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This work presents a novel fuzzy adaptive sliding mode-based feedback linearization controller for trajectory tracking of a flexible
robot manipulator. To reach this goal, after deriving the dynamical equations of the robot, the feedback linearization approach is
utilized to change the nonlinear dynamics to a linear one and find the control law. Then, the sliding mode control strategy is
implemented to design a stabilizer for trajectory tracking of the flexible robot. In order to adaptively tune the parameters of the
designed controller, the gradient descent approach and the chain derivative rule are employed. Moreover, the Taka-
gi-Sugeno-Kang fuzzy system is applied to regulate the controller gains. Finally, a multiobjective particle swarm optimization
algorithm is used to find the optimum fuzzy rules. The conflicting objective functions considered as the integrals of the absolute
values of the state error and the control effort should be minimized, simultaneously. The simulation results illustrate the ef-

fectiveness and capability of the introduced scenario in comparison with other methods.

1. Introduction

In the recent years, the study of the flexible robots has been
widely developed. The main reasons for this attraction could
be mentioned as reaching to exact solutions and accurate
performances. In fact, in order to reach high stiffness for
rigid manipulators, their volume and weight would be in-
creasingly raised, and therefore, the performance speed and
energy consumption might be incremented [1-5].

On the contrary, all actual systems are inherently
nonlinear, and their governing dynamical equations are also
nonlinear. For stabilization of these systems, two approaches
have been commonly proposed. The first method is based on
the linearization about the equilibrium point via Taylor
expansion and named the Jacobian method. The main
limitations of this scheme are neglecting the nonlinearities
and operating around the equilibrium point. The second one
is the feedback linearization method that changes the
nonlinear variables instead of neglecting them [6-10].

After changing the variables via the feedback lineari-
zation method, it would be better to apply a nonlinear
controller to stabilize the system instead of a linear one. In
this work, the sliding mode control, initially introduced by
Utkin in 1997 [11] as a robust, powerful, and nonlinear
approach, is utilized for the considered flexible robot ma-
nipulator. After that, a lot of researchers have applied this
approach in many fields of science and technology such as
Xiong et al. solved the distributed sliding mode control
problem of complex networks with inner coupling under a
quantization mechanism [12]. Yuguang and Fan proposed a
method for dynamic modeling and a modified sliding mode
control for multilink underwater manipulators [13]. An
adaptive funnel sliding mode controller for servo mecha-
nisms with friction compensation was introduced by Wang
et al. [14]. Divandari et al. suggested the fuzzy fast terminal
sliding mode control method for speed control of a switched
reluctance motor [15]. A voltage-based sliding mode control
was presented to control the position of the serial robot
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manipulators by Zaare et al. [16]. Peza-Solis et al. intended
modeling a single flexible-link robot using the finite dif-
ference method and sliding mode control [17]. Two different
sliding mode control approaches for the trajectory control of
a flexible-link robot were investigated in the theory, simu-
lation, and experiments by Hisseine and Lohmann [18].

Moreover, one of the main issues for the controller
design is the appropriate regulation of the gains. The most
common schemes to tune the control parameters are ad-
aptation approaches that have been widely utilized to im-
prove the performance of the controllers. To name but a few,
Miao et al. recommended an adaptive fast nonsingular
terminal sliding mode control scheme for a spacecraft with a
rotating flexible appendage with accurate attitude tracking
[19]. Zhao et al. concerned the vibration control and global
stabilization of a distributed parameter flexible-riser system
in the presence of the nonlinear input saturation and system
uncertainties by an adaptive robust method [20]. An ef-
fective model-free adaptive fault-tolerant attitude-tracking
controller was developed for a flexible spacecraft with
flexible solar arrays actuated using redundant reaction
wheels in the presence of inertia uncertainties, external
disturbances, and uncertain actuator failures by Boulouma
et al. [21]. Gierlak and Szuster presented an approach to
control an object operating with a flexible environment
based on the knowledge of the mathematical structure of the
system model [22]. A systematic adaptive control approach
was investigated by Seyed Danesh et al. to achieve the
prediction of optimal input displacement for a gripper by
means of an extreme learning machine strategy [23].

Besides, fuzzy systems based on the fuzzy logic are the
only way to employ the human knowledge and linguistic
variables for modeling the dynamical systems. For instance,
Zheng et al. suggested an intelligent fuzzy sliding mode
control method that takes the advantages of the sliding mode
control, fuzzy control, and deep learning algorithms and
successfully applied on a robot [24]. A prescribed perfor-
mance tracking control scheme was presented by Shi for a
class of multi-input multioutput nonlinear systems having
immeasurable states and unknown control direction [25].
Honggqian et al. awarded the circle criterion and its extended
version to analyze the global asymptotical stability of the
simplest Takagi-Sugeno fuzzy control system in the fre-
quency domain [26]. Self-tuning based on the evolutionary
algorithms for the first-order Takagi-Sugeno-Kang-type
fuzzy controller was applied for the trajectory tracking of a
quadcopter drone by Yazid et al. [27].

Finally, one of the most common and well-known ways
to determine the appropriate values for the constant pa-
rameters of the controller is implementation of the evolu-
tionary optimization algorithms. These methods, usually
inspired by a natural phenomenon, have been widely de-
veloped to solve different scientific problems in the recent
decades: to name but a few, particle swarm optimization
[28-30], firefly optimization algorithm [31], ant colony
optimization algorithm [32-35], genetic algorithm [36-39],
imperialist competitive algorithm [40-42], team game
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algorithm [43], and teacher-learning-optimization algo-
rithm [44, 45]. On the contrary, most of engineering
problems, especially controller design, have more than one
objective function (criterion) for optimization [46-50]. As a
success approach, multiobjective high exploration particle
swarm optimization is a recently introduced algorithm by
the authors of this work to solve real-world and complicated
multicriterion problems [51]. This algorithm utilizes the
main operators of three schemes, the particle swarm opti-
mization, the bee colony algorithm, and the multi-crossover
genetic algorithm, to enhance the quality of solutions and
guide them to the global best position [52].

The motivation of this research is to design a novel
combination of the fuzzy logic, adaptation laws, and
sliding mode concepts with the feedback linearization
approach and the multiobjective particle swarm optimi-
zation. In fact, at first, the dynamical equations of a
flexible robot are derived and linearized by the feedback
linearization method. Then, the robust and nonlinear
sliding mode scheme is successfully applied to control the
system states from the initial conditions to the desired
values. The controller gains are tuned, regulated, and
optimized by the gradient descent method, the fuzzy
systems, and the PSO algorithm, respectively. The sim-
ulation results are illustrated to prove the ability, effec-
tiveness, and efficiency of the introduced scenario to track
the defined trajectory for the considered manipulator.

The remainder of the paper is arranged as follows.
Section 2 presents the dynamical equations for the desired
robot. Section 3 describes the linearization of the system
using the feedback method. Section 4 describes the corre-
sponding equations to the sliding mode control. Sections 5
and 6, respectively, deal with the adaptation laws and the
fuzzy system designed to improve the controller perfor-
mance. Moreover, the optimization method, design vari-
ables, and objective functions are presented in Section 7.
Section 8 presents simulation results and comparative
studies to confirm the capability of the proposed method.
Finally, Section 9 concludes the paper and describes the
related future works.

2. Dynamical Equations of the Flexible Robot

The regarded single-link robot is shown in Figure 1, and its
dynamical equations obtained by the Lagrange approach are
written in the following relations [53]:

J6, —K (6, - 6,) = v,10, + MgLsin(6,) + K (6, - 6,) = 0,
(1)

where 0, and 0, denote the angular positions of the motor
shaft and the flexible link, respectively, M, L, and I, re-
spectively, present the mass, the length, and the inertia
moment of the link, g is the gravity acceleration, K is the
stiffness of the flexible part of the link, J is the inertia
moment of the motor shaft, and, finally, v shows the torque
applied by the motor. If the state variables are defined as
follows,
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51 = 91>
52 = 91»
(2)
53 = 02;
54 = 92»

then the state-space equations would be represented by the
following relations:

é1 = §2a
éz = _A/ﬁgLSin(fl) - ? (51 - 53)’
. (3)
53 = £4a
K

: 1
=— (& -&)+-w
b7 68+
Hence, the matrix form of the governing equations could
be stated as follows:

€= h, (§) +h, (B, (4)
where
- 52 -
-MgL K
Ig sin (&) T (& -&)
hy(§) = ,
&4
K
| TE-8) -
-0
0
m®=|,|
1
[T

3. Feedback Linearization

As it can be seen from the dynamical equations of the system
represented in the previous section, the order of the system is
n = 4. Therefore, the necessary and sufficient conditions for
feedback linearization of this system could be mentioned as
follows:

rank [hy, ad), (h,),ad; (h,).ad;, (h,)] =4, (6)

and that the set

‘{hz>6*dh1 (hz)’“dil (hz)}’ (7)

be involute. Regarding the indicated conditions, it is easy to
check that

- K b
00 0 —
1]
K
00 — O
1]
[hz,adhl (hy), adf,l (h)s adil (hz)] = ’
1 -K
0- 0 —
J I
1 0 —E 0
L] 2

(8)

which has rank 4 for K>0andI, ] < 0co. Moreover, since
fields {hz, ady, (hz),adi1 (hz)} are constant, they form an
involutive set. To see this, it is sufficient to note that the Lie
bracket of two constant vector fields is zero. Hence, the Lie
bracket of any two members of the set of the vector field in
equation (7) is zero as a linear combination of the regarded
vector fields [6, 7]. It follows that the system illustrated as
equation (4) is feedback-linearizable. Therefore, the new
coordinates are defined as follows based upon n = 4:

z;=1, i=1,...,4, 9)
where
Ly7, =0,
L{hl,hz}Tl = 0,
(10)

Lo 1,71 =0,
Lo 1,71 = 0.

Carrying out the above calculations leads to the fol-
lowing set of equations:

I _y
98,
3
(11)

Iy
ok,
70
o0&, "

It is obvious that variable 7, is only dependent to &;.
Therefore, a simple solution for 7, could be mentioned as
follows:

z, =1, =&, (12)

The other variables are obtained as follows:



2y =Ty = thTl = £2, (13)

Line)-T (6 -&) (9

Z3=T3 = thrz =

f=r=l,n =T cs(E) -7 (o). (19)

The following control input is defined to linearize the
above system:

1
"L (= Ln7s) (19
Therefore,
Ij
V=E(u—a(£))=/3(£)u+“(i)> (17)
a(®) = MiqL sin(fl)<fi + MI‘(]LCOS(fl) + ?)
(18)
K K K MgL
+7 (& —53)<7+7+ Ig cos(fl)).

Based on new coordinates (z,,...,z,) and by applying
the control law (18), the governing equations of the system
could be represented as follows:

Z, =2,
Zy =2,
(19)
Z3 =24
Z, = U

These relations could be mentioned in the matrix form as
follows:

=:é+gu, (20)
where
ro 1 00
00 10
00 01
LO 0 00
(21)
ro
0
Q:
0
L1

By considering equations (13)-(15), the main
state variables of the flexible robot are obtained as
follows:
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Motor Flexible link

FIGURe 1: Single-link flexible-joint robot and the related
parameters.

51 =Z

§ =2,

(22)

I Mgl .
&=z +§<z3 +Tgsm(z1)>,

I MgL
=2, +E<Z4 +ng2 cos(zl)).

4, Sliding Mode Control

Sliding control is a powerful approach for stabilization of
nonlinear systems in the presence of modeling uncertainties
and parametric disturbances [54, 55]. This scheme is based
on the idea that controlling a first-order system is much
easier than a general n'-order one. Usually, the sliding mode
scalar function v is defined as follows:

1

) Se(n— 2)

d n—1 n-—
1//:<—+6>"le: ey
dt 0 1
n—1
+...+< >8”_1e,
n—1
(23)

where e is the tracking error vector, § is a positive parameter,

and binomial coefficient n) is defined asn!/k!(n—k)!.

k

Equation y =0 defines a time-dependent surface in the
space R", and e(t) =0 is its unique solution. Hence, the
problem of tracking control will be equivalent to putting
zero in the scalar function y. Based on the Lyapunov theory,
control effort v must be selected so that the following in-
equality is satisfied:

1d ,
zarl = 1yl (24)
where 7 is a positive constant.

On the contrary, the sliding mode controller commonly
includes two parts: the equivalent term (u,,) and the
switching control law (o sign (v)). The switching control law
tries to guide the system states toward the sliding surface,
and the equivalent control law, which is gained from solving
the equation i = 0, guarantees that the system states stay on
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the sliding surface and converge to zero along the sliding
surface.

U=ty + o sign (), (25)

where parameter o is selected so that Lyapunov condition
(24) is satisfied. For a more uniform performance, saturation
function sat (y/9), defined as follows, is replaced by func-
tion sgn (y) in equation (24):

eV

-1 if =< -1
%)
Sat<1)=< Yoifr<¥c (26)
%) %) %)
1 £> +1

where & is a positive parameter to illustrate the width of the
boundary layer around the sliding surface. Considering the
control problem of the flexible robot manipulator, the de-
sired trajectory that must be tracked is defined as
z4(t) =sin(t), and the error signal will be e =z, - z,.
Hence, the sliding surface is defined as follows:

d
v = (E + 5) ® 4 38e@ 13582 + 8. (27)
Therefore,
¢:e(4)+38e(3)+3526(2)+53e(1) -z ONNEY WE)
+38%? + 8%V =a +bu
(28)

Finally, by applying the sliding mode control theory, the
control law can be stated as follows:
!

u= —% + osat<£),

16
al = —zd +30e® + 382 + 8%V, (29)
br=1.
5. Adaptation Laws

The adaptation laws help to find the controller gains as
dynamic and time varying so as the tracking procedure
would be modified [56-60]. Furthermore, the adaptation
laws used in this paper apply the robust sliding mode
concepts to produce the time-varying functions for the
control gains (o, §, and as follows:

Q)

+

Ql
1]
Q

>

ol
i
(o)
+
)

(30)

[N}
I
Q
+
@)

where @, 8, and & are the tuned forms of control gains o, J,
and @. Moreover, 3, 6, and & are the adaptive parameters
obtained via the gradient descent method as follows:

7= -yye,
8 = —y,ve, (31)
@ = —ysye,

where y,, y,, and y; are named as the learning rate pa-
rameters that would be determined by the fuzzy systems
introduced in the next section.

6. Fuzzy Systems

The fuzzy logic has been widely utilized to employ the
human knowledge for system modeling. There are three
types of fuzzy systems that are commonly used in the lit-
erature: (1) pure fuzzy systems, (2) Takagi-Sugeno-Kang
(TSK) fuzzy systems, and (3) fuzzy systems with the fuzzifier
and defuzzifier.

In this research, the Takagi-Sugeno-Kang (TSK) fuzzy
system [61-65] is utilized for the regulation of learning rate
parameters y;, ¥,, and y; which could be constructed from
the following rules: if e is A’, then y! = Bl e, where Al (I =
1,2, 3) are the fuzzy sets depicted in Figure 2 B', are constant
parameters for the /th rule and jth learning rate which would
be found by the optimization process. Given an input
e €U CR, output y; € V CR of the TSK fuzzy system is
computed as the welghted average of ]5 as follows:

B Y1y jMAl

V=T

=123, (32)
Y11 bat !

where, as it can be evident from the above equations, the
TSK fuzzy system is a mapping from U c R to V c R.

7. Multiobjective Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm was ini-
tially proposed by Eberhart and Kennedy [66] in 1995 and
inspired by the social behavior of birds. The PSO regards the
search space of the problem as a flight space and considered
each bird as a candidate solution for the problem. The basic
idea of the algorithm is to find the optimal solution through
cooperation and information sharing among the particles in
the swarm.

In the PSO, each particle has its own position and ve-
locity vectors, where the position of each particle is a po-
tential solutlon The personal historical best position of a
partlcle ( pbest) and the global best position of the swarm
(G beet) are employed to guide the particle’s flight and update
its position as follows:

(it +1) = ;5 (it) + 0, Py ( Poes, (i) = i (it))
+ aﬁz(?best (it) - i (it)), (33)
(zt) +

Diit+1) = T (it + 1),
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FIGURE 2: Input membership functions for the designed TSK fuzzy
system.

where P, (t) and 5, () are the position and velocity vectors
of the ith particle at the itth iteration, respectively. p’, and
P, symbolize the random vectors between [0,1]. Further-
more, «;,d,, and a; denote the inertia parameter, cognitive
coefficient, and social coeflicient, respectively [66].

On the contrary, a multiobjective optimization
problem has multiple conflicting objectives which need to
be optimized, simultaneously. Unlike a single-objective
optimization problem, the solution of the multiobjective
optimization problem is not unique, and a set of the
optimum solutions called Pareto front or nondominated
solutions would be obtained and stored in external
memory (archive) [51]. In most of multiobjective opti-
mization methods, the archive contains a specified
number of the optimum solutions having a good spread.
However, if all nondominated solutions are maintained in
the archive, then its size grows very quickly. In the
regarded multiobjective algorithm, a fuzzy elimination
technique is applied to prune the archive. In this ap-
proach, all particles in the archive have a neighborhood
radius which is equal to r; (equation (34)), and if their
Euclidean distances are fewer than rp, then one of them
would be randomly removed.

it %

- " 34
"F T maxit . PCV (34)

where it is the current iteration, max it is the maximum
number of iterations, PCV represents a positive constant
value, and FV denotes the fuzzy variable introduced in
[51].

In order to assign a leader for the swarm in each iter-
ation, a neighborhood method is suggested in the considered
multiobjective particle swarm optimization algorithm. In
this scheme, a neighborhood radius is defined for the archive
members. If the Euclidean distance between two non-
dominated solutions is smaller than this radius, then they
would be regarded as the neighbor. Finally, the non-
dominated solution having the fewer number of neighbors is
assigned as the leader of the swarm [51]. The flowchart
related to this procedure is depicted in Figure 3.

In this research, the constant control gains (o, §, and are
regarded as the design variables for the optimization problem.
Besides, the following weighted integrals of the absolute values
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FiGure 3: Flowchart of the considered multiobjective optimization
algorithm.

of the state error and the control effort are remarked as two
objective functions that should be simultaneously minimized:

first objective function (error) = w, J le| dt,

second objective function (control effort) = w, J |u| dt,
(35)

where w, and w, are, respectively, set at 1000 and 0.001 to
close the changing ranges of the objective functions.

8. Results and Discussion

In this section, the proposed controller is employed for the
regarded flexible manipulator having the physical parame-
ters mentioned in Table 1 to track the defined trajectory. The
initial conditions are selected as Z(0) = [(7/6),0,0,0], and
the desired trajectory is remarked as Z, (t) = sin(¢).
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TaBLE 1: Physical specifications of the flexible robot manipulator.
Parameters Values Dimensions
M 4.43 kg
g 9.81 m/s?
I 1.625 kg-m?
] 1.625 kg-m?
L 0.5 m
K 0.5868 kg/s?
0.8998 :
*
0.89975 | -
0.8997 + -
Bl
Z 0.89965 *o ~Selected point
£ 0.8996 |
[5]
E
£ 0.89955 | :
o *
0.8995 + - -
* .
0.89945 | - ﬂ E
* %
08994 b g
0.155 0.16 0.165 0.17 0.175 0.18

Error (rad)

FIGURE 4: Pareto front obtained by the multiobjective algorithm related to the proposed fuzzy adaptive sliding mode-based feedback

linearization controller.

TaBLE 2: Optimum values of the parameters in the adaptation laws.

Parameters Values

) 1.976908
o 6.115976
? 0.434124
46(0) 0.525653
a(0) 6.314777
2(0) 4.769374

TaBLE 3: Optimum values of the constant parameters related to the
fuzzy rule base.

Parameters Values

B! 5.090317
B: -3.92817
B; 0.979715
B} 0.871312
BS —6.19309
B -0.50599
B} -5.12975
B2 6.215155
B; —3.09964

In the multiobjective optimization process, the
function evaluation of the objective functions is set at
3000. The Pareto front found using the proposed mul-
tiobjective particle swarm optimization algorithm is
depicted in Figure 4. As it was mentioned before this, all
optimum points in this diagram are nondominated to
each other, and a designer could choose one of them
based on the design criterion. The optimum point se-
lected in this work is shown in the Pareto front of
Figure 4, and the related design variables are demon-
strated in Tables 2 and 3 for the adaptation laws and fuzzy
rules, respectively. Moreover, changing of the fuzzy
parameters (y;, y,, and y3), the tuned parameters (3, J,
and @), and the adaptive parameters (d, §, and D) is
displayed in Figures 5-7, respectively. As it can be ob-
served from these figures, all sets of the variables con-
verge to the constant values after the transient time about
2s. Figures 8-11 depict the time histories of the joint
angle, angular velocity, control effort, and phase plane
diagrams, respectively. In these figures, the results ob-
tained from the optimized fuzzy adaptive sliding mode-
based feedback linearization controller are compared
with those of the feedback linearization-based propor-
tional derivative (FLPD) method introduced in [53]. As it
could be evident from these diagrams, the approach
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Ficure 5: Changing of the fuzzy parameters (y;, y,, and y;) over time.
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FI1GURrE 6: Changing of the tuned parameters (3, 3, and J) over time.

8.5 2.5 0.5
8 2.4 0
‘ 23 B R
75 T ~0.5
G § 22 é
7 -1
2.1
6.5 I 5 S -1.5
6 1.9 -2
0 5 10 0 5 10 0 5 10
Time (sec) Time (sec) Time (sec)

FIGURE 7: Changing of the adaptive parameters (o, 3, and @) over time.

proposed by this work forces the robot to track the Generally, the suggested strategy in this research work is
desired trajectory in about 2s, while the feedback line-  able to converge the joint angles and angular velocities to the
arization-based proportional derivative achieves it in  desired trajectories with less errors in the shorter settling
about 5s. time in comparison with the FLPD controller. However, the
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0, (rad)

Time (sec)

--- Proposed work
‘‘‘‘‘‘ FLPD controller
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FIGURE 8: Trajectory tracking of the joint angle for the flexible link.

1.5 T T T T

91 (rad/s)

6
Time (sec)

--- Proposed work
‘‘‘‘‘‘ FLPD controller
—— Desired trajectory

FIGURE 9: Trajectory tracking of the joint angular velocity for the
flexible link.

tuzzy adaptive sliding mode-based feedback linearization
approach utilizes a bit more control effort compared with the
FLPD scheme.

9. Conclusions and Future Work

A novel control method as a combination of the feedback
linearization scheme, sliding mode control, adaptation laws,
and fuzzy systems has been introduced in this work. At first,
the feedback linearization method has been successfully
utilized to change the nonlinear states of the system to their
linear forms. Next, a robust sliding mode control approach

1000 T T T T
800 -
600 f -
400 |- -

200 -

u (N.m)

-200 } -
-400 |
-600 |- -

-800 -

-1000
0
Time (sec)

--- Proposed work
‘‘‘‘‘‘ FLPD controller

F1Gure 10: Control effort diagram for the flexible link.

6 (rad/s)

6 (rad)

‘‘‘‘‘‘ FLPD controller
—— Desired trajectory
--- Proposed work

FIGURE 11: Phase plane diagram for the flexible link.

has been implemented to find the related control effort to
track the desired trajectory designed for a robot manipulator
with the flexible link. In order to timely adapt the control
parameters, a combination of the gradient descent meth-
odology and the sliding mode surface has been utilized. A
Takagi-Sugeno-Kang fuzzy system has been employed to
regulate the constant parameters of the control system. This
problem has been considered as a multiobjective optimi-
zation problem and solved using the high exploration swarm
optimization. The obtained Pareto front has been illustrated,
and one of the depicted nondominated solutions has been
selected to simulate the control performance of the regarded
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flexible-link robot. The efficiency and ability of the intro-
duced scenario have been easily shown via the diagrams of
the state variables compared with other convenient methods.

The future works related to this research could be
mentioned as follows:

(1) The suggested scenario is used to control robots with
more degrees of freedom

(2) The integral sliding mode surfaces are utilized to
design the controller and adaptation laws

(3) Parametric and structural uncertainties are added to
the dynamical system to challenge the performance
of the proposed stabilizer

(4) Neural networks and moving least squares are ap-
plied to timely tune the control gains against the
time-varying uncertainties

(5) The introduced optimum fuzzy adaptive robust-
based feedback linearization controller is employed
to solve actual problems in the real-world application
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