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The lifetime of wire rope is crucial in industry manufacturing, mining, and so on. The damage can be detected by using appropriate
nondestructive testing techniques or destructive tests by cutting the part. For broken wires classification problems, this work is
aimed at improving the recognition accuracy. Facing the defects at the exterior of the rope, a novel method for recognition of
broken wires is firstly developed based on magnetic and infrared information fusion. A denoising method, which is adopted for
magnetic signal, is proposed for eliminating baseline signal and wave strand. An image segmentation method is employed for
parting the defects of infrared images. Characteristic vectors are extracted from magnetic images and infrared images, then
kernel extreme learning machine network is applied to implement recognition of broken wires. Experimental results show that
the denoising method and image segmentation are effective and the information fusion can improve the classification accuracy,
which can provide useful information for estimating the residual lifetime of wire rope.

1. Introduction

Wire ropes play an important role in many fields such as
cranes, oil drilling rigs, elevators, and mine hoist. The safety
of wire ropes is closely related to people’s life and resources
loss as well as the normal operation of industry. Because of
the complex structure of wire ropes and the diversity of appli-
cation environment, it is difficult to evaluate the health of
wire ropes in service [1, 2]. Thus, it is necessary to effectively
and accurately perform the quantitative nondestructive test-
ing (NDT) of wire rope by adopting proper methods.

At present, the NDT methods of wire rope include elec-
tromagnetic [3, 4], X-ray [5], acoustic [6–9], and optical
[10] method [1]. X-ray apparatus has radioactive contamina-
tion; acoustic method detects wire rope by striking, which is
simple but one-sided; CCD camera optical testing method
can directly show the real defects through imaging, but it is
susceptible to oil pollution; because of high sensitivity, high
speed, and low cost, electromagnetic NDT method is widely
used [11–14]. However, no single nondestructive testing
technique can identify all kinds of defects. Infrared nonde-
structive testing does not contain dangerous radiation and

has characteristic of noncontact; thus, it has widely applied
in solving real problems in numerous areas [15].In addition,
its popular application areas contain building sector [16, 17],
aeronautics and astronautics [18], chemical industry [19],
food [20], cultural heritage [21], and so on. Munoz et al.
[22, 23] determined heat source dissipation from infrared
thermographic measurements based on the heat diffusion
equation provided by thermodynamics principles and identi-
fied damage evolution in carbon fibre reinforced composites
combing acoustic emission and infrared thermography.

Magnetic flux leakage (MFL) detection of wire rope
mainly includes the forward calculation model of MFL detec-
tion, pretreatment of MFL signal, and inversion of defect
[24]. For example, Yan et al. [25] employed a three-
dimensional finite element method (FEM) to analyze MFL
signals. This method provided theoretical guidance for detec-
tion signal analysis and hardware design. Based on the mag-
netic dipole model, Yang [2] created the leakage magnetic
field analysis models of single wire fracture, surface broken
wire, and internal broken wire of wire rope, which provided
the theoretical basis for the quantitative analysis of wire rope.
Zhao and Zhang [11, 12] made FEM on the distribution of
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magnetic flux leakage of typical broken wire defects in steel
cables, and obtained the relationship between MFL and
detection distance, damage size, and internal broken wire.
In [13, 14], a magnetic dipole model was established to design
the prototype, which provided a theoretical basis for the
quantification of defects. Through the FEM model of wire
rope and the FEM simulation under different broken wires,
DU et al. [26] studied the influence of different broken wires
on the safety coefficient of wire rope.

Because actual MFL detection signals are polluted by
many noise sources, it is necessary to preprocess the signals
in order to reconstruct the defects. Zhang et al. [27, 28] uti-
lized wavelet based on compressed sensing to denoise the
strand wave, but it restored a lot of noise; then, they combined
the Hilbert-Huang Transform (HHT) and Compressed Sens-
ing Wavelet Filtering (CSWF) to reduce various background
noises. Zheng and Zhang [29] exploited wavelet soft thresh-
old to inhibit the noise; nevertheless, the denoising effect is
poor. Then Zheng and Zhang [30] implemented Variational
Mode Decomposition (VMD) and a wavelet transformation
to remove noise from the raw MFL signals, which can effec-
tively eliminate noise. Hong et al. [31] proposed an adaptive
wavelet threshold denoising method based on a new thresh-
old function, which achieved good denoising effect on the
MFL signal of wire rope. To realize the visualization of
defects, Zhao [13] utilized an adaptive notch filtering algo-
rithm for suppressing wave noise.

To visualize and quantify defects and realize quantitative
detection of broken wires, researchers need to implement
defect inversion. In order to perform defect inversion,
numerous scholars have used various methods. Through
adopting the wavelet super-resolution reconstruction tech-
nique, the resolution of defect grayscale was improved in
[32]. Zhang and Tan [33] proposed a super-resolution (SR)
reconstruction method based on Tikhonov regular multi-
frame, which can effectively remain image features of defects
while the axial resolution was reduced and circumferential
resolution was increased. In [28, 32], researchers imple-
mented classification of defects by adopting back propaga-
tion (BP) neural networks. However, BP was easy to fall
into local minimum, which can lead to problems such as net-
work underfitting and insufficient generalization ability.
Wan et al. [34] investigated the theory on optimal wavelet
packet with the Least Squares Support Vector Machine (LS-
SVM) to diagnose elevator faults, which was then validated
by the experiment. Zheng and Zhang and Qin et al. [29, 35]
took the Support Vector Machine (SVM) with a radial basis
function classified to conduct the fault pattern recognition,
whereas this method was not very effective.

The researchers [15, 36] investigated the failures of steel
ropes and defect of ferromagnetic specimens by means of
thermovision. In [15], since the measurements required
extremely sensitive thermovision technology, the method
can detect the tight of ropes at certain conditions. In [34],
the researchers developed a new active thermography tech-
nique, which can detect the defect in ferromagnetic steel
specimens. The fusion of infrared and other information is
effective and widely used. Kee and Oh et al. [16] combined
air-coupled impact-echo and infrared thermography. It can

improve effectiveness of the individual test data. Data fusion
of ground-penetrating radar and infrared thermography
improved the accuracy of detecting defects [37]. The
researchers [38] combined finite element analysis with exper-
imental data from infrared thermography, which provided
accurate means to assess quantitatively the size and position
of thermal imperfections. According to these, it is demon-
strated that data fusion is effective. In this paper, fused data
based on infrared thermography and magnetic is utilized to
detect the number of broken wires.

Electromagnetic NDT for wire rope is susceptible to
hardware design and magnetic signal processing. In [13,
14], the location and number of sensors can affect the quality
of acquisition signal. Insufficient quantity will lead to the
serious loss of MFL signal, while dense placement of sensors
can lead to serious signal interference, resulting in difficulty
of noise reduction. Meanwhile, the small broken wire defect
information may be drowned out by noise. However, thermal
infrared is a visualization method, which can intuitively
grasp the surface damage state of wire rope and be closer to
the actual damage pattern than magnetic data. Meanwhile,
it is without the shortcomings of magnetic detection method
and it can make up for the loss of small defects in magnetic
information. Thus, the combination of the two methods sup-
ply more information for the damage and can avoid the loss
of defect information.

To improve classification accuracy of broken wires and
provide a reference for evaluating the service life of wire
rope, the combination of infrared information and magnetic
information is put forward for the first time to perform
quantitative identification of wire rope. To processing mag-
netic signal, an algorithm based on Wavelet Total Variation
(WATV) is proposed to remove noise from the raw MFL
signals. The noise from high-frequency magnetic leakage,
baseline drift, and strand waves can be suppressed by the
proposed algorithm. To separate defects from infrared
images, an image processing method based on distance is
presented. After extracting statistical texture, invariant
moment characteristics, and color moment, a fusion method
based on kernel extreme learning machine (KELM) of deci-
sion level fusion is proposed to combinemagnetic and infrared
information. Experiment results show that the information
fusion based on magnetic and infrared can improve the rec-
ognition rate of broken wires.

In the next sections, the platform to get data, the process-
ing for magnetic data, steps for extracting infrared informa-
tion, and recognition for broken wires after information
fusion will be introduced in turn. In this paper, major inno-
vations are as follows: (1) the proposed denoising algorithm
based on WATV can eliminate noise generated by channel
imbalance, the structure of wire ropes, and so on; (2) an
infrared image segmentation algorithm based on distance is
presented; and (3) information fusion combined magnetic
with infrared to perform classification is firstly adopted.

2. Related Knowledge

2.1. WATV Denoising. WATV denoising method can sup-
press pseudo-Gibbs oscillations and spurious noise spikes

2 Journal of Sensors



by estimating all wavelet coefficients simultaneously via the
minimization of a single objective function. The method is
formulated as an optimization problem incorporating both
wavelet sparsity and TV regularization [39]. The wavelet
coefficients are calculated by solving the optimization prob-
lem shown in formula (1). If ajsatisfies formula (2), F(w) is
strictly convex.

ω
_ = arg min

ω
F ωð Þ = 1

2 Wy − ωk k22
�

+〠
j,k
λjϕ ωj,k ; aj
� �

+ β DWTω
�� ��

1

� ð1Þ

Wrepresents the wavelet transform; in ωj,k, j and k are the
scale and time indices, respectively. λj and βare the regulari-

zation parameters. The penalty term kDWTωk1 is the total
variation of the signal estimate x_; the function ϕð⋅ ;ajÞ is a
non-convex sparsity-inducing penalty function with

0 ≤ aj <
1
λj

ð2Þ

Based on variable splitting and the alternating direction
method of multipliers (ADMM), equation (1) can be
expressed as a constrained problem:

arg min
u,ω

g1 ωð Þ + g2 uð Þð Þ subject to u = ω ð3Þ

g1 ωð Þ = 1
2 Wy − ωk k22 +〠

j,k
λjϕ ωj,k ; aj
� �

ð4Þ

g2 uð Þ = β DWTu
�� ��

1 ð5Þ
The augmented Lagrangian is given by:

L ω, u, μð Þ = g1 ωð Þ + g2 uð Þ + μ

2 u − ω − dk k22 ð6Þ

where μ > 0. As proven in [39, 40], an iteration algorithm
which consists of three steps to solve (1) is obtained:

ω = arg min
ω

g1 ωð Þ + μ

2 u − ω − dk k22
n o

= arg min
ω

〠
j,k

1
2 pj,k − ωj,k
� �2

+
λj

μ + 1 ϕ ωj,k ; aj
� �� � ð7Þ

where p = ðWy + μðu − dÞÞ/ðμ + 1Þ

u = arg min
u

g2 uð Þ + μ

2 u − ω − dk k22
n o

= v +W tvd WTv, β/μ
� �

−WTv
� � ð8Þ

where v = d + ω, tvd is total variation denoising.

d = d − u − ωð Þ ð9Þ

We initialize u =Wy and d = 0.The detailed solutions to
(7) and (8) are given in [39]. The solution of equation (1)
can be calculated by (7), (8), (9).

2.2. Bilateral Texture Filtering. The Bilateral Texture Filtering
(BFT) effectively removes texture while preserving structure.
The computation of guidance image via patch shift is the only
additional step over the standard bilateral filter. How patch
shift works is illustrated in detail in [41]. The BTF can be
expressed as follows:

△ Ωq

� �
= Imax Ωq

� �
− Imin Ωq

� � ð10Þ

mRTV Ωq

� �
=△ Ωq

� � max
r∈Ωq

∂Ið Þr
		 		

∑r∈Ωq
∂Ið Þr
		 		 + ε

ε = 10−9
� � ð11Þ

αp = 2 1
1 + exp −σα mRTV Ωp

� �
−mRTV Ωq

� �� �� � − 0:5
 !

ð12Þ

Gp′ = αpGp + 1‐αp
� �

Bp ð13Þ

where ImaxðΩqÞ and IminðΩqÞ are the maximum and the min-
imum image intensities in patchΩq that is least likely to con-
tain a prominent structure edge; Ωp is the center patch of
average intensity for each pixel p; Bp is the average image
intensity; Gp represents the texture signal that is obtained
by copying Bq at q that has the smallest △ðΩqÞ in the neigh-
borhood of p(Bq is the average intensity in Ωq); σα controls
the sharpness of the weight transition from edges to smooth/-
texture regions; Gp′ is the modified guidance image.

2.3. Kernel Extreme Learning Machine. KELM is formulated
by applying Mercer’s condition to ELM (extreme learning
machine) [42]. It has great generalization and stability.
KELM is a single-layer feed forward neural network. The hid-
den layer output matrix H with L hidden neurons is:

H =
h wT

1 x1 + b1
� �

h wT
2 x1 + b2

� �
⋯ h wT

L x1 + bL
� �

⋮ ⋮ ⋮ ⋮

h wT
1 xN + b1

� �
h wT

2 xN + b2
� �

⋯ h wT
L xN + bL

� �
2
664

3
775

ð14Þ

where hð·Þ is the activation function of hidden layer, W =
½w1,w2,⋯,wL� ∈ Rd×L and B = ½b1, b2,⋯,bL�T ∈ RL are the
input weights and biases between randomly generated input
layers and hidden layers, respectively. X = ½x1, x2,⋯,xN � ∈
Rd×N denotes a set of samples with label T = ½t1, t2,⋯,tN � ∈
Rc×N . The classification problem for the proposed constrained-
optimization-based ELM with a single output node can be
formulated as [42, 43]:

3Journal of Sensors



min βk k2
2 + C

2 〠
N

i=1
ξik k2

 !
subject to h xið Þβ

= tTi − ξTi , i = 1⋯⋯N ⇔Hβ = TT − ξT

ð15Þ

where β ∈ RL×C is the output weight of hidden layer and out-
put layer, ξ = ½ξ1, ξ2,⋯,ξL� is the prediction error matrix of
training data, and C is a penalty factor. The output function
of the ELM classifier is:

f xð Þ = h xð Þβ′ = h xð ÞHT HTH + IL×L
C


 �‐1
T ð16Þ

Then, the output of KELM is

f xð Þ = h xð Þβ′ = h xð ÞHT HTH + IL×L
C


 �‐1
T

=

k x, x1ð Þ
⋮

k x, xNð Þ

2
6664

3
7775
T

Ω + IN×N
C


 �‐1
T

ð17Þ

where Ω =HHT ∈ RN×N , Ωi,j = hðxiÞhðxjÞT = kðxi, xjÞ, and
kð·Þ is the kernel function.

3. Experiments

In this part, through processing and fusing magnetic signal
and infrared image, the classification for six kinds of broken
wires is implemented. In this experiment, the number of bro-
ken wires is one, two, three, four, five, and seven. Many wires
are wound into a strand, then it is wounded into a wire rope.
The damage of the wire rope is related to the geometry and
winding mode of the wire rope [1, 2, 13]. As shown in
Figure 1, the structure of the wire rope is 6 ∗ 36 with a diam-
eter of 28mm. The length of the wire ropes is 6.5m. The
specimens used are 185, where the number of training sam-
ples is 139 and testing number is 46. The number of broken
wires is from 1 to 5 and 7 wires, where the number of every
samples set of broken wires is 30, 30, 32, 34, 35, and 34.
The width of samples contains 2mm, 5mm, and 1.5 cm.
The depth of defects is 1mm. The type of defect is shown
in Figure 2.

To implement the recognition of broken wires, the pro-
cessing steps are shown in Figure 3.

3.1. Data Collection. When there is no defect on wire rope
and materials of the wire rope are uniform and identical,
the magnetic flux through the cross-section of the wire rope
should be equal in the axial direction. If there is a defect,
the permeability at the defect becomes smaller, the mag-
netic field only passes through the air field and then returns
to the inside of the wire rope; thus, magnetic leakage on
surface is formed [12–14]. According to this principle, a
magnetic flux leakage detection device is designed. Data
collection contains magnetic signal acquisition and thermal
infrared image acquisition. The specific devices and collect-

ing procedures are as follows: the magnetic data acquisition
device adopted contains Unsaturated Magnetic Excitation
(UME) source, an array of 18 Giant Magnetoresistance
(GMR) sensors, data acquisition unit, data storage, and
control system [33].

As shown in Figure 4, data collection steps are as follows:
After loading unsaturated magnetic field on wire rope, the
weak MFL signal can be obtained through equal-space sam-
pling. As the acquisition system moves along the axial direc-
tion of the wire rope, the photoelectric encoder produces the
pulses. Then, the control system collects the defect informa-
tion from 18 channels according to pulses. And the final
magnetic data is stored in the SD card.

Because the rate of infrared radiation from defect loca-
tion is different from that from nondefect location, the dam-
age of wire rope can be detected. Infrared information
acquisition system, as shown in Figure 5(a), includes heating
unit and data collection. The heating unit is composed of the
metal tube and tight wires. The metal tube is 40mm in diam-
eter and 20 cm in length. Wire is adopted to heat the metal
tube. Infrared thermography is adopted to capture the images
of defect information. The angle of camera should be
adjusted according to the location of the defects to maintain
the distance between the defect and the camera lens constant.
The camera we adopted is thermal imager FLUKE TIX 660.
The thermal resolution of the infrared camera is -20°C-
1200°C. The distance between wire rope and camera is 35 ±
2 cm. The specific processes are as follows: after the wire is
energized, the wire rope temperature rises by heating the
metal tube. When the temperature of fault is maintained at
about 40 ± 2(°C), the defect images are taken by the infrared
camera. Single images are acquired through the device shown
in Figure 5(a). After installing the thermal infrared camera
on the tripod, the defective part is heated, and the images
of wire rope surface defect are obtained by panning the tri-
pod. The focus of the image is formed by centering the defect
and fixing the distance between the defect and the camera.
The captured raw infrared picture is shown in Figure 5(b).
(The defect is marked by a box.)

3.2. Data Processing. The data analysis covers processes for
magnetic data and infrared image, which involves signal pro-
cessing and image processing. Filtering signal noise and dam-
age visualization are the main procedures for magnetic
information analysis. For managing infrared images, texture
filtering and defect segmentation are adopted.

Figure 1: Wire rope cross-section drawing.
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3.2.1. Magnetic Data Processing.Using the system mentioned
in Figure 4, raw UME signals can be obtained. As shown in
Figure 6. Raw UME signals including incoherent baseline
caused by channel imbalance, system noise, and strand wave
noise produced by structure of wire rope should be filtered
out to obtain pure defects information.

The algorithm based on WATV is employed to inhibit
the noise. The data from each channel need to be processed
as follows:

(1) Note that yiði = 1 ~ 18Þ is the each channel data.
Select yi and apply WATV to it:

(a) One broken wire (b) One broken wire (c) Two broken wires (d) Three broken wires

(e) Three broken wires (f) Five broken wires (g) Seven broken wires (h) Four broken wires

Figure 2: Schematic of defect.
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Figure 3: Recognition flow chart.
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Figure 4: Schematic of magnetic data acquisition device: (a) magnetic signal experiment platform; (b) magnetic leakage detection system for
wire rope.
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(i) Initialize u =Wy by wavelet transform, d = 0,
and aj = 1/λj

(ii) Calculate p = ðWy + μðu − dÞÞ/ðμ + 1Þ. Update
ω according to formulation (7), (8), (9) until
reaching the number of iterations (the number
is set to 10 to remove baseline drift).

(iii) Retain the wavelet scale containing defect infor-
mation and set others to zero

(iv) Then signal x is reconstructed by inverse wavelet
transform: x =WTω

(2) Get the denoised signal x′ after repeating step 1 for
three times to ensure the effect of noise reduction
and not excessive noise reduction. Let x′ as the input
signal and repeat i and ii. Use wavelet soft threshold
on the wavelet coefficients at different scales:

(i) Select 5 db wavelet to decompose it into eight
layers

(ii) The coefficients of different scales should be
quantified by soft threshold

(iii) Reconstruct the wavelet coefficients

(3) Take a small strand wave of 460. Judge the signal
segment in the whole signal similar to the selected
wave and set the similar band to zero (if the
amplitude difference of signal with the same length
as the select strand wave is less than 5, then set the
signal to zero.)

Infrared 
camera

Wire
Metal 
tube

Wire 
rope

(a)

43.7
42

39

36

33

30

27
24

21

18
15.3
°C

(b)

(c) (d)

Figure 5: Infrared image acquisition: (a) schematic of infrared data acquisition device; (b) the raw infrared picture of defect; (c) thermal
infrared image capture system; (d) testing platform for wire rope.
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(4) Remove channels that do not contain defect
information

(5) The noise reduction data can be obtained by super-
posing the processed signals

The single channel data processed by the above algorithm
is shown in Figure 7. Through adopting the above algorithm,
the baseline, system noise, and strand wave are removed so
that the defects information are clearer. Figure 8 shows the
filtered 3D data graph.

To visualize the defects, the images of flaws are presented
by utilizing gray level normalization, circumferential interpo-
lation, defect location, and segmentation.

To eliminate the effect of uneven excitation on wire ropes
and convert all the data with a uniform standard, normaliza-
tion is necessary. Normalization is the basis of data visualiza-
tion; hence, equation (18) is adopted to stretch the defects
between 0–255.

IMN j, qð Þ = 255 × IM j, qð Þ
700 + 0:5


 �
ð18Þ

IMNðj, qÞ and IMðj, qÞ are the normalized data and raw
data, respectively; q is the number of sensor channel and j
is the length of signal. The data after normalizing is shown
in Figure 9.

Because circumferential data is acquired from 18 sensor
channels, circumferential resolution is much lower than the
axial one. The pixel count in circumferential is 18; however,
the pixel count in axial is more than ten thousand. Three
spline interpolations is employed to enhance the circumfer-
ential resolution, which increases the pixel count from 18 to
300. In addition, the procedure contributes to realize the
visualization of defect images. The schematic of data after
interpolations is shown in Figure 10. Then, we obtain gray
image of leakage magnetic by converting the double data to
unit 8. Figure 11 shows the grayscale image of a wire rope’s
leakage magnetic field.

Inspired by [30], the defects are located and segmented
using the modulus maximum method. The flaws are divided
into images of resolution with 300 ∗ 300.

3.2.2. Infrared Image Processing. Infrared images can be
obtained using the device as shown in Figure 5. To achieve
defect segmentation, the following rules is used to convert
the color image to a grayscale image:

IMgray = IMR × 0:114 + IMG × 0:229 + IMB × 0:587 ð19Þ

where IMgray is the gray picture; IMR, IMG, and IMB denote
the red layer, green layer, and blue layer of the color image,
respectively. The parameters in equation (19) are selected
according to the amount of defect information. The
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Figure 7: Single channel data of raw and denoised: (a) raw data of single channel and (b) single channel data after noise reduction.
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transformed photograph of infrared image with 640 ∗ 480 is
shown in Figure 12.

BTF is utilized to implement texture filtering, which can
remove the fine grain of wire rope. The specific algorithm is
as follows:

(1) ComputeB, the average image of IMgray, by applying
k × k box kernel representing a patch

(2) For each pixel p ∈ IMgray , calculate mRTV by equa-
tions (10) and (11) and the total range△ðΩpÞ in for-
mulation (10).

(3) Acquire the guidance image G via patch shift on each
pixel. Find q ∈Ωp with minimum mRTVq, then
copyBq to Gp

(4) Compute α by using equation (12) for each pixel

(5) Obtain G′ = αG + ð1‐αÞB
(6) Obtain filtered image J using G′ as guidance

BTF can filter out texture contained in the infrared image
of wire rope. The filtered infrared image is shown in
Figure 13.

The image after texture filtering also exists strand wave,
which makes trouble for feature extraction. The distances
between strand waves are fixed according to the structure of
wire rope, and the defects are located between strand waves.
Therefore, an algorithm based on distance is proposed to part
the damage. The algorithm can be described as follows:

(1) After binarization of image J , locate the maximum
and minimum values of the row and column with
pixel value of 1 in the image, respectively. Then the
image B, as shown in Figure 13, is obtained: B =
Jðlmin : lmax, cmin : cmaxÞ (lmin and lmax are the max-
imum and minimum of line; cmin and cmax are the
maximum and minimum of column).

(2) For each line of imageB, find locbegin and locend:

locbegin = loci if loci = 0 and loci+1 = 1
locend = loci if loci = 1 and loci+1 = 0

(
  i = 1, 2⋯⋯ð Þ

ð20Þ

(3) Compute the distances for blocks whose pixel value is
1 by locendðiÞ − locbeginði+1Þ

(4) For each line of the image B, if the distance is between
10 and 70 and the block is larger than 12 (which can
avoid the effect of oil pollution), maintain the line or
set the line to zero. (The distance of two strands in
wire rope is consist and strand wave shown in the
image is also consist. Meanwhile, in order to reduce
the effect of oil pollution on the segmentation defect,
we choose the distance between 10 and 70 and the
block larger than 12.)

(5) Extract the defects of infrared images by finding the
locations from loc that meet (4).

The defect, as shown in Figure 14, can be extracted from
the raw image successfully using the above method. The
defect is marked by a box in Figure 14(a), and Figure 14(b)
is a magnification of defect.

Through the proposed algorithms, UME signal imple-
ments denoising and visualization, and the infrared defects
are extracted. Figure 15 shows the defects from magnetic
and infrared.

3.3. Data Fusion. In this section, the decision level fusion
based on KELM is adopted to implement data fusion. After
image preprocessing, appropriate features are extracted. All
features are mixed together and uniformly normalized; then,
information acquisition, fusion, and decision-making are
performed through KELM neural network. The procedures
of data fusion are shown in Figure 16.

3.3.1. Feature Extraction. The defect images from UME and
infrared have high dimension, which will reduce the speed
of classification. Redundancy between features can also be
disastrous for networks. Thus, it is necessary to employ

Figure 11: Grayscale image of leakage magnetic field.

Figure 12: Grayscale image after transforming.

Figure 13: Image after texture filtered.Circumferential resolution Axial distance (m)
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Figure 10: Schematic of data after interpolation.
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proper features to implement recognition. Tan and Zhang
[33] had proven that average contrast, third-order moment,
conformance, and entropy were more sensitive than other
texture features and odd order invariant moments were more
sensitive than other moments. Thus, in this experiment, a
part of statistical texture features and odd order invariant
moments from the magnetic images and the color moments
and areas from the infrared images are selected.

Texture features involving smoothness, roughness, and
regularity are an important method to describe the images,
which contain average brightness, standard deviation, third
moment, measure (smoothness), conformance, and entropy.
Histogram is core in describing image texture, let z denote a

random variable of gray level and pðziÞ, i = 0, 1, 2,⋯, L − 1 is
the histogram, the n-th moment of the mean is:

μn = 〠
L−1

i=0
zi −mð Þnp zið Þ ð21Þ

m is the average brightness:

m = 〠
L−1

i=0
zip zið Þ ð22Þ

(a) (b)

Figure 14: Defect extraction: (a) the image after binarization and (b) defect extracted by the proposed algorithm.

(a) (b)

(c) (d)

(e) (f)

Figure 15: Image of broken wires (infrared image, magnetic image, and photo of the tested wire part from left to right): (a) one broken wire;
(b) two broken wires; (c) three broken wires; (d) four broken wires; (e) five broken wires; (f) seven broken wires.

Magnetic 
data Preprocessing

Classification of 
features (labels)

Preprocessing Extract 
features

The fusion 
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features

Infrared 
data

Mixture of 
features

The final 
decision

Figure 16: Date fusion flow chart.
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The standard deviation is:

σ =
ffiffiffiffiffiffiffiffiffiffiffi
μ2 zð Þ

p
=

ffiffiffiffiffi
σ2

p
ð23Þ

It reflects the average change in the image [33].
The normalized measure is defined as:

R zð Þ = 1‐ 1
1 + σ2 zð Þ ð24Þ

which is a descriptor of relative smoothness. The third
moment is a measure of histogram skewness, which is
defined as:

μ3 zð Þ = 〠
L−1

i=0
zi −mð Þ3p zið Þ ð25Þ

it reflects how symmetric the histograms are, and its posi-
tive and negative values reflect whether they lean to the left
or right.

Conformance is defined as:

U zð Þ = 〠
L−1

i=0
p2 zið Þ ð26Þ

U has maximum value for all images with the same
grayscale. The average entropy is:

e zð Þ = −〠
L−1

i=0
p zið Þ log2p zið Þ ð27Þ

it is a measure of variability and reflects the degree of ran-
domness in the gray-level values. Its value is a variable and
the value is zero if the image is constant.

Invariant moment groups are based on the statistical
analysis of image gray distribution. They are constant for
translation, scaling, and rotation, which can describe the fea-
tures of defects. Given an image f ðx, yÞ, which size isM ×N ,
the odd order invariant moments are:

M1 = u20 + u02

M3 = u30 − 3u12ð Þ2 + 3u21 + u03ð Þ2

M5 = u30 − 3u12ð Þ u12 + u30ð Þ u30 + u12ð Þ2 − 3 u21 + u03ð Þ2
 �
+ 3u21 − u03ð Þ u21 + u03ð Þ 3 u30 + u12ð Þ2 − u21 + u03ð Þ2
 �

M7 = 3u21 − u03ð Þ u30 + u21ð Þ u30 + u12ð Þ2 − 3 u21 − u03ð Þ2
 �
+ 3u12 − u30ð Þ u21 + u03ð Þ 3 u30 + u12ð Þ2 + u21 + u03ð Þ2
 �

ð28Þ

where upq is central moments:

upq =〠
x

〠
y

x − �xð Þp y − �yð Þq f x, yð Þ ð29Þ

�x and �y are the center of gravity of image: �x =m10/m00,
and �y =m01/m00; mpq is the ðp + qÞ order moment, which is
defined as:

mpq =〠
x

〠
y

xpyq f x, yð Þ ð30Þ

The area of the infrared image is defined as the size of the
image captured by the proposed algorithm based on distance:

A = L ×W ð31Þ

L is the length of image, W is the width of image.
The color moment is the important feature of color

images whose color space is not quantified, and the feature
vector dimension is low [29]. The three color moments per
color component are defined as:

μ = 1
N
〠
N

j=1
pj

σ = 1
N
〠
N

j=1
pj − μ
� �2 !1/2

s = 1
N
〠
N

j=1
pj − μ
� �3 !1/3

ð32Þ

pj is the j-th pixel, N is the number of the pixel. We
extract three color moments of R, G, and B channels as part
of the infrared features.

When completing classification via magnetic features
only, a part of statistical texture features and odd order
invariant moments is adopted. If the magnetic and infra-
red information are combined to classify the broken wires,
we added the color moments and area of infrared images
as features.

3.3.2. Fusion Based on KELM. Infrared data is closer to the
actual damage pattern than magnetic data and provides more
color information; however, different sizes of same broken
wires may lead to low accuracy. Magnetic data with the same
broken wires has similar visual image. Thus, the combination
of the two methods can supply more information for the
damage and improve the classification accuracy.

The decision level fusion is the highest level of fusion, is
directly aimed at specific decision targets, and makes full
use of the initial decision of each image [44]. Neural network
method is employed to fuse information. After pretreating
the data from different sensors and making an initial judg-
ment, the decision of different information should be proc-
essed; then, the final result is obtained by decision level
fusion [44].

The magnetic features and infrared features are put in a
matrix; then, the features are normalized to the range of 1
to -1, which can increase the convergence speed of the net-
work and make preparation for data fusion. The label of the
sample is a preliminary judgment on the target. The samples
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with label are the input of KELM. The hidden layer output
can be calculated through the input weights and biases in for-
mula (14), and the result is a kernel matrix. The output of
KELM can be calculated through formula (16). The weight
is obtained by the kernel function. And the data preliminary
decision is implemented by feature mapping of neural net-
work, data learning, and weight determination. Then, the
fusion is implemented by comparing output of the neural
network and target label. The specific classification results
are described in Section 3.4.

3.3.3. Research on Sample Size and Fusion Result. BP neural
network [28, 29, 32], radial basis function (RBF) algorithm
[27], k-nearest neighbor (KNN) [30], and KELM are applied
to three models. Table 1 shows the results of fusion for each
method under different models. The results in Table 1 are
obtained from the average of 20 random experiments.

In Table 1, the parameters of each network are numbers
of hidden layer node in BP network is 30, the spread in
RBF is 0.01, k in KNN is 6, the penalty coefficient, and ker-
nel parameter in KELM are 100 and 0.01. The number of
samples is 185. According to [25, 26, 28], three models
are set to research the relationship between the number of
training samples and the quality of the result. The number
of training sample set corresponding to model 1 is 92. The
number of training sample set corresponding to model 2 is
122. The number of training sample set corresponding to
model 3 is 139.

Through Table 1, it is demonstrated that as the number
of test samples increases, the quality of the results gets better.
When selecting model 2 to present the speed of classifiers, the
result of fusion speed is as shown in Table 2. In Table 1, the
fusion results of RBF and KELM are better than BP and
KNN. Meanwhile, fusion speed of KELM shown in Table 2
is the best. Thus, through analyzing the result in Tables 1
and 2, it is obvious that KELM is reliable. The research for
the performance of recognition algorithms and classification
results will be presented in the next section.

3.4. Classification Results. In this part, the classification
results are presented using different recognition algorithms.
KELM has advantages of high running speed and good gen-
eralization, we adopted it to implement the recognition of 6
classes of broken wires. In this section, the defects by mag-
netic information, infrared data, and combination of the
magnetic and infrared information are classified, respec-
tively, which proves that the information fusion is more
effective. For KELM, the penalty coefficient C and kernel
parameter σ are adjusted from the set C = f1, 100, 10000g
and σ = f0:001, 0:01, 0:1g. The KELM network is trained by
a set of 139 randomly selected specimens, and the others
are the testing samples.

For UME, the average of two error accuracy of 20 ran-
dom train/test splits with different parameters are reported
in Table 3. Different parameters will lead to different identi-
fication accuracy. When σ = 0:1 and C = 100, the recognition
accuracy rate is the highest; however, the average training
accuracy is only 82.3%. The average training accuracy
reaches 96.7% and the recognition accuracy is 91.2% when

σ = 0:01 and C = 100. Table 3 presents the average of two
error recognition accuracy of 20 randomly generated train/t-
est splits based on the fusion of magnetic and infrared. When
the training accuracy is higher than 90%, the highest accu-
racy is 98.4%.

Figure 17 shows the absolute error distribution of one
group testing result whenσ = 0:01 and C = 100. The training
accuracy of two methods are all higher than 90%. When the
magnetic information only exists in the network, the maxi-
mum error is 5. When the infrared information only exists
in the network, the maximum error is also 5. And the most
errors are concentrated in one and two broken wires. How-
ever, when the fusion features contain in the network, the
maximum error is 2, and the recognition accuracy is higher.
It is obvious that there are fewer errors using the fused fea-
tures than that adopting magnetic features only and infrared
only. Therefore, these testing results demonstrate that the
fusion of magnetic and infrared not only is feasible but also
can improve the recognition accuracy of broken wires.

Several recognition algorithms are applied to the MFL
data: BP neural network [28, 29, 32], RBF algorithm [27],
and KNN algorithm [30]. The data for recognition is the
same as that used in the KELM network. Tables 4–6 show
the recognition results for each method when the limiting
error is 2 wires.

From Tables 3–6, it is obvious that the fused data yielded
much better classification results than magnetic data. In this
paper, neural networks are considered reliable when the
training accuracy is higher than 90%. (Note that KNN has
no training process and the algorithm finds k samples in
the training set closest to the test sample based on a distance
measurement [30, 45].) Therefore, the highest recognition
rates are presented in Table 7. Table 7 presents the best
results of four classifiers using only magnetic data, infrared
data, and fused data. It is obvious that the result for fused
data is higher than magnetic and infrared.

4. Conclusions and Discussions

In this report, the algorithm based on WATV has been pro-
posed to suppress the noise from UME, which can eliminate
the baseline signal and other noises successfully. Then an
image processing algorithm based on distance was pro-
posed, through which the damages in infrared images were

Table 1: Fusion result of several neural network algorithms.

Accuracy BP RBF KNN KELM

Model 1 96.8% 94.6% 96.7% 97.8%

Model 2 96.8% 95.2% 96.8% 98.4%

Model 3 97.8% 97.8% 95.8% 100.0%

Table 2: Running time for four neural network algorithms (s).

Time (s) BP RBF KNN KELM

Magnetic data 79.60 0.17 0.02 0.01

Fused data 4.00 0.15 0.03 0.02
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Table 3: Performance of the designed KELM network under different parameter settings.

Accuracy
σ = 0:001
C = 1

σ = 0:001
C = 100

σ = 0:01
C = 1

σ = 0:01
C = 100

σ = 0:01
C = 10,000

σ = 0:1
C = 1

σ = 0:1
C = 100

σ = 0:1
C = 10,000

Magnetic data 87.9% 87.6% 91.2% 91.2% 90.0% 91.4% 92.2% 87.8%

Infrared data 81.1% 81.3% 82.0% 81.7% 81.7% 82.8% 92.7% 82.3%

Fused data 98.0% 97.9% 98.8% 98.4% 98.4% 98.9% 98.9% 98.0%
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Figure 17: Recognition distribution of error: (a) distribution of error when the magnetic features are only contained; (b) distribution of error
when the infrared features are only contained; (c) distribution of error when the magnetic and infrared are fused.

Table 4: Recognition accuracy for different numbers of hidden layer node in BP network.

Accuracy N = 15 N = 17 N = 20 N = 21 N = 24 N = 25 N = 27 N = 30
Magnetic data 82.7% 82.0% 85.4% 84.4% 84.7% 84.6% 86.0% 85.0%

Infrared data 82.3% 82.7% 84.0% 82.2% 84.8% 82.4% 82.3% 82.3%

Fused data 97.0% 96.6% 97.9% 96.6% 97.1% 97.6% 97.4% 97.7%

Table 5: Performance of the various RBF classification networks (S is spread).

Accuracy S = 0:008 S = 0:009 S = 0:01 S = 0:03 S = 0:05 S = 0:1 S = 0:12 S = 0:15
Magnetic data 87.7% 87.8% 87.8% 91.3% 91.0% 89.6% 88.7% 87.3%

Infrared data 78.2% 78.3% 80.0% 81.3% 82.3% 82.0% 81.4% 81.6%

Fused data 97.2% 97.0% 97.5% 98.9% 98.7% 97.5% 97.3% 96.6%
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successfully parted. Then, the sensitive features to fuse
magnetic and infrared information were selected. The recog-
nition accuracies for the two ways under different experi-
mental settings were reported. A number of experimental
results has clearly demonstrated that the information fusion
based on magnetic and infrared outperform magnetic only
based classification.

The research promotes recognition rate of broken wires
and makes contributions to estimating the residual lifetime
of wire rope. The two information can overcome the loss of
small defects in magnetic signal noise reduction. The system
we utilized have good performance facing the defects at the
exterior of the rope. However, the thermal infrared acquisi-
tion system needs to be perfected to realize the image infor-
mation acquisition of the whole wire rope. Furthermore, we
have not been able to create defects inside of the wire rope.
We will simulate the situation when the defect is inside the
wire rope through analysis in future work. Meanwhile, effi-
cient noise reduction algorithm is also one of the focuses of
future research.
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