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Vanilla policy gradient methods suffer from high variance, leading to unstable policies during training, where the policy’s
performance fluctuates drastically between iterations. To address this issue, we analyze the policy optimization process of the
navigation method based on deep reinforcement learning (DRL) that uses asynchronous gradient descent for optimization. A
variant navigation (asynchronous proximal policy optimization navigation, appoNav) is presented that can guarantee the policy
monotonic improvement during the process of policy optimization. Our experiments are tested in DeepMind Lab, and the
experimental results show that the artificial agents with appoNav perform better than the compared algorithm.

1. Introduction

Navigation in an unstructured environment is one of themost
important abilities for mobile robotics and artificial agents
[1–3]. Traditional methods mainly divide navigation into
several parts [4]: simultaneous localization and mapping
(SLAM) [5–7], path planning [8], and semantic segmentation
[9, 10]. )e methods mentioned are not an end-to-end al-
gorithmwhere each part is a challenging research subject, and
the fusion of each part often leads to large computational
errors. To reduce the fusion error, we focus on the end-to-end
navigation based on deep reinforcement learning where
navigational abilities could emerge as the byproduct of an
artificial agent learning policy with reward maximization.

With the fast development of deep learning [11–14], a
variety of DRL architectures have been proposed [2]. Mnih
et al. [15] presented the advances in training deep neural
networks to develop the deep Q-network (DQN), which can
learn successful policies directly from high-dimensional
image inputs using end-to-end reinforcement learning. On-
policy reinforcement learning methods such as actor-critic
(AC) [16, 17] were proposed such that the actor is the policy,
and the critic is the baseline. Minh et al. [18] presented

asynchronous variants of AC algorithms, termed as asyn-
chronous advantage actor-critic (A3C), and showed that
parallel actor-learners have a stabilizing effect on training
artificial agents. Researchers can construct navigation agents
based on these DRL algorithms. However, vanilla policy
gradient methods have poor data efficiency [19], which leads
to navigation agents suffering from high variance and un-
stable policies.

In this work, we take A3C as an example to show how to
guarantee the policy monotonic improvement. )e training
environment is DeepMind Lab [20], and it is a first-person
3D virtual environment designed for research and devel-
opment of general artificial intelligence. DeepMind Lab can
be used to study how autonomous artificial agents learn
complex tasks in large, partially observed, and visually di-
verse worlds. In addition, the worlds are rendered with rich
science fiction-style visuals. Actions are to look around and
move in the 3D virtual world, and example tasks include
navigation in different mazes. Mirowski et al. [21] proposed
a DRL navigation method based on A3C [18], augmented
with auxiliary learning targets, to train artificial agents to
navigate in DeepMind Lab. For ease of expression, we call
the DRL navigation using A3C as a3cNav.
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In this paper, the issues on policy optimization for
navigation based on the vanilla policy gradient are analyzed;
this type of navigation cannot control the change of expected
advantage when an artificial agent learns to navigate in a
maze. Based on the navigation techniques presented in [21],
we show how to reduce training variances and get higher
reward when an artificial agent interacts with an environ-
ment. Inspired by [19, 22], we adjust the policy update
process of the navigation in [21] to guarantee the monotonic
improvement of the navigation policy. Experimental results
show that an artificial agent via appoNav learns better
navigation policy in DeepMind Lab and suffers from lower
standard deviation than a3cNav.

2. Related Work

Traditional navigation, which is model-based, includes si-
multaneous localization and mapping (SLAM) [5, 7, 23],
path planning [8, 24], and semantic segmentation [9]. Each
part of them is a challenge research area, and the fusion of
them often leads to large computation error. Moreover,
model-based navigation needs to model the environments
effectively for some dynamic and complex scenes, which
severely affect navigation performance.

With recent advances in DRL, many navigation methods
based on DRL have been proposed [2]. DRL navigation,
which is end to end, avoids the computation error caused by
the fusion of traditional navigation. Mirowski et al. [21]
addressed navigation via auxiliary depth prediction and
loop-closure classification tasks. Jaderberg et al. [25] also
used auxiliary tasks for navigation and incorporated A3C
with control tasks and prediction tasks including pixel
control and reward prediction. By using features extracted
from the world model as inputs to an agent, Ha and
Schmidhuber [26] used DRL to construct a world model and
used the model in a car navigation task. Bruce et al. [27]
leveraged an interactive world model based on DRL built
from a single traversal of the environment and utilized a
pretrained visual feature encoder to demonstrate successful
zero-shot transfer under real-world environmental varia-
tions without fine-tuning. Banino et al. [28] proposed a
vector-based navigation method that fuses DRL with grid-
like representations in the artificial agent. When these DRL
navigation agents interact with environments, the state se-
quences of each interaction change a lot, leading to large
fluctuations in rewards. )erefore, these DRL navigation
methods suffer from high variance and have unstable pol-
icies during training.

3. Background

3.1. Reinforcement Learning. We consider the standard re-
inforcement learning setting where an artificial agent in-
teracts with an environment over a number of discrete time
steps. At each time step t, the agent receives a state st from
the environment and outputs an action at according to its
learned policy π. In return, the environment gives the agent a
next sate st+1 and a reward rt. )e goal of reinforcement
learning is to maximize the accumulated reward

Rt � 􏽐
∞
k�0 ckrt+k, which is a discounted sum of rewards. )e

action-value function Qπ � E[Rt | st � s, a] is the expected
return following action a from state s under policy π. )e
value function Vπ � E[Rt | st � s] is the expected return
from state s.

In policy-based methods, let π(a | s; θ) be a policy with
parameters θ, which is updated by performing gradient
ascent onE[Rt]. Policy gradient algorithms adjust the policy
by updating parameters θ in the direction
∇θlogπ(at | st; θ)Rt that is an unbiased estimate of ∇θE[Rt].
To reduce the variance of this estimate, Williams [29]
subtracted a learned function called baseline bt(st) for the
return, so the improved gradient becomes
∇θlogπ(at | st; θ)(Rt − bt(st)). )ere exists an equation
bt(st) ≈ Vπ(s), and Rt − bt(st) can be seen as an estimate of
the advantage of action at under state st.)e numerical value
of Qπ(s, a) equals the value of Rt; hence, the advantage
function can be rewritten as A(at, st) � Q(at, st) − V(st).
)is method is called actor-critic (AC) architecture where
the actor is the policy π and the critic is the baseline bt

[16, 17]. Minh et al. [18] presented asynchronous variants of
AC algorithms, termed as asynchronous advantage actor-
critic (A3C), and showed that parallel actor-learners have a
stabilizing effect on training artificial agents.

When a DRL agent interacts with its environment, the
state sequences of each interaction change a lot, leading to
fluctuations in rewards. )erefore, DRL algorithms (such as
DQN and A3C) have unstable fluctuations during training.
Researchers wonder whether they can find a method to
reduce such fluctuations while maintaining a steady im-
provement in the policy. Schulman et al. [22] proposed trust
region policy optimization (TRPO) to make the monotonic
improvement for the policy. Furthermore, Schulman et al.
[19] proposed proximal policy optimization (PPO) to
simplify the calculation of TRPO. In addition, Heess et al.
[30] proposed a distributed implementation of PPO, called
distributed PPO. Besides the similar process of the gradient
update with A3C, distributed PPO includes various tricks,
such as normalizations (observation normalization, reward
reshape normalization, and per-batch normalization of the
advantages), sharing of algorithm parameters across local
workers, and additional trust region constraint. )ese tricks
result in that the computation of distributed PPO is more
complex than appoNav.

3.2. NavA3C+D1D2. In this work, we use the
NavA3C+D1D2 architecture [21] as shown in Figure 1,
which includes 2 CNNs and 2 LSTMs. NavA3C+D1D2 has 4
inputs: the current RGB image xt, previous reward rt−1,
previous action at−1, and the current velocity vt. )e 2 CNNs
act as the encoder for RGB image xt, and the first LSTM
makes associations between reward rt−1 and visual obser-
vations xt that are provided as context to the second LSTM
from which the policy π(at | st; θ) and the value V(st; θv) are
computed. Artificial agents based on this architecture try to
maximize the cumulative reward Rt during their interaction
with the maze and minimize the auxiliary depth losses
LDepth1 and LDepth2. Finally, the agent can learn how to
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navigate in DeepMind Lab. For ease of expression, we
rename NavA3C+D1D2 as a3cNav.

a3cNav is based on the A3C framework into which
unsupervised auxiliary tasks are incorporated. )erefore, its
loss function includes the loss of A3C LA3C and the loss of
auxiliary tasks. a3cNav can be optimized as follows:

La3cNav(θ) � LA3C + λDepth1LDepth1 + λDepth2LDepth2, (1)

where λDepth1 and λDepth2 are weighting terms on the indi-
vidual loss components.

)e global parameters θ of a3cNav are updated in
multithread environments, and θ are copied to the local
worker parameters θ′. )e local worker of a3cNav interacts
with the maze, and the policy gradients wrt θ′ and the value
gradients wrt θv

′ are computed from the policy loss and value
loss. )e gradient for the parameter update is proportional
to the product of advantage function At. Equation (2) shows
the calculation of gradients:

dθ⟵ dθ + ∇θ′ logπ at

􏼌􏼌􏼌􏼌 st; θ′􏼐 􏼑 R − V st; θv
′( 􏼁( 􏼁

+ β∇θ′H π st; θ′( 􏼁( 􏼁

dθv⟵ dθv +
z R − V st; θv

′( 􏼁( 􏼁
2

zθv
′

, (2)

where H(π(st; θ′)) is the entropy of the policy π, which
improves exploration by discouraging premature conver-
gence to suboptimal deterministic policies. )en, asyn-
chronous update of θ using dθ and of θv using dθv are
applied into the global network for parameter update.

4. Approach

4.1. Monotonic Policy Improvement. )e artificial agent in-
teracts randomly with the environment which in turn gives
high-dimensional images to the agent. Hence, a3cNav has
poor data efficiency and robustness. In addition, complex
navigation environment that sends changing images to the
artificial agent aggravates the variance and instability of
training. In detail, each local worker of a3cNav interacts with
the maze, and the gradients with big variance are applied to

the global network of a3cNav, leading to the unstable
training of the agent. In this section, we improve the pa-
rameter updates of a3cNav to guarantee its policy mono-
tonic improvement.

In [22], a policy can be rewritten as

η(􏽥π) � η(π) + 􏽘
s

ρ􏽥π(s) 􏽘
a

􏽥π(a | s)Aπ(s, a), (3)

where π denotes a stochastic policy and 􏽥π is another policy.
η(π) and η(􏽥π) are the expected discounted cost for π and 􏽥π,
respectively. Here, ρ􏽥π(s) is the distribution of the state s

according to 􏽥π, and Aπ is the advantage function following π.
Equation (3) implies that if we want to reduce η or leave it as

constant, we should keep the expected advantage 􏽐a􏽥π(a | s)

Aπ(s, a)≤ 0 at every state s when a policy update 􏽥π⟶ π.)is
demonstrates that if we want to reduce the training variance of
a3cNav and keep its policy monotonic improvement, we must
guarantee 􏽐a􏽥π(a | s)Aπ(s, a)≤ 0. However, a3cNav cannot
control the change of the expected advantage when the artificial
agent learns to navigate in the maze.

To make the policy monotonic improvement, Schulman
et al. [22] proposed a trust region constraint, as shown in
equation (4), over policy update to make 􏽐a􏽥π(a | s)Aπ
(s, a)≤ 0:

max
θ

Et

πθ at|st( 􏼁

πθold at|st( 􏼁
􏽢At􏼢 􏼣,

Et KL πθold ·|st( 􏼁, πθ ·|st( 􏼁􏽨 􏽩􏽨 􏽩≤ δ.

(4)

Equation (4) is relatively complex and is not compatible with
the architectures which include parameter sharing between the
policy function and the value function, or with auxiliary tasks
[19].)e policy and the value network of a3cNav both share the
same network, and a3cNav has the auxiliary depth prediction.
)erefore, TRPO cannot be used into a3cNav.

Et min
πθ at

􏼌􏼌􏼌􏼌 st􏼐 􏼑

πθold at

􏼌􏼌􏼌􏼌 st􏼐 􏼑
􏽢At, clip

πθ at

􏼌􏼌􏼌􏼌 st􏼐 􏼑

πθold at

􏼌􏼌􏼌􏼌 st􏼐 􏼑
, 1 − ε, 1 + ε⎛⎝ ⎞⎠􏽢At

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(5)
PPO [19] improves TRPO with only first-order opti-

mization and replaces the constraint with the clipped

CNN CNN LSTM LSTM

xt D1

D2

rt–1

{vt, at–1}

V

π

Figure 1: a3cNav architecture. In the architecture, image xt is the input of a3cNav, and following the full connection layer is a two-layer
CNN which outputs depthD1 as well as a two-layer stacked LSTM which outputs depthD2, policy π, and value V. In addition, auxiliary task
used in this architecture in which the first LSTM only receives the reward and the velocity and previously selected action are fed into the
second LSTM.
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surrogate objective as equation (5). Hence, PPO is a first-
order optimization method and is compatible with pa-
rameter sharing and auxiliary tasks.

4.2. appoNav. To make the monotonic improvement for the
navigation policy, we seek to incorporate the features of PPO
into the local worker of a3cNav. In each thread, the im-
proved local policy tends to improvemonotonically. And the
new local gradients are applied to the global network,
leading to the whole network with monotonic improvement.
As the navigation method is based on the monotonic policy
improvement of PPO, we call this navigation as appoNav.

Assume that the global network shared parameter vector
θ and local worker parameter vector θ′. Equation (6) is the
policy optimization loss of A3C [18]:

LA3C � logπ at

􏼌􏼌􏼌􏼌 st; θ􏼐 􏼑 + βH π st; θ( 􏼁( 􏼁. (6)

When added to the local worker of a3cNav, the loss
function becomes the form of equation (5) with entropy of
the policy, and it is rewritten for the local workers as

Et min
πθ′ at ∣ st( 􏼁

πθold′ at ∣ st( 􏼁
􏽢At, clip

πθ′ at ∣ st( 􏼁

πθold′ at ∣ st( 􏼁
, 1 − ε, 1 + ε⎛⎝ ⎞⎠􏽢At

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

+ βH π st; θ′( 􏼁( 􏼁.

(7)

Equation (7) is the policy update of the local worker of
a3cNav, that is, appoNav. Each local worker has a low
variance than before and applies the new gradient to the
global network for the policy update. Finally, the whole

policy generated by appoNav has lower variance and more
stable training performance.

5. Experiments

5.1. Experimental Settings. We implement our algorithm in
TensorFlow and train it on Nvidia GeForce GTX Titan X
GPU and Intel Xeon E5-2687W v2@3.4GHz∗17 CPU.

)e proposed method is evaluated in DeepMind Lab
environments [20]. )e action space in DeepMind Lab has 8
actions: the agent can rotate in small increments, accelerate
forward or backward or sideways, or induce rotational ac-
celeration while moving. Reward encourages the agent to
learn navigation; a reward is achieved when the artificial
agent reaches a goal from a random start location and
orientation. If the agent reaches the goal, a new episode
starts, and the same interaction restarts. Fruit represents the
reward in DeepMind Lab: apples are worth 1 point,
strawberries 2 points, and goals 10 points.

appoNav is evaluated by training the agent in stair-
way_to_melon and nav_maze_static_01 of DeepMind Lab.
For ease of expression, we name stairway_to_melon as the
stairway maze and nav_maze_static_01 as the static01 maze.
In each case, blue curve stands for a3cNav and orange for
appoNav. For experimental analysis, we run 2500 episodes
for the stairway maze and 7800 episodes for the maze01
maze.

5.2. Experimental Results and Analysis. Table 1 shows the
images that the artificial agent sees in the stairway maze; we
stochastically select 3 episodes from time 600 to 2500 with

Table 1: )e states that the artificial agent sees in stairway_to_melon.

Time 600 700 800 900 1000 1100 1200 1300 1400 1500
Episode

)e first episode

)e second episode

)e third episode

Time 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
Episode

)e first episode

)e second episode

)e third episode
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interval 100, which demonstrate three different states at the
same time with different episodes. )e artificial agents can
receive different images and be not stuck in one place, which
demonstrates the agents learning to navigation in stairway
maze.

Figure 2 shows the reward achieved by the artificial agent
in stairway_to_melon; it shows that appoNav gets higher
reward than a3cNav. In addition, we calculate the standard
deviation (std) of the reward curve. From Table 2, the reward

std of appoNav and a3cNav is 27.24 and 30.16, respectively;
this shows that the learning process of the former is more
stable than the latter one.

)e reason why our method converges faster is that the
local worker of appoNav can generate a more stable policy
with the monotonic improvement when it interacts with the
stairway. During the training iterations, improved accu-
mulated gradients are applied for the parameter update of
appoNav, which make appoNav more stable than a3cNav.

200

150

100

50

0

0 500 1000 1500 2000 2500

a3cNav
appoNav

Figure 2: Reward achieved by the artificial agent in stairway_to_melon.

Table 2: Standard deviation of the reward in stairway_to_melon.

Algorithm Standard deviation
a3cNav 30.16
appoNav 27.24

Table 3: )e states that the artificial agent sees in stairway_to_melon.
Time 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
Episode

)e first episode

)e second episode

)e third episode

Time 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800
Episode

)e first episode

)e second episode

)e third episode
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For further verification of appoNav’s effectiveness, we
test our agent in the maze01 maze which is more complex
than the stairway maze. Because the agent needs more time
to converge, we stochastically select 3 episodes from time
1000 to 4800 with interval 200, as shown in Table 3.

Figure 3 shows the reward achieved by the artificial agent
in nav_maze_static_01; it demonstrates that appoNav per-
forms better than a3cNav, and it has higher reward. Table 4
shows that the std of a3cNav is 28.99, and the std of appoA3C
is 24.79.)e policy learnt by appoNav is more stable than the
policy learnt by a3cNav.

Owing to that appoNav uses better gradient ascents to
update each policy, the artificial agent with appoNav learns
stronger navigation ability as each local worker produces a
more stable policy in the complex maze.

6. Conclusion

Visual navigation-based vanilla policy gradient methods suffer
from high variance and instability during training, where the
navigation performance fluctuates greatly between iterations.
We analyze the reason why visual navigation suffers such an
issue and improve its policy update to guarantee the policy
monotonic improvement. )e improved method appoNav has
lower standard deviation and gets higher reward. In short,
appoNav can learn better navigation policy.
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