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Due to the influence of atmospheric turbulence, a time-variate video of an observed object by using the astronomical telescope drifts
randomly with the passing of time. Thereafter, a series of images is obtained snapshotting from the video. In this paper, a method is
proposed to improve the quality of astronomical images only through multiframe image registration and superimposition for the
first time. In order to overcome the influence of anisoplanatism, a specific image registration algorithm based on multiple local
homography transformations is proposed. Superimposing registered images can achieve an image with high definition. As a
result, signal-to-noise ratio, contrast-to-noise ratio, and definition are improved significantly.

1. Introduction

Anisoplanatism continuously hinders the performance of
spatial object observation by ground-based telescopes. Ani-
soplanatism is one of the key factors to directly influence spa-
tial resolution in wide field imaging. In telescope imaging
theory, the object spot keeps invariant in the scope of isopla-
natic angle, and it has the same systematic point spread func-
tion (PSF), while if the imaging angle is out of the isoplanatic
angle scope, the PSF is deemed to be varying with spatial
position changes.

In 1990, Labeyrie [1] published a paper to present a
method on image restoration by spot inference. By using spot
inference, Ozkan et al. [2] proposed a method to recover the
extended spatial target phase spectra by using crossspectra;
combining with the spot inference method, the extended
astronomical image is restored. After that, Jin et al. [3] pro-
posed a method to restore the extended spatial target phase
by using bispectra, and the bispectra method is spatially
invariant compared with the crossspectra method. Ayers
and Dainty [4] innovatively proposed an image restoration
concept by using blind deconvolution algorithm in the spa-
tial target observation field. Zhang [5] adopted an iterative
method proposed by Dainty to perform the calculations

between spatial and spectral domains under certain restric-
tions and achieved a PSF that can map an image with the
highest similarity to the real situation. Wang et al. [6] opti-
mized Dainty’s method and added a filter to enhance robust-
ness to noise, whereas in real spatial target observation
procedure, a wide field extended spatial target is most likely
to appear, and the visual field is much wider than the isopla-
natic angle scope. From the experiment, the image restora-
tion performance is impaired severely after the process of
spot imaging or blind deconvolution. In spite of imaging
via a self-adaptive optical telescope, the anisoplanatic effect
is still salient [7, 8]. In order to overcome the shortages as
mentioned above, Paxman et al. [9] proposed a method to
simulate the anisoplanatic effect by using a wavefront coding
technique. Thereafter, multiple frame superimposition was
adopted instead of long-term exposure imaging to reduce
the effect of anisoplanatism, and image definition was also
improved [10]. Multiple local nonrigid transformations to
impair spatial displacement and deformation among images
were adopted [11, 12], as well as multiple images after trans-
formation superimposition to realize image restoration. In
order to improve image registration accuracy, establishing
the image transformation model is necessary to proceed with
various spatial transforms. Dan [13] proposed estimating the
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transformation model among short-exposure images with
anisoplanatic effect based on neural networks, and the aniso-
planatism is reduced by using image registration.

The homography matrix is a kind of image spatial trans-
formation model [14, 15]. Adopting homography transfor-
mation on each pixel of an image can realize linear or
nonlinear transformation such as shifting, rotation, stretch-
ing, affine transformation, and prospect transformation [16,
17]. Some scholars propose using the block concept to calcu-
late the homography matrix to achieve higher accuracy [18–
20]. A coarse-to-fine method involves adopting image regis-
tration on the whole field to make the key points well-
distributed. After that, a more accurate image registration
on local field is used as a block process based on multiscale
analysis to achieve better alignment performance [21]. In
the procedure of local image registration, the block process
proceeds based on the clustering method. A spectral cluster-
ing algorithm based on stratification consensus is proposed
as an optimized clustering strategy to partition the image into
several blocks [22]. A swarm optimization algorithm is pro-
posed to adjust the clustering center position iteratively.
Thus, the identification and mutual independence of each
cluster are enhanced [23, 24]. The feature distribution is
always overlooked in the procedure of block image registra-
tion. Deng et al. [25] propose a method that involves obtain-
ing the feature distribution as a first step. Then, the image is
partitioned into a number of blocks using clustering. Next,
the feature points are assembled to the cluster centers along
the margin directions and form a certain number of clusters.
Lastly, block image registration on cluster scope between
each two corresponding clusters is adopted to obtain a better
image registration performance.

This paper considers the multiframe image registration
and superimposition concept to improve the image quality.
Superimposing multiple low-resolution and noisy images
can reduce the background noise and random drift. Image
registration is deemed as an effective method to estimate dis-
placements and deformations between two images. Thus, the
transformation model is established after such estimation.

Our contributions are as follows: (1) the effects of atmo-
spheric turbulence cause astronomical images taken from the
ground to have very little texture detail, and edge structures
are not obvious and contain a lot of background noise. This
makes it difficult for traditional algorithms (Scale Invariant
Feature Transform (SIFT) [26], Speeded Up Robust Features
(SURF) [27], Binary Robust Invariant Scalable Keypoints
(BRISK) [28], and Features from Accelerated Segment Test
(FAST) [29]) to extract feature points from astronomical
images. In this paper, the Adaptive and Generic Accelerated
Segment Test (AGAST) [30] algorithm and the DAISY [31]
descriptor are used to extract and describe feature points of
the image to overcome the above-mentioned shortcomings,
so that a large number of key points with uniform distribu-
tion can be detected while maintaining high computing effi-
ciency. (2) In order to further improve the calculation
efficiency, this paper proposes a method based on the maxi-
mum entropy model for the selection of feature points and
uses a method based on third-order statistics that is better
than the Principal Components Analysis (PCA) algorithm

[32, 33] to reduce the dimension of feature description vec-
tor. (3) The Fuzzy C-means (FCM) clustering is applied to
feature points, and multiple block homography matrices are
calculated between template image and image to be regis-
tered by the improved Random Sample Consensus (RAN-
SAC) algorithm [34–36]. (4) The image is registered in
blocks and superimposed to improve the quality of astro-
nomical images.

The remaining part of this paper is organized as follows.
Section 2 presents theories and discussion of the adopted
method. Section 3 describes the experiment analysis, which
analyzes the evaluation procedure of results processed by
the proposed methods. Section 4 concludes with the strate-
gies used in and theoretical basis of this paper.

2. Methods

The key issue in determining the relationship between two
images captured at different times is establishing the trans-
formation model. The geometrical transformation model is
obtained via corresponding fixed points and their feature
vectors or descriptors. Taking the unrobustness of feature
point descriptors into consideration, an image matching
error may occur. In this paper, the geometrical transforma-
tion model is calculated by homography estimation to solve
the problem of matching errors. A point set is presented as

U = p1, p1 ′
� �

, p2, p2 ′
� �

,⋯, pi, pi ′
� �n o

, ð1Þ

where pi = ðxi, yi, 1ÞT and pi ′ = ðxi ′, yi ′, 1Þ
T
are two points in

one image.
Homography matrixH can be used to describe the spatial

corresponding relationship between two images, as shown in
Figure 1. The two points in two images can be transformed
by each other via planeπ, presented as pi ′ =Hpi. The calcula-
tion of the homography matrix is done by selecting four
points in each image, respectively, and a linear equation set
is obtained. Then, the parameters of the homography matrix
are obtained by soling such an equation set.

A proper homography transformation model is judged
by measuring the Euclidean distance among the fixed points.
The distance is deemed as a matching error, presented as

EH2
i = d xi ′,Hxi

� �h i2
+ d xi,H−1xi ′

� �h i2
, ð2Þ

p2
p1

p4

p′i = Hpi
p′1 p′2

p′4 p′3p3

Figure 1: The spatial corresponding relationship between two
images.
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where dð⋅Þ denotes the Euclidean distance between the fixed-
point set and its corresponding set.

In this paper, the traditional image registration algorithm
based on the homography matrix is further improved. A
multiframe astronomical image registration algorithm based
on block homography estimation is proposed. Figure 2 is the
algorithm flow chart of the whole astronomical image regis-
tration process.

2.1. Reduced Feature Descriptor Calculation. The extraction
and description procedures are preliminaries of homogra-
phy estimation. This paper adopts an AGAST-DAISY
algorithm on the template image and input image, respec-
tively. With astronomical images, AGAST operator may
detect a large number of key points. Therefore, a maxi-
mum entropy model-based method is used to refine the
key points, and much of them will be reduced. Firstly,
we take all the pixels in a whole image into consideration.
In particular, a boundary piecewise process is used to deal
with the pixels on the image boundaries, as shown in
Figure 3. Then, the conditional probability distribution
model on the neighbor of each pixel is calculated, as Equa-
tion (3). Assume that each key point yields to Gaussian
distribution on its neighbor.

P x, yð Þ = 1ffiffiffiffiffiffi
2π

p
σ
exp −

f x, yð Þ − μð Þ2
2σ2

( )
, ð3Þ

where ðx, yÞ denotes the position of one pixel. μ and σ2

denote the mean value and variation of one pixel on its
neighbor. Assume that the mean value is approximate to
the expected value. PðXÞ and Epð f Þ are the marginal prob-
ability and the expected value of axis X, respectively,

shown as Equation (4) and Equation (5). The variation
of Equation (3) can be presented as Equation (6).

〠
Y

P Xð ÞP x, yð Þ = P Xð Þ: ð4Þ

Solving out PðXÞ in Equation (4), the marginal proba-
bility distribution can be obtained. Putting the solved PðXÞ
into Equation (5), the expected value is calculated as fol-
lows:

Ep fð Þ =〠
x,y
P x, yð Þf x, yð Þ ≈〠

x,y
P Xð ÞP x, yð Þf x, yð Þ, ð5Þ

σ2 =〠
x,y

f x, yð Þ − Ep fð Þ� �2
: ð6Þ
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Figure 2: Algorithm flow chart of the whole astronomical image registration process.
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(a) (b)
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Figure 4: (a) Satellite image; (b) AGAST key points of satellite image; (c) refined AGAST key points of satellite image; (d) rotated satellite
image; (e) AGAST key points of rotated satellite image; (f) refined AGAST key points of rotated satellite image.
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Figure 5: DAISY descriptor of one key point in satellite image: (a) the DAISY descriptors of two key points at the same position in two
different satellite images; (b) the DAISY descriptors of two key points at the different positions in one satellite image.
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After the calculation of the conditional probability dis-
tribution of each key point, the entropy of one pixel on its
neighbor is obtained as well, as shown in the following
equation:

H Pð Þ = −〠
x,y
P x, yð Þ log10P x, yð Þ = −〠

x,y
P Xð ÞP x, yð Þ log10P x, yð Þ:

ð7Þ

A certain part of the key points with the highest
entropy value is selected, and these pixels are deemed
the refined key points, as shown in Figure 4.

Next, we adopt the DAISY operator to generator feature
descriptors for the key points. Each key point has its descrip-
tor with the dimension of 1 × 200. Thus, dimension reduc-
tion is necessary to be conducted for the consideration of
efficiency. In order to overcome the shortcomings of the
PCA algorithm on dimension reduction applications, we
propose a method based on third-order statistics to conduct
dimension reduction. To a feature vector with the dimension

of 1 ×N , the three-order accumulation is calculated as shown
in the following equation:

c Nð Þ
3x m1,m2ð Þ = 1

N
〠
N

n=1
x nð Þx n +m1ð Þx n +m2ð Þ, ð8Þ

where when n < 1 or n >N , xðnÞ = 0, and n is an integer
number, m1,m2 ∈ ½1,N�. Then, the bispectrum of the feature
vector is calculated by adopting Fourier transformation on
the three-order accumulation. In particular, the frequency
range of Fourier transform is set to ð0, 512� Hz, and Fourier
transform is adopted on such frequency intervals, ð0, 64�
Hz, ð64, 128�Hz,…, and ð448, 512�Hz. Thus, the feature vec-
tor bispectrum on 8 subfrequency intervals is calculated as

Bx ω1, ω2ð Þ = 〠
+∞

m1=−∞
c Nð Þ
3x m1,m2ð Þe−j ω1m1+ω2m2ð Þ, ð9Þ

where ω1 and ω2 are the spectral range of the bispectrum. The
calculated bispectrum on 8 subfrequency bands is presented as
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Figure 6: Descriptor after PCA dimension reduction of one key point in satellite image: (a) the PCA processed descriptors of two key points at
the same position in two different satellite images; (b) the PCA processed descriptors of two key points at the different positions in one satellite
image.
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Figure 7: DAISY descriptor proposed by our proposed three-order accumulation of one key point in satellite image: (a) the three-order
accumulation processed descriptors of two key points at the same position in two different satellite images; (b) the three-order
accumulation processed descriptors of two key points at the different positions in one satellite image.
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Figure 8: The relationship curve of gap statistics with respect to number of clusters of satellite image: (a) the relationship curve between the
gap and the number of clusters; (b) the maximum gap with respect to the number of clusters; (c) the relationship curve of log of square
summation of the number of points in one cluster with respect to the number of clusters.
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(a)

(b)

Figure 9: Key point clustering of satellite image: (a) in the left to right order, template satellite image, input satellite image, and two images
with their clustered key points; (b) the corresponding key point matches of satellite image.
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Figure 10: The summed propagation error between the template satellite image and the input satellite image: (a) the points in the first cluster;
(b) the points in the second cluster; (c) the points in the third cluster; (d) the points in the fourth cluster.
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B1ðω1, ω2Þ, B2ðω1, ω2Þ,⋯, B8ðω1, ω2Þ. Next, take the diagonal
slice of each subfrequency band of the bispectrum, and select
the maximum value of such diagonal slice as the element to
form the feature vector. Thus, each feature vector contains 8
elements, shown as Equation (10) and Equation (11). Conse-
quently, the dimension of the descriptor is reduced to 1 × 8,

Si ωð Þ = Bi ω1, ω2ð Þ ω1=ω2

�� , ð10Þ

X ið Þ = arg max Si ωð Þð Þ, ð11Þ

where i = 1,⋯, 8 and XðiÞ is the maximum value of the i′th
subfrequency band SiðωÞ of the bispectrum. Therefore, the
descriptor can be presented as X = ½Xð1Þ,⋯, Xð8Þ�.

From Figures 5–7, the results obtained by using PCA have
poor identity and discrimination among the existing features.
Thus, it is difficult to distinguish certain features after the pro-

cess by PCA, while the three-order accumulation processed fea-
ture vectors have much better identity and discrimination
which can be used to figure out the certain features easily.
Therefore, using three-order accumulation processed feature
vectors in featurematching can achieve a superior performance.

2.2. Image Registration Based on Block Homography
Estimation. The determination of the number of clusters
plays an important role in clustering. We use the Jeffrey
divergence (JD) method to determine the number of clus-
ters. The JD method is set as an object function in opti-
mized polynomial form, shown as Equation (12). After
recursive calculation of clustering, the JD value reaches
its minimum value while the gap value reaches its maxi-
mum value simultaneously. The maximum intracluster
compactness and the maximum intercluster discrimination
are traded off, as well as ∂JD/∂n = 0. The relationship
curve between the gap value and number of clusters is
shown in Figure 8(a). We record 100 iterations of gap

(a) (b)

(c) (d)

(e) (f)

Figure 11: (a) Saturn image; (b) AGAST key points in Saturn image; (c) refined AGAST key points in Saturn image; (d) Mars image; (e)
AGAST key points in Mars image; (f) refined AGAST key points in Mars image.
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calculation, and the maximum gap with respect to the
number of clusters is shown in Figure 8(b).

The relationship curve between the gap value and number of
clusters is shown in Figure 8(a). After 100 iterative calculations of
gap, the result shows that the gap value reaches the maximum
value when the number of clusters is 4, c = 4, and the gap value
is greater than 60. Thus, the most proper clustering can be per-
formed under such conditions. As a result, the maximum
intracluster compactness and the minimum intercluster overlap
are achieved simultaneously, as shown in Figure 8(b). The log
of square summation of the number of points in one cluster
reaches theminimum value when c = 4, whichmeans the highest
correlation among the intracluster points is achieved under such
conditions, as shown in Figure 8(c):

JD Ci, Cj

� �
= 1
2 tr Σ−1

i Σj

� �
+ tr Σ−1

j Σi

� �h i
+ 1
2 μi − μj

� �T
Σ−1
i + Σj

� �
μi − μj

� �� 	
,

ð12Þ

Σi = 〠
Ni

u=1
x uð Þ − μið ÞT x uð Þ − μið Þ, ð13Þ

μi =
1
Ni

〠
Ni

u=1
x ið Þ, ð14Þ

where i and j stand for the different clusters after clustering. Σi is
the covariance matrix of the i′th cluster. μi is the mean value of
the pixels in the i′th cluster.

Determination of the number of clusters is a prerequisite of
conducting clustering. In this paper, the number of target points
is assumed to be N, presented as fX1, X2,⋯, XNg. The cluster
centers are formed by using clustering, presented as fC1, C2,
⋯, Cj,⋯, Ccg. In particular, the object function of clustering
can be deemed to be themultiple target optimization procedure.
In this paper, we set the FCM clustering function with the min-
imum entropy model as the object function. The optimized
object function Jm is obtained when the two components reach
the minimum value simultaneously, as shown in

Jm = 〠
N

i=1
〠
C

j=1
umij Xi − Cj



 

2 − 1
N
〠
N

i=1
log10

1
C ⋅VK

〠
C

j=1
j≠i

Κ Xi − Cj

� �
0
BBB@

1
CCCA,

ð15Þ

u k+1ð Þ
ij = 1

∑C
k=1 Xi − C kð Þ

j




 


/ Xi − C kð Þ
k




 


� �2/ m−1ð Þ , ð16Þ

C kð Þ
j =

∑N
i=1 u kð Þ

ij

� �m
⋅ Xi

∑N
i=1 u kð Þ

ij

� �m , ð17Þ

〠
C

j=1
uij = 1, ð18Þ

(a)

(b)

Figure 12: Astronomical image key point clustering. (a) In the order of left to right are the raw data, clustered key points in one Saturn image,
and clustered key points in another Saturn image. (b) In the order of left to right are the raw data, clustered key points in one Mars image, and
clustered key points in another Mars image.
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where k denotes the number of iterations, 1 ≤ k<∞. uijis the
membership function, which represents the probability of
thei′th point,i = 1,⋯,N, which belongs to thej′th cluster, as
shown in Equation (16). Equation (17) represents the rela-
tionship between Xi and the j′th cluster center Cj, where Xi

is the descriptor of the i′th key point with the dimension of
1 × 8. Cj denotes the descriptor of the j′th cluster center. N
is the number of key points. Equations ((15)–(17)) are the
iterative optimization procedures. Firstly, set the initial value

of the membership function as uð0Þij , which is a random value
in the interval of ð0, 1Þ. Then, set the terminate condition ε,
ε ∈ ð0, 1Þ. When object function Jm fulfills the condition

max fkuk+1ij − ukijk
2g ≤ ε, the iteration is terminated, and the

optimized object function Jm is obtained. Thereafter, all the

cluster centers fC1, C2,⋯, Ccg are calculated, and the fuzzy
clustering procedure is completed. The maximum correlation
principle is adopted, as shown in Equation (18), on the clus-
ters generated via FCM clustering. Then, the points with the
maximum correlation to the cluster centers are found. In
Figure 9, these found points are classified into the equivalent
number of classes to the clusters. Lastly, blockwise homogra-
phy estimation ρX,Y is conducted to realize local image regis-
tration, as shown in Equation (19), where X and Y represent
the DAISY descriptor in two images, respectively.

ρX,Y = ∑XY − ∑X∑Y/Nð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑X2 − ∑Xð Þ2/N� �� �

∑Y2 − ∑Yð Þ2/N� �� �q : ð19Þ

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 13: The image registration result of Saturn images: (a) original image; (b) another original image; (c) 10 original image
superimposition (d) 3 images processed by the proposed method superimposition; (e) 5 images processed by proposed method
superimposition; (f) 10 images processed by the proposed method superimposition; (g) the zoomed in images of the part framed by green
box in (a–f).

10 Journal of Sensors



(a) (b) (c)

(d) (e) (f)

(g)

Figure 14: The image registration result of Mars images: (a) original image; (b) another original image; (c) 10 original image superimposition;
(d) 3 images processed by the proposed method superimposition; (e) 5 images processed by the proposed method superimposition; (f) 10
images processed by the proposed method superimposition; (g) the zoomed in images of the part framed by green box in (a–f).
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2.3. Fixed Points for Homography Estimating. The homogra-
phy matrix is a 3 × 3 matrix with 8 degrees of freedom (DoF).
Therefore, solving the 8 unknowns requires at least 4 nonco-
linear point positions in the coordinates. In this paper, it is nec-
essary to conduct the homography estimation process as stated
above on each cluster or block. Here, the neighbor around one
pixel with the size of 3 × 3 is taken, and the probability distribu-
tion of this pixel on this neighbor area is calculated. Then, the
entropy is obtained. The points with Nmax maximum entropy
were selected. The value Nmax is calculated via

C4
Nmax

≥ num iter, ð20Þ

where num iter = 2num fixPoints × 10 and num fixPoints are the
number of fixed points. Thus,Nmax needs to fulfill the condition
Nmax ≥ num iter. Here, num fixPoints = 4 andnum iter = 160.
Select Nmax in the interval of 16~20. Thus, the iteration time
of RANSAC is reduced from 160 to 20, and the computation
efficiency is improved significantly. Equally, this optimization
procedure is used on each corresponding cluster pair between

two images, respectively. Four fixed points among theNmax
points in each cluster are selected, and the homography matrix
is obtained via Equation (21) and Equation (22). Next, as shown

in Figure 10, the point set X2
ð0Þ and X2′

ð0Þ
is calculated under

the Levenberg-Marquardt principle to obtain the total error of
forward and backward propagation, as shown in Equation (23):

X2′
0ð Þ =H 0ð ÞX2

0ð Þ, ð21Þ

X3′
′ 0ð Þ

= H 0ð Þ
� �−1

X2′
−1, ð22Þ

Dis kð Þ = 〠
N

i=1
x′ kð Þ

i −Hxi
k−1ð Þ




 


2 + xi
kð Þ −H−1x′i

k−1ð Þ


 


2:
ð23Þ

The calculation with Equations ((21)–(23)) is performed
recursively Nmax times. Therefore, the error between the
point set and its mapping set at each time is presented as
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Figure 15: The relationship curve of evaluation index with respect to the number of superimposed images: (a) the relationship curve of SNR
with respect to the number of superimposed images; (b) the relationship curve of CNR with respect to the number of superimposed images;
(c) the relationship curve of RMSE with respect to the number of superimposed images.
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Disð0Þ, Disð1Þ,⋯, DisðNmaxÞ, and the minimum value is
selected, as shown in Equation (24). The calculated homogra-
phy matrix is the optimized one via the above-stated
method,

Dis = min Dis 0ð Þ, Dis 1ð Þ,⋯, Dis N−1ð Þ
n o

: ð24Þ

Through the RANSAC algorithm, we can easily find out
the best four feature points in each cluster to calculate the
best homography matrix of this cluster. Through the geomet-

ric relationship of these four points, we can find out the cen-
ter point of each cluster and then judge each pixel point in
the whole image with these center points; the pixel is close
to any cluster of center point, and the homography matrix
is used to transform the pixel.

3. Experimental Results and Analysis

3.1. Data Acquisition. In the experiment, we captured 10
frames of Saturn images and Mars images by snapshotting
from the video with the same time interval. Due to the effect
of atmospheric turbulence, the snapshotted images are
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Figure 16: The relationship curve of evaluation index with respect to the number of superimposed images: (a) the relationship curve of SNR
with respect to the number of superimposed images; (b) the relationship curve of CNR with respect to the number of superimposed images;
(c) the relationship curve of RMSE with respect to the number of superimposed images.

Table 1: All the evaluation indexes for Saturn image.

Evaluation indexes SNR (dB) CNR RMSE Running time (s)

Saturn images processed by the proposed method superimposition

3 images 21.0676 14.2763 0.0255 15.3861

5 images 22.0721 16.0382 0.0180 24.9347

10 images 22.2988 16.4632 0.0172 46.5839

Original Saturn images superimposed

3 images 14.6335 7.1323 0.0425 —

5 images 16.7260 7.5995 0.0369 —

10 images 16.8561 7.5453 0.0367 —
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blurred intensively. Meanwhile, sophisticated deformations
exist in the images as well. The imaging system is set up as
follows: the lens diameter of the telescope is D = 1:8m; atmo-
spheric turbulence is presented as λl′ = 9:52 × 10−6, where l
′ = 13:6m. The wavelength of the visible light is λ = 0:7 ×
10−7. Thus, the cutoff frequency isf c =D/λl′ = 1:89 × 105
Hz. The size of the captured Saturn images is 1024 × 1024,
while the size of the Mars images is 512 × 512.

3.2. Evaluation Standard. In this paper, signal-to-noise ratio
(SNR), contrast-to-noise ratio (CNR), root mean square
error (RMSE), and power spectrum are adopted to illus-
trate the performance of using different methods. As
shown in Equations ((25)–(29)),

SNR = 10 × log10
S2

N2 , ð25Þ

where S denotes the useful signal. N denotes the noise in
one image,

CNR =
�St − �Sb
σb

, ð26Þ

where �St represents the mean pixel value of the target area.
�Sb represents the mean pixel value of the background area.
σb is the standard deviation of the pixels in background
area,

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i ∑
n
j f i, jð Þ − �f
� �2
m × n

s
, ð27Þ

where m and n represent the size of an image. �f is the
mean value of the pixels of a whole image.

Table 2: All the evaluation indexes for Mars image.

Evaluation indexes SNR (dB) CNR RMSE Running time (s)

Mars images processed by the proposed method superimposition

3 images 20.0721 103.0030 0.0283 3.7641

5 images 20.4280 112.0703 0.0270 6.4837

10 images 20.5535 113.8679 0.0263 11.8962

Original Mars images superimposed

3 images 14.7723 70.5578 0.0510 —

5 images 15.1672 74.3650 0.0473 —

10 images 15.5155 71.7283 0.0494 —

(a) (b) (c)

(d) (e)

Figure 17: The power spectrum of the Saturn image: (a) original image; (b) 10 original image superimposition; (c) 3 images processed by the
proposed method superimposition; (d) 5 images processed by the proposed method superimposition; (e) 10 images processed by the
proposed method superimposition.
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The autocorrelation matrix of an image f ðx, yÞ is shown as

Rf f τ, ςð Þ = 〠
M

x=1
〠
N

y=1
f τ, ςð Þ ⋅ f x − τ, y − ςð Þ: ð28Þ

The logarithm power spectrum is presented as

log10 E f 2 u, vð Þ� �� �
= Rf f 0, 0ð Þ = 1

2π

ð+∞
−∞

ð+∞
−∞

Sf f jω, jυð Þdωdυ,

ð29Þ

where f ðu, vÞ stands for the pixel value of the point at the posi-
tion ðu, vÞ in the coordinates. Sf f ðjω, jυÞ is the matrix after the

Fourier transformation on the autocorrelation matrixRf f ðτ, ςÞ
.

In this paper, we adopt the AGAST operator to detect key
points in Saturn images and Mars images. Then, the key
points are refined by using the maximum entropy method,
and the refining ratio is set to 0.3 to make all the points
located at the most feature-representative area, as shown in
Figure 11. In the order of left to right of each row are the
raw data, the image with AGAST key points, and the image
with refined AGAST key points. This paper adopts a block
homography estimation method based on FCM clustering.
The images processed by FCM clustering form a certain
number of clusters, as shown in Figure 12. In Figures 12(a)
and 12(b), from left to right are the raw data and the key
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Figure 18: The one-dimension logarithm power spectrum of the Saturn image. (a) The red, green, and blue curves represent the one-
dimension logarithm power spectrum of original image, 10 original image superimposition, and 10 images processed by the proposed
method superimposition, respectively; (b) the red, green, and blue curves represent the one-dimension logarithm power spectrum of 3
images, 5 images, and 10 images processed by the proposed method superimposition.
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points in the first image and second image after clustering.
Different colors denote different clusters. Each class of the
key points forms a certain block.

3.3. Evaluation Standard of Noise. Figures 13 and 14 are the
processed results of Saturn image and Mars image, respec-
tively, and show two images captured at different times, 10
image superimposition, 3 images processed by the proposed
method superimposition, 5 images processed by the pro-
posed method superimposition, and 10 images processed by
the proposed method superimposition. Figures 13(g) and
14(g) show the zoomed in images of the part framed by the
green box in Figures 13(a)–13(f) and Figures 14(a)–14(f). It
can be seen that the image noise is being depressed with the
increasing of the superimposed number of images.

Figures 15 and 16 show that, with the increasing of the
number of the superimposed images, SNR and CNR are
increasing, while the RMSE is decreasing. However, the eval-
uation index tends to become steady when the superimposed
number of images reaches 5, as shown in Tables 1 and 2.

3.4. Power Spectrum Analysis. Figures 17–20 show the loga-
rithm power spectrum of the Saturn image, one-dimension
logarithm power spectrum of the Saturn image, the loga-
rithm power spectrum of the Mars image, and the one-
dimension logarithm power spectrum of the Mars image.
As can be seen in Figures 18 and 20, the intensity of the
one-dimension logarithm power spectrum of the image proc-
essed by our proposed methods is lower than that of the orig-
inal image and the image processed by some classic methods.

Therefore, more energy is centered on the low-frequency
domain. Consequently, the proposed algorithm outperforms
the other methods even the state of the art on image quality
enhancement.

4. Conclusion

In this paper, an image quality enhancement method based
on multiple image registration and superimposition is ana-
lyzed and discussed. A series of images captured from a video
captured via an astronomical telescope are aligned at differ-
ent times. The major contribution of this paper is improving
image registration accuracy and computation efficiency. As
regards computation efficiency, the AGAST operator is first
adopted to extract key points, and a key point refining
method based on maximum entropy is used to reduce the
large number of key points to a much smaller one. Then,
we design a method by using the principle of high-order sta-
tistics to reduce the DAISY descriptors of densely located key
points. Last, but not the least, a maximum entropy model-
based method with RANSAC is used to decrease the iteration
times in the homography estimation.

To improve accuracy, a block process concept is adopted
in this paper to conduct the multiple local image registration.
The blocks are generated by FCM clustering. Specifically, the
object function is set under the condition of minimum prop-
agation error. The blocks are obtained via iterative calcula-
tion of cluster centers and maximum correlation to the
cluster centers. As a result, the highest compactness of the
intrablock points and relatively high independence of the

(a) (b) (c)

(d) (e)

Figure 19: The power spectrum of the Mars image: (a) original image; (b) 10 original image superimposition; (c) 3 images processed by the
proposed method superimposition; (d) 5 images processed by the proposed method superimposition; (e) 10 images processed by the
proposed method superimposition.
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Figure 20: The one-dimension logarithm power spectrum of the Mars image. (a) The red, green, and blue curves represent the one-
dimension logarithm power spectrum of original image, 10 original image superimposition, and 10 images processed by the proposed
method superimposition, respectively; (b) the red, green, and blue curves represent the one-dimension logarithm power spectrum of 3
images, 5 images, and 10 images processed by the proposed method superimposition.
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interblock points are achieved. Moreover, multiple registered
image superimposition has an effective impact on noise sup-
pression and pixel drifting calibration, which substantially
improves SNR and CNR.
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