classifier in the last step.

2.1. Convolutional Feature Extraction. The pretrained VGG-f
model is used to extract image feature in our work. VGG-f
network consists 8 layers, 5 of which are convolutional layers
(namely, C1, C2, C3, C4, and C5 in Figure 1), and the last 3
are fully connected layers (namely, F6, F7, and F8 in
Figure 1). The network architecture was trained on VIS
images with 224 x 224 size and three channels from Ima-
geNet dataset. The first and second layers learn general fea-
tures similar to Gabor filters and color blobs, which are
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FIGURE 1: An illustration of overview pipeline for dual-band maritime ship classification.

suitable for many datasets and tasks. Then, as the depth of
CNN architecture increases, features transition from general
to specific [12]. At the last fully connected layer, features are
finally specific to a particular dataset and task, such as 1000
classes of ImageNet. Unlike using single middle-level feature
[25] and combined middle-level features [26], we exploit the
general and specific features extracted from the low-level,
middle-level, and high-level layers of the VGG-f network
for each band image, such as C2, C5, and F6 layers. Mean-
while, in order to capture the semantic feature of ship, the
pretrained VGG-f model with fine-tuning on each band
training images of the VAIS dataset [21] is also used as a fea-
ture extractor.

2.2. Dimensionality Reduction and Feature Learning. Convo-
lutional features has high dimensions, especially in low-level
and middle-level convolutional layers. To exploit the features
of different levels, we adopt the improved RNN to reduce the
dimension of feature space and learn feature representation.
Figure 2 shows an example of two improved RNN
architectures.

2.2.1. Multilayer Block RNN. RNN is firstly introduced to
learn distributed representation of structured data such as
logical terms in [24] and then extended to construct a binary
tree in a bottom-up fashion for natural language processing
[29]. Although the binary-tree RNN allows the input for
more flexibility, the search over optimal trees slows down
the architecture. Besides, it was not necessary to obtain high
performance for task based on convolutional feature. There-
fore, a fixed-tree RNN architecture named Multilayer Block
RNN (MB-RNN) is proposed for object classification based
on CNN [23]. MB-RNN learns feature representation from
convolutional feature and generalized this architecture to
allow each layer to merge blocks of adjacent vectors instead
of only paired vectors of binary-tree RNN, then improved
the performance of classification. An example of MB-RNN
is shown in Figure 2(a), with details as follows.

Assume a given convolutional feature is a 3D matrix
X =x; ;- 3%,2, (X € RE™), in which K is the filter bank size
and r x r is the size of feature maps. A square block with the
size of K x b x b is defined as a list of adjacent column vector,
which are merged into a parent vector p, € RX. Thus, there
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FIGURE 2: An example of two improved RNN architectures. (a) Multilayer Block RNN merges convolutional feature X into a parent vector p
through multiple layers and blocks of b x b children in the end. (b) One-layer Block RNN merges convolutional feature X into a parent vector
p through one layer and one block of 7 x r children. Note that r =16 and b=4.

are b*K-dimensional vectors in each block. The parent vector
p; is computed by

X2

where f = tanh, the weight parameter matrix W, € REXVK),

andi=1, -, (m/b)*, were m should be a multiple of b. Equa-
tion (1) will be applied to all blocks of vectors in X with the
same weights W, In general, due to using nonoverlapping
receptive field in RNN, (r/b)* parent vectors form a new
matrix P, = p,, -+, p;. The vectors in P, will again be merged
in blocks just as those in matrix X using Equation (1) with the
same tied weights resulting in matrix P,. This recursive pro-
cedure continues until only one parent vector p remains.

2.2.2. One-Layer Block RNN. MB-RNN needs a suitable size
of convolutional feature because of its architecture. Thus,
MB-RNN is not suitable to the size of feature extracted from
C2 to C5 layers of the pretrained VGG-f model. Addressing
to this problem, one-layer block RNN architecture (OB-

RNN) is proposed to improve MB-RNN. OB-RNN takes
the convolutional feature X as a big block of adjacent vectors,
that is, b =r in Equation (1), and directly merges X into a
parent vector p through one layer. Then, the parent vector
p is passed through a nonlinear squash function. An example
of OB-RNN is shown in Figure 2(b). Therefore, a feature X
€ RE™ is fed into an OB-RNN and resulted in a K
-dimensional vector. Feature dimension is reduced from K
xrxrto K. Besides, an OB-RNN with weight W, learns a
kind of feature representation, and N OB-RNNs with differ-
ent weights learn N kinds of feature representation and pro-
duce a NK-dimensional feature vector. The larger the N, the
higher the feature dimension. Therefore, the number of OB-
RNNs N is critical and will be discussed in Section 3.3.2.

Additionally, due to the fact that dimensions of features
extracted from convolutional layers have the form of K x r
x r except fully connected layers, we reshape the features of
F6 and F7 by fixing the number of filter bank sizes to 256.
Thus, the outputs of F6 and F7 layers are formed into 256
x 4 x 4 dimensions.

2.2.3. One-Layer Block RNN with Random Weights. Gener-
ally, training RNN and learning weights require back-
propagation through the structure [24]. However, even with
random weights, RNN architectures can be inherently fre-
quency selective and translation invariant [30]. In addition,
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the RNNs with random weights can also produce high-
quality feature vectors for multiclass object classification task
[23]. Therefore, the OB-RNN with randomly initialized
weights is used to produce feature representation in our
work. We forward propagate through all of N OB-RNNs
and concatenate their outputs to produce a NK-dimen-
sional feature vector, which is then given into the following
feature fusion. The above procedure is applied to each layer
of the VGG-f model for both VIS and IR images.

The role of OB-RNN in the process is twofold. First, like
MB-RNN architecture, it transforms feature into lower
dimension space and improves classification performance
and is random-weight-based architecture without requiring
back-propagation. Second, because it uses one layer instead
of multiple layers, it allows more flexibility for the features
extracted from the pretrained CNN model and runs faster
than MB-RNN. Meanwhile, OB-RNN would not degenerate
the performance of MB-RNN.

2.2.4. Feature Fusion and Classification. The learned feature
representation at different layers is fused by concatenation
for each band image, and the final concatenated feature vec-
tor of VIS and IR images is fused by concatenation or sum-
mation. Concatenation and summation are the two most
common vector fusion methods and are often used to fuse
the features of multimodal or dual-band data [31]. The
fusion goal is to integrate two feature vectors F¥™> and F™}
to a fused feature vector FF, where FVIS, FIR ¢ RP denote
the feature vector of VIS and IR images, respectively, and D
is the dimension of a feature vector.

Concatenation is to directly concatenate two feature vec-
tors, which can be defined as

FF =fconcat (FVIS FIR)
FE=FYS, @)

F _ IR
FD+d_F ’

where FY®, FI}, and F represent the d™ value of FV'S, FIR,

and FF, respectively. FE_ is the (D +d)™ value of FF. 1<d
<D and FFf e R*P. This fusion method concatenates the
dimensions of the two input feature vectors.

Summation is a simple addition of the corresponding
dimensions of two feature vectors, which can be defined as

FF :fsum(FVIS) FIR),
3)

Ei=Fy® + FI},

where FY'S, FIR, and F represent the d™ value of FV'S, F'R,
and FF, respectively. 1 <d <D and F'', FI® FF ¢ RP. The
dimension of the fused feature vector is the same as that of
the input feature vector.

Concatenation combines two feature vectors with any
dimension but generates a feature vector with twice the
dimension than summation in the case of two feature vectors
with the same dimension. In our work, the input feature vec-
tors of concatenation have the same dimension for either

single-band or dual-band images. After feature fusion, the
final feature representation of the original input dual-band
ship data is given to a linear SVM classifier for achieving ship
classification task.

3. Results

3.1. Dataset. We investigate nine fusion models in the pro-
posed fusion architecture on the publicly available VAIS
[21] dataset, which is the only existing public database of
paired VIS and IR ship imagery. The dataset contains 2865
images (1623 VIS images and 1242 IR images), of which there
are 1088 “VIS-IR” unregistered image pairs, and includes 6
categories: cargo ships, medium-other ships, passenger ships,
sailing ships, small boats, and tug boats. However, the images
are captured at different distance and various times of day,
including dusk and dawn. Therefore, some images are high-
resolution while a part of images may appear dim and hard
to recognize even with manual inspection. In the dataset,
the paired VIS/IR image set is partitioned into 539 image
pairs for training and 549 image pairs for testing. A sample
pair from VAIS is illustrated in Figure 1. Following the base-
line method [21], the same train data and test data are used.

3.2. Implementation Platform and Details. Our processing
platform is a standard personal computer with Ubuntu
16.04, with a simple CPU (4.20 GHz) of an Intel Core i7-
7770K with 16 GB of random access memory and NVIDIA
GTX1080Ti Graphics PU. The computation environment is
MATLAB R2017a with MatConvNet [32] toolbox for CNN
computation and Liblinear [33] toolbox for classification.
Additionally, as the pretrained VGG-f model expects 224 x
224 three channels VIS image as input, we simply duplicated
IR image into three channels. Meanwhile, both VIS and IR
images are resized to 224 x 224 using the nearest interpola-
tion. Besides, the pretrained VGG-f model is fine-tuned on
training images of the VAIS dataset, with stochastic gradient
descent. Epoch is set to 50 for VIS image and 100 for IR
image, learning rate is set to 0.001, and batch size is set to
32. To avoid over-fitting, a dropout layer is applied after
the second fully connected layer and its rate is set to 0.5. In
addition, due to OB-RNNs with random weights, there are
slight fluctuations of classification accuracy in each time for
the same procedure. Therefore, we take the mean per-class
classification accuracy as evaluation for each time and run
the same procedure 50 times for more accurate evaluation,
then take the average accuracy together with standard devia-
tion among 50 times as the final evaluation.

3.3. Experimental Results and Analysis

3.3.1. Performance Analysis of Feature Extractors. Firstly, we
fine-tune the pretrained VGG-f model on VIS and IR train-
ing images of VAIS, respectively. In our previous experi-
ments, data argument and dropout regularization
techniques are used to avoid over-fitting during fine-tuning
VGG-f model. However, data argument cannot achieve well
performance, even if together with dropout. Fortunately, just
only using dropout to fine-tune model gets satisfied results
on VIS images, but not always good performance on IR
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F1GURE 3: The accuracy and loss curves of the pretrained VGG-f model with fine-tuning on VIS and IR images.

images. Figure 3 shows the accuracy and loss curves of fine-
tuning VGG-f model. Train accuracy and loss curves
perform well for VIS and IR images, but test accuracy and
loss curves show different performance. As shown in
Figures 3(a) and 3(b), the test accuracy and loss curves are
stable after 20 epochs on VIS image. However, for the results
of IR images shown in Figure 3(d), the test loss decreases
before epoch 20s, but increases between epochs 20 and 60,
then is gradually stale. The test accuracy increases until it sta-
bilizes after epoch 60. Comparing the train and test loss
curves, we can find that fine-tuning on IR images has the
over-fitting problem. The main reason may be that IR images
have low resolution, and some of them are too blur. Mean-
while, the VGG-f model is trained on ImageNet dataset, in
which all of images are VIS images. After fine-tuning model

several times, we observed that test accuracy of VIS and IR
is about 85.0% and 63.0%, respectively.

Secondly, we take the pretrained and fine-tuned VGG-f
models as the feature extractors of dual-band images and
investigate the influence of original features produced by
the feature extractors for each band on classification perfor-
mance. Due to the over-fitting problem of fine-tuning the
VGG-f model on IR training images, the fine-tuned model
cannot be taken as a feature extractor. For convenience, the
pretrained VGG-f models without fine-tuning and with
fine-tuning on VIS training images are abbreviated as NO-
FT and FT-VIS, respectively. As shown in Figure 4(a), the
results of FT-VIS are better than those of NO-FT for VIS test-
ing images. From Figure 4(b), we find a great change by com-
paring the classification accuracy of the two feature
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FiGure 4: Influence of original features produced by two feature extractors for each band image on classification performance.

extractors on each layer for IR testing images. Features
extracted by FT-VIS significantly increase the accuracy of
the last three layers but decrease that of C3 and C4 layers.
Generally, compared with VIS image, IR image has low reso-
lution, high contrast and more object contour while less
details. It is the reason that FT-VIS cannot greatly improve

TaBLE 1: The three combinations of two feature extractors for dual-
band maritime ship classification.

Images  Combination1 ~ Combination 2 ~ Combination 3
VIS NO-FT FT-VIS FT-VIS
IR NO-FT NO-FT FT-VIS
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TaBLE 2: The feature dimension of each layer without RNNs and with RNNs.

Layers Cl C2 C3 C4 C5 F6 F7
Without RNNs 46,656 43,264 43,264 43,264 9,216 4,096 4,096
With RNNs 8,192 8,192 8,192 8,192 8,192 8,192 8,192
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three combinations.

the classification performance on the low-level layers captur-
ing feature such as color, corners, and line segments, but
obviously improves the accuracy of the last three layers.
According to the above analysis, fine-tuning the pretrained

VGG-f model on VIS training images can learn ship semantic
information. Therefore, we investigate three combinations of
the two feature extractors in our feature fusion architecture,
as shown in Table 1.
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TaBLE 3: The classification accuracy (%) of two combinations on two and three layers of the VGG-f model.
2xlayers Combination 2 Combination 3
VIS IR CON SUM VIS IR CON SUM

Fé6 84.9+0.7 66.4+1.3 87.4+0.8 87.4+0.7 84.9+0.7 69.3+1.1 87.8£0.6 87.6+0.7
C2F6 86.5+0.6 71.6+0.8 88.9+0.6 88.7+0.7 86.6£0.7 69.6+1.2 89.0+0.5 88.8+£0.7
C3F6 86.9+0.8 71.2+£0.9 89.1+£0.6 88.9+0.8 86.8+0.7 70.1+1.0 89.1+0.5 89.0+0.6
C4F6 86.5+0.7 71.4+1.0 88.8+0.6 88.5+0.6 86.6+0.7 69.7+1.0 89.1+0.5 88.8+£0.5
C5F6 85.9+0.7 71.1+0.8 88.9+0.6 88.8+0.7 86.0+0.6 70.5+0.9 88.6+£0.6 88.4+0.7
C2C5F6 86.6 £0.7 71.7+£0.6 89.0+0.6 88.8£0.7 86.8+0.7 70.2+0.9 89.4x0.5 89.1+£0.5
C3C5F6 87.2+0.7 71.4+0.5 89.4+0.5 89.1+£0.8 87.2+0.5 70.0+0.7 89.3+0.4 89.1+0.5
C4C5F6 87.0+£0.9 72.2+0.9 89.3+0.4 89.0+0.7 86.8+0.5 70.5+0.7 89.1£0.6 88.9+0.5

Accuracy evaluation using the average accuracy together with standard deviation in 50 times. CON and SUM represent concatenation and summation feature
fusion methods, respectively. Abbreviated symbol C2F6 represents that C2 layer and F6 layer features for each band image are concatenated, the same as to
others. Bold denotes that the average accuracy is the best one in the corresponding column of the table.

TaBLE 4: Comparison of classification accuracy (%) with other state-of-the-arts on VAIS dataset.

Methods VIS IR VIS +1R
CNN [21] 81.9 54.0 82.1
Gnostic field [21] 82.4 58.7 82.4
CNN + gnostic field [21] 81.0 56.8 874
ME-CNN [20] 87.3 — —
MEFL (feature-level) + ELM [34] 87.6 — —
CNN + Gabor + MS-CLBP [19] 88.0 — —
Multimodal CNN [15] — — 86.7
DyFusion [22] — — 88.2+0.2
SF-SRDA [4] 87.6 74.7 88.0
Proposed Combination 3-SUM (C2C5F6) 86.8+0.7 70.2+0.9 89.1+£0.5
Proposed Combination 3-SUM (C3C5F6) 87.2+0.5 70.7 £0.7 89.1+0.5
Proposed Combination 2-CON (C3C5F6) 87.2+0.7 71.4+0.5 89.4+0.5
Proposed Combination 3-CON (C2C5F6) 86.8+0.7 70.2+0.9 89.4+0.5

CON and SUM represent concatenation and summation feature fusion methods, respectively. Abbreviated symbol C2C5F6 represents that C2 layer, C5 layer,
and F6 layer features for each band image are concatenated, the same as to others. Bold indicates the best one.

3.3.2. Classification Accuracy Evaluation of Single-Layer
Feature Fusion. In this section, we analyze the above three
combinations on the single layer of the VGG-f model in
two aspects. Firstly, we analyze the effect of the number of
RNNs. Figure 5 shows the influence of the number of RNNs
on the classification accuracy of the F6 layer. The number
ranges from 1 to 128. For whether single band image [see
Figures 5(a) and 5(b)] or dual-band images [see
Figures 5(c) and 5(d)], increasing the number of RNNs
improves the classification accuracy, and it levels off at
around 32. However, the larger the number of RNNs, the
more time it takes to learn. Therefore, according to the same
size of feature for each layer, the number of RNNs of each
layer is set to 32 except 128 for the CI layer. In addition,
the influence of RNNs on the feature extractors from
Figures 5(a) and 5(b), especially for IR test images, is also
found. The results of Combination 2 and Combination 3
on IR images [see lines with circle and triangle in
Figure 5(b)], which use the FT-VIS feature extractor, are bet-

ter than that of Combination 1 using the NO-FT feature
extractor. Furthermore, comparing the four figures in
Figure 5 by using red and blue dotted lines as reference,
we obverse that feature fusion with RNNs of dual-band
images improves the classification performance of each
band image no matter how the number changes. Mean-
while, the classification accuracies of Combination 2 and
Combination 3 on dual-band images are higher than that
of Combination 1.

Secondly, we evaluate the classification performance of
three combinations without RNNs and with RNNs on a sin-
gle layer. Table 2 gives the feature size of each layer without
and with RNNs. Feature size affects classification accuracy
and efficiency. The smaller the size of the feature, the faster
the SVM classifier processes. Figure 6 shows the classification
accuracy of three combinations without and with RNNs on
each layer. Comparing Figures 6(a) and 6(b), it can be found
that the classification accuracies of three combinations with
RNNs are better than those of without RNNs on the last three
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FiGure 7: Confusion matrices of fusion results for Combination 3-CON (C2C5F6) in one time. Note the 90.2% accuracy for the concatenation

method and 90.0% accuracy for the summation method.

layers (C5, F6, and F7), and all of them achieve the best on
the F6 layer. However, the accuracy of the first four layers
(C1, C2, C3, and C4) is reduced. According to the results in
Figures 5(c) and 5(d), if we increase the number of RNNs,
it will improve the accuracy but consume much time. In
our work, we mainly focus on multilayer feature fusion not
just single-layer feature fusion.

3.3.3. Classification Accuracy Evaluation of Multilayer
Feature Fusion. The above analysis indicates that RNN
improves classification performance for dual-band images
and also shows that Combination 2 and Combination 3 out-
perform Combination 1 on single-layer feature fusion.
Therefore, this subsection investigates the classification per-
formance of Combination 2 and Combination 3 on multiple
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layer feature fusion with RNN. Table 3 shows the classifica-
tion accuracy of three combinations on two and three layers
of the VGG-f model, and the results of single F6 layer feature
fusion are shown for comparison. As shown in Table 3, we
found three points. Firstly, multilayer feature fusion
improves the classification performance of VIS image, IR
images, and dual-band images and especially outperforms
single layer by 1.1%~23% for VIS images and by
0.8%~2.0% for dual-band images. Secondly, the accuracy of
dual-band images is higher than that of VIS image by about
2.3%, and three-layer feature fusion performs better than
two-layer feature fusion by about 0.3%. Thirdly, the results
of the concatenation feature fusion method are almost higher
than those of summation by 0.2%~0.3%. However, the fea-
ture size of concatenation is twice that of summation. There-
fore, as the number of combination layers increases, the
summation fusion method runs faster than concatenation.

3.3.4. Comparison with Other State-of-the-Arts. We compare
the best of our fusion method with seven methods on the
VALIS dataset: (1) the baseline method (CNN + gnostic field)
[21], (2) Multimodal CNN [15], (3) DyFusion [22], (4) SF-
SRDA [4], (5) MFL (feature-level) + ELM [34], (6) CNN +
Gabor + MS-CLBP [19], and (7) ME-CNN [20]. The first
four methods are on paired images, and the last three
methods are on VIS images of the paired images. Table 4
shows the experimental results. As it is shown, CNN +
Gabor + MS-CLBP obtains the best classification perfor-
mance on VIS images, and SF-SRDA achieves the highest
classification accuracy on IR images. Obviously, the proposed
method performs better than the other methods on dual-
band images and achieves 89.4% of the best classification
accuracy, outperforming the current best method (DyFu-
sion) by 1.2%. Therefore, it also shows that the proposed
method is more suitable for dual-band ship classification
than single band. Figure 7 shows the confusion matrices of
classification result on Combination 3 for one time. In the
experiments of Combination 2 and Combination 3, all cate-
gories except for medium-other and tug are above 90% accu-
racy, and sailing ship is sometimes 100% accuracy. However,
classification accuracy of medium-other ship and tug boat
are always less than 80%. As we found, medium-other ship
and tub boat are often confused with small ship.

4. Discussions

The proposed method exploits a pretrained or fine-tuned
VGG-f model to extract image features, and it is suitable
for small-scale datasets with few data samples. The OB-
RNN is flexible for layer convolutional features produced
by most of pretrained well-known CNN models. The OB-
RNNs reduce the dimension of convolutional feature to
avoid the “curse of dimensionality” caused by the fusion of
low-level, middle-level, and high-level convolutional fea-
tures. The feature of multilayer convolutional features fusion
includes richer information and stronger feature representa-
tion ability than any single-layer convolutional feature.
Moreover, there is a great potential for further improvement
of the proposed method. One potential factor is that the
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VGG-f model we used can be replace by the pretrained
well-known CNN models such as VGG-16, ResNet, and
GoogleNet. Besides, training OB-RNNs can also further
improve the feature representation ability and classification
accuracy. In our method, the simple fusion strategy concate-
nation and summation are used to fuse the features of dual-
band images. Therefore, putting the features of dual-band
images into a feature space to learn a common feature repre-
sentation is also a future direction.

5. Conclusions

According to few annotated dual-band samples, we propose a
multilayer convolutional feature fusion method to recognize
maritime ship category. Fine-tuning the pretrained VGG-f
model on VIS images captures specific ship information
and improves classification accuracy. The improved RNN
with random weights reduces convolutional feature dimen-
sion and learns more feature representation as the number
of RNNs increases. The low-level, middle-level, and high-
level convolutional features are concatenated for producing
complementary information and improving classification
performance. Experimental results on the public VAIS data-
set demonstrate that the best multilayer feature fusion per-
forms better than other existed methods and confirm that
our method is more suitable for dual-band ship classification
than single band. We will focus on the decision level fusion in
the future.
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Supplementary Materials

(1) The worksheet “Fig.4” shows classification accuracy of
each layer of original CNN feature for each band image,
which is produced by two feature extractors named NO-FT
and FT-VIS. Therefore, “Figure 4” in our manuscript is
formed by these values in the worksheet “Fig.4.” (2) The
worksheet “Fig.5” shows classification accuracy of F6 layer
with different RNN numbers (1, 2, 4, 8, 16, 32, 64, and 128)
for each band image and dual-band images. “Figure 5” in
our manuscript is formed by these “Mean” values in the
worksheet “Fig.5.” (3) The worksheet “Fig.6(a)” shows classi-
fication accuracy of original CNN feature fusion (that is
Without RNNs) on single layer of three combinations in
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VIS and IR images. “Figure 6(a)” in our manuscript is formed
by these “Mean” values for “CON” in the worksheet “Fig.
6(a).” (4) The worksheet “Fig.6(b)” shows classification accu-
racy of CNN feature fusion with RNNs (that is With RNNs)
on single layer of three combinations in VIS and IR images.
“Figure 6(b)” in our manuscript is formed by these “Mean”
values for “CON” in the worksheet “Fig. 6(b).” (5) The work-
sheet “Table3” shows classification accuracy of two/three
layers feature fusion with RNNs of three combinations in
VIS and IR images. “Table 3” in our manuscript is based on
these “Mean + Std” values for “Combination 2” and “Combi-
nation 3” in the worksheet “Table3.” (6) The worksheet
“FeatureFusion-all” shows classification accuracy of single,
two, and three layers feature fusion with RNNs of three com-
binations in VIS and IR images. (Supplementary Materials)
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