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Without any preinstalled infrastructure, pedestrian dead reckoning (PDR) is a promising indoor positioning technology for
pedestrians carrying portable devices to navigate. Step detection and step length estimation (SLE) are two essential components
for the pedestrian navigation based on PDR. To solve the overcounting problem, this study proposes a peak-valley detection
method, which can remove the abnormal values effectively. The current step length models mostly depend on individual
parameters that need to be predetermined for different users. Based on fuzzy logic (FL), we establish a rule base that can adjust
the coefficient in the Weinberg model adaptively for every detected step of various human shapes walking. Specifically, to
determine the FL rule base, we collect user acceleration data from 10 volunteers walking under the combination of diverse step
length and stride frequency, and each one walks 49 times at all. The experimental results demonstrate that our proposed
method adapts to different kinds of persons walking at various step velocities. Peak-valley detection can achieve an average
accuracy of 99.77% during 500 steps of free walking. Besides, the average errors of 5 testers are all less than 4m per 100m and
the smallest one is 1.74m per 100m using our coefficient self-determined step length estimation model.

1. Introduction

Serving as a requisite part for the pedestrian of this era,
Location-Based Service (LBS) has been widely provided by
portable devices [1], due to the miniaturization, low energy,
and low cost of Micro-Electro-Mechanical System (MEMS)
sensors. Localization is the basic precondition to realize
LBS in both outdoor and indoor environments. Global Posi-
tioning System (GPS) has been universally used for outdoor
positioning but does not work well for indoor positioning
since GPS signals can be seriously blocked and influenced
by reinforced concrete buildings [2]. Due to the limitation
of positioning accuracy, cost, the complexity of indoor space,
and other factors, LBS for a pedestrian in the indoor environ-
ments has not been popularized [3]. Existing indoor posi-
tioning technologies include Bluetooth [4], ultrawideband
(UWB) [5], and Wi-Fi [6]. Despite the great performance
achieved, these methods are infrastructure-based, which
require equipment predeployment. In addition, the expense
of deployment is proportional to the size of the indoor area,
which prevents the widespread application of these solutions.

Different from the infrastructure-based technologies,
pedestrian dead reckoning (PDR) obtains the measurement
and statistics of pedestrian steps, step length, and direction
by using sensor data [7]. Binding the sensor to a certain part
of body, several body locations have already been tested, e.g.,
foot [8], chest [9], legs [10], and waist [11]. To check the data
characteristic of an accelerometer attached to different parts
of the body in the same motion state, Wu et al. [12] com-
pared the acceleration data where the accelerometer is bound
at the feet, legs, and waist, respectively; then, the results indi-
cated that the foot-mounted data has the strongest periodic-
ity and regularity, while the waist gives the accelerometer a
more stable measurement environment. Different from
attaching sensors to a part of body directly, the position
information obtained through the inertial measurement unit
(IMU) built in the commodity smartphones or tablets con-
tains a large error. The reasons are as follows: firstly, it is a
problem to detect every change of pedestrian behaviour pre-
cisely, since the device is not an accessory fixed on the highly
dynamic human body. Furthermore, the step length varies
from person to person, even if the same individual in
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different states (when walking fast, the step is larger, and
when walking slowly, the step is smaller). Therefore, the
accuracy of positioning based on PDR depends essentially
on step detection and step length estimation (SLE).

A great many of step detection methods are mainly based
on the peak detection and threshold detection [13, 14]. The
peak detection method counts steps in line with the appear-
ance of wave peak, while the threshold method detects the
step according to whether the signals reach the threshold or
not. However, these two ways cannot remove the noise well,
which leads to the problems of overcounting and false count-
ing. Some researches proposed features based on the acceler-
ation to reduce the error of step detection [15–19]. In
reference [15], the authors combined peak detection with
four features (minimal peak distance, minimal peak promi-
nence, dynamic thresholding, and vibration elimination)
and their method detects the number of steps with an
ultrahigh accuracy, but it is computationally complex. Kang
et al. [16] proposed to extract frequency domain features of
the three-dimensional (3D) angular velocities returned by
the gyroscope through FFT (Fast Fourier Transform).
However, this method is not applicable for fast walking. Gu
et al. [17] come up with three features (periodicity, similarity,
and continuity) considering users’ false walking state. Never-
theless, it may lead to undercounting problem. Various
features have been presented in the literature [18] which
are split into three groups, including time domain, frequency
domain, and others.

Typical SLE models are divided into four categories:
constant model [20], linear models [21], nonlinear models
[22–24], and neural network models [25, 26]. One of the
most popular SLE models was presented by Weinberg [22],
which estimates each step of a pedestrian dynamically by
establishing the relationship between step length and acceler-
ation with a constant k to adjust. But the k-value needs to be
predetermined for different individuals and changes from
step to step. In this regard, several researches have improved
the model [27–29]. Based on the waist-mounted type, Lai
et al. [27] designed a fuzzy rule base for personalized SLE
with step strength, and frequency as input variables and
step length as an output variable. Nevertheless, it is not
flexible enough for different individuals and has no univer-
sality due to the rule base needs to be adjusted for different
subjects. Ho et al. [28] derived a k-factor as a polynomial
function of the average step velocity, but the estimation
results contain large errors under long-distance walking.
Strozzi et al. [29] developed a formula about k-value with
a per-subject constant β. This method had good perfor-
mance in the case of normal walking speed. However, the
errors became excessively large when the subject is walking
at high or low speed.

The objective of this study is to propose a peak-valley
detection method that detects the pair of peak-valley to over-
come the problem of overcounting. Based on the fuzzy logic
(FL) algorithm, this paper designs a fuzzy controller to make
the constant coefficient k in theWeinberg [22] nonlinear SLE
model adjusted adaptively to each detected step, which is
suitable for different kinds of people walking at various veloc-
ities. Beyond that, it is possible to estimate pedestrian

walking distance accurately by accumulating every estimated
step length.

The remainder of this paper is arranged as follows: in
Section 2, we describe peak-valley detection, including data
collection and preprocessing. In Section 3, a coefficient self-
determined step length estimation method is proposed. In
Section 4, the experimental results are described in detail
and we compare our proposed method with other five similar
SLE algorithms. In Section 5, we discuss the deficiency of our
method and the research in the future. Finally, the conclusion
is presented in Section 6.

2. Peak-Valley Detection

Step detection is an issue in PDR that will cause substantial
errors in the final positioning results because of overcount-
ing, undercounting, and false detection [15]. The acceleration
signal is usually used to detect the pedestrian steps. The
three-axis accelerometer built in iPad Air 2 (iOS 12.1.4) is
utilized for step detection in this paper. The developer can
access both the raw values recorded by the hardware and a
processed version of those values through the Core Motion
framework [30]. In this paper, steps are calculated based on
the user acceleration, a processed accelerometer value that
reflects only the acceleration caused by the user and not the
acceleration caused by gravity.

Figure 1 illuminates the amplitude of three-axis user
acceleration collected from the iPad held in hand during nor-
mal walking and the Signal Vector Magnitude (SVM) [27].
SVM is defined as the root square of the sum of the squared
acceleration signal of each axis:

SVM jð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Acc_x jð Þ2 + Acc_y jð Þ2 + Acc_z jð Þ2

q
, ð1Þ

where Acc_x, Acc_y, and Acc_z denote the measured user
acceleration in the x-axis, y-axis, and z-axis, respectively, of
the accelerometer triad at the jth epoch. The unit g is the
gravity acceleration.

As seen in Figure 1, the results of the walking data
indicate that user acceleration contains evident noise,
especially in the x-axis. User acceleration along the z-axis is
more periodic, symmetric, and stable than the other two axes
and SVM, which represents that the pedestrian has a more
obvious periodic fluctuation in the vertical axis when
walking. Therefore, based on the z-axis user acceleration,
we propose to detect the pair of peak-valley to improve the
accuracy of peak detection. Figure 2 shows the flow chart of
peak-valley detection.

First, we obtain the z-axis user acceleration after a low-
pass filter with 3Hz cut-off frequency. The z-axis user accel-
eration before and after using a low-pass filter is shown in
Figure 3, collected by a volunteer holding an iPad walking
along a straight path, from which we can observe that the
data filtered fluctuates much more smoothly. The cut-off
frequency 3Hz is determined by walking frequency range.
To conclude the range of walking frequency, we set a 16m
long straight test path and ask 10 healthy volunteers (5 male
and 5 female, age from 22 to 28, height from 1.58m to 1.82m,
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weight from 47 kg to 88 kg) to walk along the path three times
at different speeds (slow, normal, and fast) and count the
number of steps in each time. Meanwhile, we use a stopwatch
to record the walking time of every volunteer in each walk
and a tape to measure the actual walking distance. Therefore,
we can know that the walking frequency of pedestrians does
not exceed 3Hz. Besides, we also get the common walking
step length which ranges from 0.4m to 0.8m.

Then, the peak and valley values both in the static and
walking states are identified, while ignoring the negative
peaks and positive valleys, as shown in Figure 4(a).
Figure 4(b) shows the next step of extracting walking signals.
Specifically, to keep the peaks and valleys in the walking state
completely, the value ap ðiÞ or avðjÞ is considered to be the
static one if it meets the following condition:

∑i+2
i ap ið Þ
3

< 0:01, i = 1, 2,⋯, k − 2,

∑j+2
j av jð Þ
3

>−0:01, j = 1, 2,⋯, l − 2,

8>>><
>>>:

ð2Þ

where ap and av are the identified peaks and valleys, i and j
represent the sequence number, k and l are the number of
the detected peaks and valleys after the stage of peak and val-
ley identification, and 0.01 and -0.01 are the maximum and
minimum amplitude of the z-axis user acceleration in the
static. After removing most of the static values by formula
(2), we mark the peaks and valleys reserved in the order as
a_peakðiÞ and a_valleyðjÞ.

To obtain the paired peak-valley accurately, the following
stages are executed:

(i) Dynamic threshold

The dynamic threshold is utilized to remove false values
that are far from the true one. For apeakðiÞ, it will be retained
if it meets two conditions:

apeak ið Þ ≥ c ∗
∑i+9

i apeak ið Þ
10

&&apeak ið Þ ≥ Th1: ð3Þ
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Figure 1: User acceleration amplitude along with the three-axis and the SVM value.
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Figure 2: The flow chart of peak-valley detection.
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Similarly, for a_valleyðjÞ, it will be reserved as long as the
a_valleyðjÞ is satisfied as the conditions:

a_valley jð Þ ≤ c ∗
∑j+9

j a_valley jð Þ
10

&&a_valley jð Þ ≤ Th2:

ð4Þ

In our proposed method, we set Th1 = 0:02, Th2 = −0:02,
and c = 0:4, based on experience. For the last 9 peaks and
valleys, the dynamic threshold∑i+9

i apeakðiÞ/10in formula (3)

and∑j+9
j avalleyðjÞ/10in formula (4) cannot be performed any-

more, so they were replaced with the last 10th calculation result.

(ii) Minimum sampling interval

Sampling interval means the sampling number between
the current peak (valley) and the next one. The pedestrian
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Figure 3: The signal before and after using a low-pass filter: (a) z-axis user acceleration before filtering; (b) z-axis user acceleration data after
filtering.
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Figure 4: Signal extraction: (a) peak and valley identification; (b) walking signal extraction.
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Figure 5: Neighboring difference outlier definition.
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stride frequency ranges from 1Hz to 3Hz according to the
data collected from 10 volunteers walking at different speeds,
while the sampling rate of the device is set to 50Hz; then, the
corresponding number of sampling for each step is between
17 and 50. Therefore, if the sampling interval is less than
16, the current peak (valley) is considered to be a suspected
false peak (valley), which is then compared with the next
peak (valley), and the one closer to zero is deleted.

(iii) Neighboring difference

When people take large stride with low stride frequency,
we detect abnormal values like the one that circled in
Figure 5, which always appear between two truth values.
Neighboring difference refers to the following formula:

Δy1 = yp − y0,

Δy2 = yn − y0,

(
ð5Þ

where Δy1 denotes the difference between the current value
y0 and the previous one yp and Δy2 represents the difference
between the current value y0 and the next one yn. For peaks, if
y0 is smaller than Δy1 and Δy2, while Δy1 > 0:1&&Δy2 > 0:1,
the current peak value is considered to be abnormal. Analo-
gously, for valleys, if y0 is greater than Δy1 and Δy2, while
Δy1 < −0:15&&Δy2 < −0:15, then the current valley value is
regarded as the false one. Threshold values 0.1 and -0.15
are determined by the experiments in this paper.

(iv) Peak-valley sequence

Peak-valley sequence means that the peak and valley
corresponding to every step should occur in pair along sam-
pling time. Eventually, we need to eliminate two sorts of
unpaired outliers: two ends of data are not paired, as shown
in Figure 6(a), so the redundant values need to be removed.
Another case is that the middle part of data is not paired, as
shown in Figure 6(b); hence, values closer to the zero line
are removed.

After eliminating the abnormal peaks and valleys, we can
acquire the number of steps that is equal to the number of
detected peak-valley pairs.

3. A Coefficient Self-Determined Step
Length Estimator

The step length is different from person to person, and each
step of an individual also varies from moment to moment.
In the majority of parameter-dependent SLE models, acceler-
ation is the most common feature to use, among which the
popular Weinberg model [22] is defined as

Step_Length = k · ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amax − amin

4
p , ð6Þ

where k is a constant, amax and amin are the maximum and
minimum vertical acceleration in a single stride, respectively.

Kim et al. [23] proposed a method based on the average
of the acceleration in each step during walking:

Step_Length = k ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i=1 aij j
N

3

s
, ð7Þ

where k is the user parameter, N is the number of sampling
points in a step, and ai is the vertical acceleration of i

th points.
Scarlet [24] developed an empirical model:

Step_Length = k ·
∑N

i=1 aij j/N
� �

− amin

amax − amin
: ð8Þ

The explanations for parameters are the same as above.
However, the parameter in the step length formula above

is a calibrated constant and needs to be predetermined for an
individual to use, which is inconvenient and results in poor
accuracy. Several studies have proposed to automatically cor-
rect the k-value in formula (6). Ho et al. [28] derived a k
-factor as a polynomial function of the average step velocity.
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Figure 6: Peak-valley sequence outlier definition: (a) unpaired outliers at both ends; (b) unpaired outliers in the middle.
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The adaptive k-value was obtained as follows:

k = 0:68 − 0:37 × �vstep + 0:15 × �v2step, ð9Þ

where �vstep was computed as the magnitude of the average
velocities on three dimensional axes, x, y, and z in each step.
The speeds in the three axes are obtained using acceleration
double integral. Therefore, an additional filtering process is
required to reduce the cumulative error caused by double
integral. Strozzi et al. [29] developed the following formula
to calibrate the Weinberg step length estimator:

k = β ×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

amax ið Þ3
p , ð10Þ

where β is a per-subject estimated constant and amaxðiÞ is
the maximum acceleration magnitude during the consid-
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Figure 7: Relationship between z-axis user acceleration amplitude and stride frequency and step length: (a) acceleration amplitude at various
stride frequency; (b) acceleration amplitude under different step lengths.

Table 1: Different combinations of step length (S_L) and stride
frequency (f ) and corresponding step numbers.

Step number

f (Hz)
1.00 1.25 1.5 1.75 2.00 2.25 2.50

S_L (m)

0.40 40 40 40 40 40 40 40

0.47 34 34 34 34 34 34 34

0.54 29 29 29 29 29 29 29

0.61 26 26 26 26 26 26 26

0.68 23 23 23 23 23 23 23

0.75 21 21 21 21 21 21 21

0.82 19 19 19 19 19 19 19

6 Journal of Sensors



ered ith step. Although this method dynamically estimates
the value of k when the pedestrian is walking, the constant β
still needs to be precalibrated for different users. Therefore,

we design a fuzzy controller to adjust the k-value in Equation
(6) adaptively for different kinds of pedestrians walking at
various speeds, only using a simple low-pass filter.

(a) (b)

Figure 8: Method of walking with fixed step length: (a) the white cloth strip with black and red marks; (b) the volunteer steps on the black
marks during walking.

Input
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the peak-
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Figure 9: Fuzzy logic block diagram.
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Under static, low-speed, normal-speed, and fast-speed
walking, the collected data change of the z-axis user acceler-
ation amplitude is shown in Figure 7(a), after the low-pass
filter. It can be seen from Figure 7(a) that the waveform
changes from sparse to dense and the acceleration amplitude
changes from small to large. From this fact, we can conclude
that as the stride frequency increases, walking fluctuation in
the vertical axis will become more obvious, and the ampli-
tude reflected in the z-axis will be larger.

Besides, when walking in steps of 0.5m, 0.6m, 0.7m,
and 0.8m at a stride frequency of 1.5Hz, the amplitude
change in the z-axis user acceleration is expressed in
Figure 7(b). To make the step length coincide with a certain
length, a white cloth strip is laid on the floor and all foot
stepping points are marked with black on the strip. To
adjust the stride frequency to 1.5Hz, a metronome app is
utilized. As can be seen from Figure 7(b), when the step
length increases, the acceleration amplitude of the z-axis
becomes lager.

According to the relationship described above, we
develop a more detailed experiment to establish our fuzzy
rule base. Under the fixed step length, stride frequency,
and the number of steps, 10 healthy volunteers walk about
16m holding the iPad to collect user acceleration data.
The step length is set from 0.4m to 0.82m, every 0.07m a
group, and 7 groups in all, while the stride frequency is
set from 1Hz to 2.5Hz, every 0.25Hz a group, and 7 groups
in all. Table 1 clarifies the number of steps that need to be
performed under the combination of different step lengths
and stride frequency, and each volunteer has to walk 49
times. As shown in Figure 8, for the control of fixed step
length, we use a wide white cloth strip with black marks,
and the volunteers stepped on the marks when walking.
The red labels are marked on the cloth strips, which are
aligned with the ground stamps, to avoid the error caused
by each laying.

Figure 9 shows the fuzzy logic block diagram in this
study. We determine the difference of the peak-valley pair
obtained in Section 2 and stride frequency as input vari-
ables and the k-value in Equation (6) as an output variable.
The final output k is brought into Equation (6) to estimate
step length for each step detected. The following is the
detail of FL:

(i) Input variables and output variable

The input variables of FL are the stride frequency f and
the difference D of the peak-valley pair:

f n =
1
Tn

,

Dn = apeak nð Þ − avalley nð Þ,

8><
>: ð11Þ

where T is the time required for the pedestrian walking in a
step and apeakðnÞ and avalleyðnÞ are the peak and valley in the
nth step obtained by peak-valley detection.

The domain of f is determined to be [1, 2.8], while D is
determined to be [0.12, 0.9] based on data collected by each
volunteer walking 49 times. The output variable k-value is
calculated by the following formula:

k =
S_Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

amax − amin4
p , ð12Þ

where S_L is the step length that volunteers perform accord-
ing to Table 1. Based on the walking data of 10 volunteers, the
calculation result shows that the domain of output variable k
is [0.55, 1.0].

As the quantization level increases, the output accuracy
will be improved, but the complexity of the calculation will
also increase. Taking into account the complexity of the
calculation and the accuracy of the output variables, the
quantization levels of the input and output variables in this
paper are all seven levels relative to experimental setup
above, i.e., f ,D, k = f−3,−2,−1, 0, 1, 2, 3g, as well as the
fuzzy subsets adopted seven levels: NB, NM, NS, ZE, PS,
PM, and PB (N: negative, B: big, M: middle, S: small, P:
positive, ZE: zero). For membership function, we employ
triangular function.

(ii) Rule base

In this paper, the adopted fuzzy rules are Mamdani-
based. The experimental data of one subject performing 49
times as shown in Figure 10, from which k is changeable
and significantly relevant to f andD. At the same step length,
as f increases, D becomes larger and k is smaller instead.
Moreover, at the same stride frequency f , as step length
increases, both D and k get larger. We establish the fuzzy
control rule base according to the commonality of these data
changes, as shown in Table 2.

(iii) Defuzzification

The center-of-gravity method is used as a defuzzification
strategy in this paper, which has a smoother output inference
control; i.e., corresponding to a small change in the input
signal, the final output of its inference generally also changes
to some extent [31].

Table 2: Fuzzy control rule base.

k
f

NB NM NS ZE PS PM PB
D

NB NS NS NS NM NB NB NB

NM PS PS PS ZE ZE NS NM

NS PM PM PS PS ZE ZE NS

ZE PB PM PS PS PS ZE ZE

PS PB PM PS PS PS ZE ZE

PM PB PM PS PS PS PS PS

PB PB PM PM PS PS PS PS
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Table 3: The error of the peak-valley detection and peak detection on 500 steps of free walking.

Volunteer Gender True steps
Peak-valley detection Peak detection
Estimated Error Estimated Error

Two of the ten volunteers
Vol 1 Male 500 500 0 507 1.4%

Vol 2 Female 500 499 0.2% 509 1.8%

Additional five volunteers

Tester 1 Male 500 500 0 507 1.4%

Tester 2 Male 500 500 0 505 1.0%

Tester 3 Male 500 501 0.2% 510 2.0%

Tester 4 Male 500 498 0.4% 506 1.2%

Tester 5 Female 500 496 0.8% 505 1.0%
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Figure 11: Results after executing 500 steps in free walking: (a) step counting results based on the peak-valley detection; (b) step counting
results based on peak detection.
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4. Experiments and Results

4.1. Evaluation of the Peak-Valley Detection. To evaluate the
performance of the peak-valley detection, we have used the
following formula to estimate the error of the proposed
method:

Error =
E − Tj j
T

× 100%, ð13Þ

where E is the estimated number of steps by the peak-valley
detection and T is the true steps. We randomly select 2
volunteers in the experiment above and 5 additional volun-

teers (aged from 22 to 26, height from 1.65m to 1.85m,
weight from 55 kg to 78 kg) to walk freely (not at a fixed stride
frequency and step length) 500 steps. Table 3 shows the error
of the peak-valley detection and peak detection method. It
can be seen that step counting based on the peak detection
is subject to overcounting problem. By calculating the mean
error of seven people, the average accuracy of the peak-
valley detection method is as high as 99.77%. Compared with
the traditional peak detection method, the average accuracy
is improved by 1.17%.

Figure 11 shows the results after executing 500 steps in
free walking using the peak-valley detection and peak detec-
tion. 498/500 steps were detected based on the peak-valley
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Figure 12: Distance estimation results: (a) distance estimation error of 5 testers walking freely 100m; (b) distance estimation error of walking
60m when holding the iPad at an angle about 20 degrees.
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detection method, and 515/500 steps based on peak detec-
tion. Comparing Figures 11(a) and 11(b), we can figure out
that the emergence of the overcounting problem based on
peak detection mainly occurs at the start walking phase and
stop walking. Our proposed method can effectively overcome
this issue.

4.2. Evaluation of Improved Step Length Estimation Model.
To test the performance of our improved SLE model, we
ask 5 testers to walk freely three times in a corridor and every
time stop at approximately 100m. The estimated distance is
obtained by accumulating each step length. The following
formula is used to calculate the error of the estimated
distance:

Error = DE −DTj j, ð14Þ

where DE is estimated distance and DT is the true walking
distance.

As shown in Figure 12(a), among the 5 testers, the error
of tester 2 is only 0.95m in the walk of the second time, while
the error of tester 5 in the walk of the third time is the largest,
which is 5.27m. Moreover, the average error is the mean
error of each tester walking three times, from which we can
see that the average error of 5 testers is all less than 4m and
the smallest one is 1.74m. Therefore, the proposed method
is adaptive for different people with free walking.

In daily walking, pedestrians cannot hold the device fully
horizontally while navigating. We also test the accuracy of
walking distance estimation when holding an iPad at an
angle (about 20 degrees). Figure 12(b) indicates that the aver-
age error of a tester walking 8 times is 1.06m per 60m when

tilting the iPad. Consequently, it is effective for pedestrians
when holding the devices at an angle to estimate the walking
distance based on the method proposed in this paper.

Figure 13 shows the distance estimation error (m) for a
testerconducted walking experiments covering three dis-
tances (20m, 40m, and 60m) at three different walking
speeds (low, normal, and high) of six step length estimators.
The results indicate that our proposed method can obtain
better accuracy of distance estimation for various walking
speeds. Particularly, as the walking distance rises, the
distance estimation error of our proposed method increases
slightly. However, the other five SLE models increase signifi-
cantly; especially when walking 60m at low speed, the dis-
tance estimation error is over 12m. Ho et al.’s [28] method
has a certain improvement on the Weinberg’s method [22],
but the effect is weak. Strozzi et al.’s [29] method acquires
the highest error when walking at low speed and high speed,
which means that the parameter β in formula (10) still needs
to be dynamically adjusted at different walking speeds.
Therefore, our proposed method can significantly reduce
the estimation error and is suitable for the pedestrian walking
at various speeds and long distance.

5. Discussion

Based on the proposed method, we conduct experiments on
different walking surfaces (slope, downstairs, upstairs) and
different movement modes (running, jogging, lateral walk-
ing, backward walking). Table 4 shows the results of walking
on different surfaces. The experiment of the slope surface is
carried out on a treadmill with the inclination angle of 9
degrees. The width of the stair is 27 cm and the true distance
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Figure 13: Distance estimation error at three different walking speeds of six step length estimators: (a) low speed; (b) normal speed; (c) high
speed.
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of stair experiment is the sum of all walked stairs and inter-
mediate rest platform. From Table 4, we can conclude that
our peak-valley detection method is still applicable, but the
fuzzy rule base needs to be adjusted when walking on the
slope or stairs. The case of undercounting occurs when the
pedestrian is walking on the intermediate rest platform
which is the plane, because the parameter c in the stage of
dynamic threshold is ineffective in this situation. Table 5
expresses the results of walking at different movement
modes, from which we can know that our proposed method
still applies to lateral walking and backward walking.
However, there is a significant error when the pedestrian is
running or jogging. The stride frequency of running or
jogging exceeds 3Hz, while the proposed method only con-
siders the walking frequency ranging from 1Hz to 3Hz.
Therefore, the stage of minimum sampling interval leads to
the severe problem of undercounting.

In the future work, to expand the application scenarios of
our method, we will classify and recognize pedestrian move-
ment patterns (running, walking, upstairs, downstairs, slope,
etc.) and self-adjust the fuzzy rule base to the corresponding
patterns.

6. Conclusions

This paper proposes a coefficient self-determined step length
estimation method based on the peak-valley detection.
Employing the peak-valley detection, the abnormal values
will be filtered out effectively. Especially, it is significantly
effective for the overcounting problem in the peak detection.
Based on the FL, a fuzzy controller is established, which can
adjust the k-value in Weinberg’s model adaptively for every
step detected by the peak-valley detection. The experimental
results confirm that our proposed method is universal for
different types of pedestrians. Compared with three typical
nonlinear models and two state-of-the-art methods, the pro-
posed method has higher accuracy when walking at various
step velocities and long distance.

Data Availability

The inertial data of the iPad used to support the results of this
study can be obtained from the authors of this article (e-mail:
wenxialu@sues.edu.cn (Wenxia Lu); njuptzhuh@163.com
(Hai Zhu)).

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This research was supported by the team of Fusion Comput-
ing and Location Services. This research was funded by the
Key Project of Science and Technology Commission of
Shanghai Municipality (Grant No. 18511101600), the “Sail-
ing Program” of Young Science and Technology Talents sup-
ported by Shanghai Science and Technology Commission
(Grant No. 19YF1418200), the Young Scientists Fund of the
National Natural Science Foundation of China (Grant No.
61902237), Natural Science Foundation of Shanghai (Grant
no. 17ZR1411900), and the Opening Project of Shanghai
Key Laboratory of Integrated Administration Technologies
for Information Security (Grant no. AGK2015006).

References

[1] S. Khruahong, X. Kong, K. Sandrasegaran et al., “Multi-level
indoor navigation ontology for high assurance location-based
services,” in 2017 IEEE 18th International Symposium on High
Assurance Systems Engineering (HASE), pp. 128–131, Singa-
pore, Singapore, January 2017, IEEE Xplore.

[2] L. Chen and H. Hu, “IMU/GPS based pedestrian localization,”
in 2012 4th Computer Science and Electronic Engineering Con-
ference (CEEC), pp. 23–28, Colchester, UK, September 2012,
IEEE Xplore.

Table 4: The results of walking on different surfaces.

Surface
type

True
steps

Detected
steps

Step detection error
(%)

True distance
(m)

Estimated distance
(m)

Distance estimation error
(m)

Slope 138 138 0 60 70.25 10.25

Downstairs 108 105 2.78 30.95 69.73 38.78

Upstairs 101 96 4.95 30.95 71.41 40.46

Table 5: The results of walking at different movement modes.

Movement
mode

True
steps

Detected
steps

Step detection error
(%)

True distance
(m)

Estimated distance
(m)

Distance estimation error
(m)

Running 31 11 64.52 30 10.23 19.77

Jogging 35 21 40.00 30 16.40 13.60

Lateral walking 45 44 2.22 30 29.32 0.68

Backward
walking

63 63 0 30 33.85 3.85

13Journal of Sensors



[3] K. Mao and G. Chen, “The application status quo and develop-
ment trend of indoor positioning technology,”Modern Survey-
ing and Mapping, vol. 41, no. 5, pp. 31–34, 2018.

[4] X. Li, J. Wang, and C. Liu, “A Bluetooth/PDR integration algo-
rithm for an indoor positioning system,” Sensors, vol. 15,
no. 10, pp. 24862–24885, 2015.

[5] Q. Fan, B. Sun, Y. Sun, and X. Zhuang, “Performance enhance-
ment of MEMS-based INS/UWB integration for indoor navi-
gation applications,” IEEE Sensors Journal, vol. 17, no. 10,
pp. 3116–3130, 2017.

[6] W. Chai, C. Chen, E. Edwan, J. Zhang, and O. Loffeld,
“INS/Wi-Fi based indoor navigation using adaptive Kalman
filtering and vehicle constraints,” in 2012 9th Workshop on
Positioning, Navigation and Communication, pp. 36–41, Dres-
den, Germany, March 2012, IEEE Xplore.

[7] R. Li, J. Zhang, D. Xu, X. X. Chen, and Q. L. Xu, “Micro-elec-
tro-mechanical system-inertial measurement unit indoor
pedestrian dead reckoning based on motion classification
and step frequency adjustment,” Journal of Shanghai Univer-
sity, vol. 20, no. 5, pp. 612–623, 2014.

[8] A. R. Jimenez, F. Seco, C. Prieto, and J. Guevara, “A compari-
son of pedestrian dead-reckoning algorithms using a low-cost
MEMS IMU,” in 2009 IEEE International Symposium on Intel-
ligent Signal Processing, pp. 37–42, Budapest, Hungary, August
2009, IEEE Xplore.

[9] G. Panahandeh, N. Mohammadiha, A. Leijon, and P. Handel,
“Continuous hidden Markov model for pedestrian activity clas-
sification and gait analysis,” IEEE Transactions on Instrumenta-
tion and Measurement, vol. 62, no. 5, pp. 1073–1083, 2013.

[10] E. M. Diaz, A. L. M. Gonzalez, and F. de Ponte Müller, “Stan-
dalone inertial pocket navigation system,” in 2014 IEEE/ION
Position, Location and Navigation Symposium - PLANS 2014,
pp. 241–251, Monterey, CA, USA, May 2014, IEEE Xplore.

[11] J. C. Alvarez, D. Alvarez, A. López, and R. C. González, “Pedes-
trian navigation based on a waist-worn inertial sensor,” Sen-
sors, vol. 12, no. 8, pp. 10536–10549, 2012.

[12] Y. Wu, H. Zhu, Q. X. du, and S. M. Tang, “A survey of the
research status of pedestrian dead reckoning systems based
on inertial sensors,” International Journal of Automation and
Computing, vol. 16, no. 1, pp. 65–83, 2019.

[13] K. Tumkur and S. Subbiah, “Modeling human walking for step
detection and stride determination by 3-axis accelerometer
readings in pedometer,” in 2012 Fourth International Confer-
ence on Computational Intelligence, Modelling and Simulation,
pp. 199–204, Kuantan, Malaysia, September 2012, IEEE Com-
puter Society.

[14] J. Seo and T. Laine, “Accurate position and orientation inde-
pendent step counting algorithm for smartphones,” Journal
of Ambient Intelligence and Smart Environments, vol. 10,
no. 6, pp. 481–495, 2018.

[15] V. T. Pham, D. A. Nguyen, N. D. Dang et al., “Highly accurate
step counting at various walking states using low-cost inertial
measurement unit support indoor positioning system,” Sen-
sors, vol. 18, no. 10, p. 3186, 2018.

[16] X. Kang, B. Huang, and G. Qi, “A novel walking detection and
step counting algorithm using unconstrained smartphones,”
Sensors, vol. 18, no. 1, p. 297, 2018.

[17] F. Gu, K. Khoshelham, J. Shang, F. Yu, and Z. Wei, “Robust
and accurate smartphone-based step counting for indoor
localization,” IEEE Sensors Journal, vol. 17, no. 11, pp. 3453–
3460, 2017.

[18] B. Ao, Y. Wang, H. Liu, D. Li, L. Song, and J. Li, “Context
impacts in accelerometer-based walk detection and step count-
ing,” Sensors, vol. 18, no. 11, p. 3604, 2018.

[19] W. Shao, H. Luo, F. Zhao, C. Wang, A. Crivello, and M. Z.
Tunio, “DePedo: Anti periodic negative-step movement
pedometer with deep convolutional neural networks,” in
2018 IEEE International Conference on Communications
(ICC), pp. 1–6, Kansas City, MO, USA, May 2018, IEEE.

[20] A. R. Pratama, Widyawan, and R. Hidayat, “Smartphone-
based pedestrian dead reckoning as an indoor positioning sys-
tem,” in 2012 International Conference on System Engineering
and Technology (ICSET), pp. 1–6, Bandung, Indonesia, Sep-
tember 2012, IEEE Xplore.

[21] V. Renaudin, M. Susi, and G. Lachapelle, “Step length estima-
tion using handheld inertial sensors,” Sensors, vol. 12, no. 7,
pp. 8507–8525, 2012.

[22] H. Weinberg, Using the ADXL202 in Pedometer and Personal
Navigation Applications, Analog Devices, Inc., Norwood,
MA, USA, 2002.

[23] J. W. Kim, H. J. Jang, D. H. Hwang, and C. Park, “A step, stride
and heading determination for the pedestrian navigation sys-
tem,” Journal of Global Positioning System, vol. 3, no. 1&2,
pp. 273–279, 2004.

[24] J. Scarlet, Enhancing the Performance of Pedometers Using a
Single Accelerometer, Analog Devices, Inc., Norwood, MA,
USA, 2005.

[25] H. Xing, J. Li, B. Hou, Y. Zhang, and M. Guo, “Pedestrian
stride length estimation from IMU measurements and ANN
based algorithm,” Journal of Sensors, vol. 2017, Article ID
6091261, 10 pages, 2017.

[26] J. Hannink, T. Kautz, C. F. Pasluosta et al., “Mobile stride
length estimation with deep convolutional neural networks,”
IEEE Journal of Biomedical and Health Informatics, vol. 22,
no. 2, pp. 354–362, 2018.

[27] Y. C. Lai, C. C. Chang, C. M. Tsai, S. C. Huang, and K. W.
Chiang, “A knowledge-based step length estimation method
based on fuzzy logic and multi-sensor fusion algorithms for a
pedestrian dead reckoning system,” International Journal of
Geo-Information, vol. 5, no. 5, p. 70, 2016.

[28] N.-H. Ho, P. Truong, and G.-M. Jeong, “Step-detection and
adaptive step-length estimation for pedestrian dead-
reckoning at various walking speeds using a smartphone,” Sen-
sors, vol. 16, no. 9, p. 1423, 2016.

[29] N. Strozzi, F. Parisi, and G. Ferrari, “A novel step detection and
step length estimation algorithm for hand-held smartphones,”
in 2018 International Conference on Indoor Positioning and
Indoor Navigation (IPIN), pp. 1–7, Nantes, France, September
2018, IEEE.

[30] https://developer.apple.com/documentation/coremotion.

[31] W. Wei, Intelligent control technology, Beijing, China, 2015.

14 Journal of Sensors

https://developer.apple.com/documentation/coremotion

	A Step Length Estimation Model of Coefficient Self-Determined Based on Peak-Valley Detection
	1. Introduction
	2. Peak-Valley Detection
	3. A Coefficient Self-Determined Step Length Estimator
	4. Experiments and Results
	4.1. Evaluation of the Peak-Valley Detection
	4.2. Evaluation of Improved Step Length Estimation Model

	5. Discussion
	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

