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�e stiffness and elastic deformation of a 4-DoF parallel manipulator with three asymmetrical legs are studied systematically for 
supporting helicopter rotor. First, a 4-DoF 2SPS + RRPR type parallel manipulator with two linear SPS type legs and one RRPR type 
composite leg is constructed and its constraint characteristics are analyzed. Second, the formulas for solving the elastic deformation 
and the stiffness matrix of the above mentioned three asymmetrical legs are derived. �ird, the formulas for solving the total stiffness 
matrix and the elastic deformation of this manipulator are derived and analyzed. Finally, its finite element model is constructed 
and its elastic deformations are solved using both the derived theoretical formulas and the finite element model. �e theoretical 
solutions of the elastic deformations are verified by that of the finite element model.

1. Introduction

Various less mobility (less than 6-DoF) parallel manipulators 
(PMs) have been applied widely due to their merits, such as 
good performances in accuracy, rigidity, ability to manipulate 
large loads, and they are simple in structure and easy to control 
[1, 2]. Among them, some less mobility PMs with composite 
active constrained legs attract more attention because they 
have larger workspace, better flexibility and fewer legs for 
avoiding interferences easily; the unnecessary tiny self-move-
ment can be eliminated by the composite active constrained 
legs; more actuators can be installed onto the base for reducing 
vibration [1, 2]. �erefore, this type of PMs have potential 
applications for supporting helicopter rotor, airplane opera-
tion simulator, parallel machine tools, micro manipulators, 
sensors, surgical manipulators, tunnel borers, barbettes of war 
ship, and satellite surveillance platforms. Stiffness is one of the 
important performances of PMs, because higher stiffness 
allows larger variable load and higher speeds with higher pre-
cision of the end-effector [3]. �erefore, it is significant to 
analyze the stiffness and to evaluate elastic deformation of this 
type of PMs in the early design stage. Let (R, P, U, S) be (rev-
olute, prismatic, universal, spherical) joint, respectively. In this 

aspect, Gosselin and Zhang developed virtual joint method 
allowed taking into account the links flexibility, which were 
presented as rigid beams supplemented by linear and torsional 
springs [3]. Zhang and Lang Sherman [4] established a stiff-
ness modeling for PMs with one passive leg. Dong et al. [5] 
analyzed the stiffness modeling and stiffness distributions of 
a 5-DOF hybrid robot by considering the component compli-
ances associated with the elements of both the PM and the 
wrist. Li and Xu [6] derived stiffness matrix of a 3-PUU PM 
based on an overall Jacobian using the screw theory by con-
sidering the effect of actuations and constraints. Yang et al. [7] 
studied elastostatic stiffness modeling of over constrained 
PMs. Zhou et al. [8] derived the stiffness matrix of a redun-
dantly actuated parallel mechanism based on the overall 
Jacobian. Based on strain energy and Castigliano’s theorem, 
Enferadi and Tootoonchi [9] obtained mathematical model of 
the manipulator stiffness matrix. Pashkevich et al. [10] pro-
posed a methodology to enhance the stiffness of serial and 
parallel manipulators with passive joints, the manipulator 
elements are presented as pseudo-rigid bodies separated by 
multidimensional virtual springs and perfect passive joints; 
they [11] also presented a stiffness modeling method for over-
constrained PMs with flexible links and compliant actuating 
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joints and the method of FEA-based link stiffness evaluation. 
Zhao et al. [12] deduced continuous stiffness matrix of a fold-
able PM for ship-based and the translation and rotational 
stiffness along any direction. Pham and Chen [13] established 
the stiffness model based on the way the flexure members are 
connected together in serial or parallel combinations. Chen 
et al. [14] derived a stiffness matrix of 3CPS PM based on the 
principle of virtual work considering the compliances subject 
to both actuators and legs. Shan et al. [15] established a overall 
stiffness model of the 2(3PUS+S) PM through a stiffness mod-
eling method of a serial system. Hao and Kong [16] analyzed 
the mobility of spatial compliant multi-beam modules and 
derived their compliance matrices using a normalization tech-
nique. Wang et al. [17] investigated the stiffness characteristics 
of a hexaglide parallel loading machine, and derived its total 
stiffness matrix based on Jacobian matrix and statics. Lu et al. 
[18, 19] solved stiffness and elastic deformation for some less 
mobility PMs and serial-parallel manipulators by virtual 
mechanisms. Others [20–22] studied the stiffness and elastic 
deformation of PMs using above similar approaches and the 
virtual experiments in CAD environment. �e above men-
tioned approaches for different PMs have their own merits. 
Since the above mentioned PMs are symmetrical in the struc-
ture and the distribution of active legs, the established stiffness 
matrices are symmetrical, and the elastic deformations of PMs 
can be solved more easily.

A 2SPS + RRPR type PM is a 4-DoF PM with three asym-
metrical legs [23]. When the base of the 2SPS + RRPR type PM 
is fixed on top of the helicopter, and the rotor and its rotational 
actuator are installed on the moving platform of the 
2SPS + RRPR type PM, the 2SPS + RRPR type PM can be used 
for the helicopter rotor supporter. Comparing with existing 
4-DOF PM, the 2SPS + RRPR type PM has several merits as 
follows: (1) �e stability and the capability of load bearing can 
be increased, the force situations can be improved, and the 
position workspace and the orientation workspace can be 

increased largely by rotating a revolute joint which connects 
the RRPR type composite leg with the base. (2) �e unneces-
sary tiny self-movement can be removed and the precision 
can be increased using the RRPR type composite leg. (3) �e 
number of oscillating legs is reduced, and the interference can 
be avoided easily. (4) �e more actuators can be installed onto 
the base for reducing vibration.

Since the structure of the 2SPS + RRPR type PM is asym-
metrical, it is a challenging and a significant issue to study the 
stiffness and elastic deformation of the 4-DOF PMs with 
asymmetrical structure by considering its constrained force. 
�erefore, this paper focuses on the study of the total stiffness 
and the elastic deformation of the 2SPS + RRPR PM by taking 
into account the elastic deformation due to constrained 
wrench. A finite element model of this PM is constructed for 
verifying the analytic solutions.

2. Kinematics and Statics of 2SPS + RRPR Type 
PM

A 2SPS + RRPR type PM for supporting helicopter rotor is 
shown in Figure 1(a). �e 2SPS + RRPR PM is composed of 
a moving platform �, a fixed base �, and 2 SPS (spherical 
joint-active prismatic joint-spherical joint) type legs �푟� (�푖 = 1, 3) with the linear actuator, and one RRPR (active 
revolute joint- revolute joint -active prismatic joint-revolute 
joint) type composite active leg �2 with a linear actuator and 
a rotational actuator, see Figure 1(b). Here, � is an equilateral 
ternary link Δ�푏1�푏2�푏3 with 3 sides �푙� = �푙, 3 vertices ��, and a 
center point �. � is an equilateral ternary link Δ�퐵1�퐵2�퐵3 with 
3 sides �퐿 � = �퐿, 3 vertices ��, and a center point �. Each of �푟�(�푖 = 1, 3) connects � to � by a spherical joint � at ��, a leg �� 
with active prismatic joint �, and � at ��. �e RRPR-type 
constrained composite active leg �2 connects � to � by a uni-
versal joint � attached to � at �2, a constrained leg �2 with 
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Figure 1: A 2SPS+RRPR PM for supporting helicopter rotor (a), 2SPS+RRPR type PM (b), and a prototype of reconfigurable 3SPS PM (c).
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active prismatic joint �, a revolute joint �3 attached to � at �2. �e universal joint � at �2 is composed of two cross rev-
olute joints �1 and �2. Here, �1 is connected with a rotational 
actuator. �erefore, the moving platform � of the 
2SPS + RRPR type PM has 4 DOFs corresponding three rota-
tions about �푅1, �푅1, �푅1, and one translation along limb �2. �e 
degree of freedom of the 2SPS + RRPR type PM has been 
calculated and verified using its simulation mechanism in 
[23]. Since each of the SPS-type active legs �푟�(�푖 = 1, 3) only 
bears the active force along ��, it obviously has relative larger 
capacity of load bearing and is simple in structure. In addi-
tion, the unnecessary tiny self-movement of the 4-DoF 
2SPS + RRPR PM can be eliminated effectively and its work-
space can be enlarged by the RRPR-type constrained com-
posite active leg �2. Comparing with other 4-DOF PMs with 
four active legs, the 2SPS+RRPR PM with three active legs 
has merits as follows: (1) �e interference among three active 
legs and the moving platform can be avoided easily. (2) Its 
whole mechanism is simplified. (3) Its moving platform pro-
vides more room for installing the helicopter rotor, finger 
mechanisms, tools.

A prototype of the reconfigurable 3SPS experimental 
model is built, see Figure 1(c). It includes a �, a � and 3 recon-
figurable SPS-type legs �푟�(�푖 = 1, 2, 3). Each of �� connects � to � by a spherical joint � at �� a reconfigurable leg �� with active 
prismatic joint �, and � at bi. Here, � and � are the same as 
that of the 2SPS+RRPR PM. Each of S joints is composed of 
three revolute joints �. It can be transformed into a � joint by 
adding one pin or be transformed into a � joint by adding two 
pins. �us, the 2SPS + RRPR PM can be constructed easily 
from the prototype of reconfigurable 3SPS model to transform 
the upper � joint of �2 into � joint by adding two pins, to trans-
form the lower � joint of �2 into � joint by adding one pin, and 
to add a rotational actuator onto the vertical revolute joint  �1 of � joint.

Let ⊥ be a perpendicular constraint, || be a parallel con-
straint. Several geometric constraints (R1 being coincident 
with the axis of motor, �3 being coincident with �푦, �푅1‖�푍, �푅1 ⊥ �퐵, �푅2 ⊥ �푅1, �푅2 ⊥ �푅3, �푅2 ⊥ �푟2, and �푅3 ⊥ �푟2) are 
satisfied in this PM. Let {�푚} be a coordinate frame �-��� 
fixed on � at �표, {�퐵} be a coordinate frame �-��� fixed on � at �. Let (�, �, �) be three Euler angles of �푚, �휑 be one of 
(�훼, �훽, �). Set �푠� = sin�휑, �푐� = cos�휑, and �푡� = tan�휑. �e position 
vectors �� of �� on � in {�퐵}, the position vectors �b� of �� on � in {�푚}, the position vectors �� of �� on � in {�퐵}, and the 
position vector � of � on � in {�퐵}, the unit vectors �� of �� 
and the vector �� of the line �� in {�퐵} can be expressed as 
follows: [23]

(1)

�� = (�푋���푌���푍��

), ��� = (�푥���푦���푧�� ), �� = (�푋���푌���푍��

),
� = (�푋��푌��푍�

), �
�� = ( �푥� �푦� �푧��푥� �푦� �푧��푥� �푦� �푧� ),

�� = �
����� + �, �푟� = �儨�儨�儨�儨�� − ��

�儨�儨�儨�儨, �� = �� − ���푟� , �� = �� − �.

here, (�푋�, �푌�, ��) are the components of � in {�퐵}; ��� is a rota-
tional transformation matrix from {�푚} to {�퐵}; (�푥�, �푥�, �푥�, �푦�,�푦�, �푦�, �푧�, �푧�, �푧�) are nine orientation parameters of �.

�e formulas for solving ��� (�푖 = 1, 2, 3), �� and �� are 
derived from Equation (1) and represented as follows:

here, � is the distance from �� to �표, �퐸 is the distance from  �� to �.
Under the geometric constraints of the RRPR-type  

constraining active leg �푟2, �퐵
�푚� is formed by 3 rotations of 

(�푍, �푋1, �푌2), namely, a rotation of � about �-axis i.e., �1, fol-
lowed by a rotation of � about �1-axis i.e., �2, and a rotation 
of � about �2-axis i.e., �3. Here, �1 is formed by � rotating 
about � by �, and �2 is formed by �1 rotating about �1 by �, 
see Figure 2. Each of (�푥�, �푥�, �푥�, �푦�, �푦�, �푦�, �푋�, �푌�) can be 
expressed by (�훼, �훽, �휆) from Equations (1) and (2) as follows:

(2)

�푚��푖 = �푒2(
±�푞−10 ),�푚�2 = (0�푒0),��푖 = �퐸2(

±�푞−10 ), �2 = ( 0�퐸0 ),
��푖 = 12(
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Figure 2: Kinematics and statics model of 2SPS+RRPR PM.
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��, ��, �, and �� can be expressed by (�훼, �훽, �휆, �푍�) from 
Equation (1) to Equation (3) as follows:

The force situation of the 2SPS + RRPR PM is shown in 
Figure 2. The whole workloads can be simplified as a 
wrench (�, �) applied onto m at o. Here, � is a concentrated 
force and � is a concentrated torque. (�, �) includes the 
inertia wrench and the gravity of m, and inertia wrench and 
the gravity of the active legs and the external working 
wrench.

A�er solving the kinematics of the general PM and its legs, 
(�, �) can be solved [23]. (�, �) are balanced by 3 active forces 
���(�푖 = 1, 2, 3), an active torque ��, and 2 constrained forces 
���(�푗 = 1, 2). Here, each of ��� due to the linear actuators is 
applied on and along �� at ��, its unit vector �� is the same as 
that of ��; �� due to the motor 1 is applied on �2 at �2 and coin-
cident with �1.

(4)

��푖 =
1
2�푟1

(
±�푞�푒(�푐�훼�푐�휆 − �푠�훼�푠�훽�푠�휆) + �푒�푠�훼�푐�훽 − ±�푞�퐸 + 2(�푒 + �푍�표�푠�훽)�푠�훼/�푐�훽
±�푞�푒(�푠�훼�푐�휆 + �푐�훼�푠�훽�푠�휆) − �푒�푐�훼�푐�훽 + 3�퐸 − 2(�푒 + �푍�표�푠�훽)�푐�훼/�푐�훽

− ± �푞�푒�푐�훽�푠�휆 − �푒�푠�훽 + 2�푍�표

),

�2 = �2 = (
�푐�훼 −�푠�훼 0
�푠�훼 �푐�훼 0
0 0 1

)(
1 0 0
0 �푐�훽 −�푠�훽
0 �푠�훽 �푐�훽

)(
0
0
1
)

= (
�푠�훼�푠�훽
−�푐�훼�푠�훽
�푐�훽
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�푞 = √3,
�푖 = 1, ± = +,
�푖 = 3, ± = −,

��푖 =
�푒
2(

±�푞(�푐�훼�푐�휆 − �푠�훼�푠�훽�푠�휆) + �푠�훼�푐�훽
±�푞(�푠�훼�푐�휆 + �푐�훼�푠�훽�푠�휆) − �푐�훼�푐�훽

−�푞�푐�훽�푐�휆 − �푠�훽
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�2 = �푒(
−�푠�훼�푐�훽
�푐�훼�푐�훽
�푠�훽

), � = (
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�퐸 − (�푒 + �푍�표�푠�훽)�푐�훼/�푐�훽
�푍�표

),

�푟2�푖 =
�퐷 + 2�푒2 + �퐸�푌�표 ± �푞(�푒�퐷1 − �퐸�푋�표) + �푒�퐸(±�푞�푦�푙 ± �푞�푥�푚 − 3�푥�푙 − �푦�푚)

2 ,

�푟22 = �퐷 − �푒2 − 2�퐸(�푒�푦�푚 + �푌�표), �퐷 = �푋2
�표 + �푌2

�표 + �푍2
�표 + �퐸2,

�퐷1 = �푥�푙�푋�표 + �푥�푚�푌�표 + �푥�푛�푍�표.

Let �� be the unit vector of ���, �� be the arm vector from 
��� to �. Let v and � be the translational and angular velocities. 
Since ���(�푗 = 1, 2) limits the movement of PMs, based on prin-
ciple of virtual work in [23], it is known that ���(�푗 = 1, 2) does 
not produce any power. �us, there are

�us, the geometric constrains of ���(�푗 = 1, 2) are determined 
in [23] as follows:

(1) �Let v�푟2 be a velocity along prismatic joint � in �푟2, ��푐�푗v�푟2 = 0 i.e., ��푐�푗 ⊥ �2 must be satisfied.
(2) �Let ��(�푖 = 1, 2, 3) be a unit vector of revolute 

joints �� in �2. Let �� × ��� be a torque of ��� about �푅�, �� ⋅ (�� × ���) = 0 must be satisfied. �us, each of 
��� must either intersect or be parallel with all the rev-
olute joints �� in �2. �us, the geometric constrained 
conditions {��푐1||�푅2, ��푐1 intersecting with both �1 and �3 at point �푎, ��푐2||�푅3, ��푐2 intersecting with both �1 and �2 at point �2} are satisfied.

From the geometric constrains of ���(�푗 = 1, 2), it leads to

�e general input velocity ��, the general output velocity � in {�퐵}, �퐹��(�푖 = 1, 2, 3), �푇� and �퐹��(�푗 = 1, 2) have been derived 
based on Equations (4)–(6) as follows:

(5)
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Figure 3: Elastic deformations of SPS-type legs and RRPR-type leg under ���, ���, and ��v.
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here, � is a 6×6 Jacobian matrix of the 2SPS+RRPR PM, �� is 
an angular velocity of �1 (motor 1).

3. Stiffness Matrix and Elastic Deformation of 
SPS-Type Legs and RRPR-Type Leg

Suppose that the rigid platform � is elastically suspended and 
by 3 elastic active legs �� and is constrained by one elastic con-
strained leg �2. If only small displacements from its unpreloaded 
equilibrium position are considered, the overall wrench–deflec-
tion relation of the mechanism is linear elasticity. Based on the 
constructed workspace, each of length of piston/cylinder for 
active legs and constrained leg can be determined. Let �푟1�푖, �퐴1�푖, �퐼1�푖 
and �1�푖 be the length, the section of a piston, the moment of 
inertia, and the rotational moment of inertia of leg ��, respec-
tively. Let (�푟�푖 − �푟1�푖), �퐴2�푖, �퐼2�푖, and �2�푖 be the length, the section, 
the moment of inertia, and the rotational moment of inertia of 
a cylinder of ��, respectively. Let ��� and �� be the modulus of 
elasticity and the rotational modulus of elasticity for leg ��, 
(�푖 = 1, 2, 3). When each of the active forces ���(�푖 = 1, 2, 3) 
applies onto the SPS-type active leg �푟� (�푖 = 1, 3) and the  
RRPR-type constrained active leg �푟�(�푖 = 2) and along ��, the  
longitudinal elastic differential deformation ��� of leg ��, see  
Figure 3(a).

�e longitudinal elastic differential deformations of the 
SPS-type active leg �푟�(�푖 = 1, 3) and the RRPR-type composite 
active leg �푟�(�푖 = 2) under ��� (a), �e transverse elastic differ-
ential deformations of the RRPR-type composite leg r2 under 
��� (b, c) and ��v (d).

When each of the active forces ���(�푖 = 1, 2, 3) applies onto 
the SPS-type active leg �푟�(�푖 = 1, 3) and the RRPR-type con-
strained active leg �푟�(�푖 = 2) and along ��, the longitudinal elastic 
differential deformation ��� of leg �� (see Figure 3(a)) can be 
solved as below [24]

here, ��� is a longitudinal stiffness of SPS active leg �� and 
RRPR-type constrained active leg �푟�(�푖 = 2).

(7)

��푟 = �6×6�,� = �−1��푟, �훼�耠 = ( 01×3 ��푇 )�,
� = ( v

�), � = ( �푠�훼�푡�훽−�푐�훼�푡�훽1 ),
� = (�퐹�푥�퐹�푦�퐹�푧 ), � = (�푇�푥�푇�푦�푇�푧

),
��푟 = (

v�푟1
v�푟2
v�푟3�훼�耠

00
),

� = (((
(

��푇1 (�1 × �1)�푇
��푇2 (�2 × �2)�푇
��푇3 (�3 × �3)�푇
01×3 ��푇
��푇1 (�1 × �1)�푇
��푇2 (�2 × �2)�푇

)))
)

, (�퐹�푎1�퐹�푎2�퐹�푎3�푇�푎�퐹�푐1�퐹�푐2
) = −(��푇)−1(��)

(8)�푑�푟�푖 = �퐹�푎�푖�푘�푎�푖 , �퐹�푎�푖 = �푘�푎�푖�푑�푟�푖, �푘�푎�푖 = − �퐸�푖( �푟�푖−�푟1�푖
�퐴2�푖

) + ( �푟1�푖
�퐴1�푖

) ,

�e active torque �� consists of a component ��� along �2 
and a component ��v perpendicular to �2 (see Figure 3(b)). 
�ey can be expressed as follows:

When ��v is exerted onto leg �2 at universal joint and ��푎v ⊥ �2 
is satisfied, the transverse elastic differential deflection ��

v
 of �2 at its end (Figure 3(b)) can be solved in [24] as follows:

When ��� is exerted onto leg �2 at universal joint, the elastic 
rotational differential deformation ��1 of leg �2 at its end can 
be solved based on the elastic deformation formula in [24] as 
below

here, ��v and ��휃1 are the transverse and rotational stiffness of 
leg �2 vs. ��v and ���, respectively.

From Equations (10)–(12), it leads to

When ��푐1 is exerted onto leg �2 at point � and ��푐1 �2 is satisfied, 
the transverse elastic differential deflection ��1 of �2 at its end 
(see Figure 3(c)) can be solved [24] as follows:

here ��푐1 is a transverse stiffness of r2 vs. ��푐1.
When ��푐1 is exerted onto leg �2 at point � and ��푐1 �2 is sat-

isfied, the elastic rotational differential deformation ��2 of leg �2 at its end can be solved in [24] as follows:

Similarly, from Equations (15) and (16), it leads to

(9)
��푎 = �푇�푎�, �푇�푎�푢 = ��푎 ⋅ �2 = �푇�푎�푐�훽, �푇�푎v = �푇�푎� ⋅ (�2 × �2) = �푇�푎�푠�훽.

(10)

�푑�푎
v
= − �푇�푎v2�퐸2

[�푟212�퐼12 + (�푟2 − �푟12)2�퐼22 ] = �푇�푎�푘�푎v ,
�푘�푎v = −2�퐸2

[( �푟212
�퐼12
)�푠�훽 + ((�푟2−�푟12)2�퐼22

)�푠�훽] .

(11)

��1 = −��푎�푢
�2

(�12�12
+ �2 − �12

�22
) = ��푎

��휃1
, �푘�휃1 = −�퐺2

(( �푟12
�퐽12
)�푐�훽 + ( �푟2−�푟12

�퐽22
)�푐�훽) ,

(12)

�푑�푎
v
+ �푑�휃1 = ( 1

�푘�푎v +
1
�푘�휃1)�푇�푎, → �푇�푎 = �푘1(�푑�푎v + �푑�휃1),

�푘1 = 1
( 1
�푘�푎v
) + ( 1

�푘
�휃1
)
.

(13)

�푑�푐1 = �퐹�푐1�푘�푐1 , �푘�푐1 =
−3�퐸2

[�푟312/�퐼12] + [(�푟2 − �푟12)(�푟22 + �푟212 + �푟2�푟12)/�퐼22] ,

(14)

�푑�휃2 =
�儨�儨�儨�儨�푎 − �푏2�儨�儨�儨�儨�퐹�푐1�퐺2

[(�푟2 − �푟12
�퐼22 + �푟12

�퐼12)] = �퐹�푐1
�푘�휃2 ,

�푘�휃2 = �퐺2
[�儨�儨�儨�儨�푎 − �푏2�儨�儨�儨�儨((�푟2 − �푟12/�퐼22) + (�푟12/�퐼12))] .
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When ��푐2 is exerted onto leg �2 at �2 and ��푐2 �2 is satisfied, the 
transverse elastic differential deflection ��2 of �2 at its end (see 
Figure 3(d)) can be solved in [24] as follows:

Since �푑�푎
v
|�푑�푐1 is satisfied, both ��1 and ��2 are the elastic rota-

tional differential deformations of �2, an equation of 
force-deformation for the 2SPS + RRPR PM is derived from 
Equation (8) to Equation (16) as follows:

(15)

�푑�푐1 + �푑�휃2 = ( 1
�푘�푐1 + 1

�푘�휃2)�퐹�푐1, → �퐹�푐1 = �푘2(�푑�푐1 + �푑�휃2),
�푘2 = 1

( 1
�푘�푐1

+ 1
�푘�휃2
) .

(16)

�푑�푐2 = �퐹�푐2�푘�푐2 , �푘�푐2 =
−3�퐸2

[((�푟2 − �푟12)3/�퐼22) + (�푟312 + 3(�푟2 − �푟12)�푟2�푟12/�퐼12)] .

(17)
(

��푎1
��푎2
��푎3
��푎
��푐1
��푐2

) = ��푟(

��1
��2
��3
��
��
��2

), (
�푑�푟1�푑�푟2�푑�푟3�푑�푐
��
��2

) = �−1
�푟 (

��푎1
��푎2
��푎3
��푎
��푐1
��푐2

),��푟 = (

�푘�푎1 0 0 0 0 00 �푘�푎2 0 0 0 00 0 �푘�푎3 0 0 00 0 0 �푘1 0 00 0 0 0 �푘2 00 0 0 0 0 �푘�푐2
)

�푑�푐 = �푑�푎
v
+ �푑�푐1, �� = ��1 + ��2, �푘1 = 1(1/�푘�푎v)+(1/�푘�휃1) , �푘2 = 1(1/�푘�푐1)+(1/�푘�휃2) .

here, �� is a 6 × 6 symmetric total stiffness matrix of the legs �푟�(�푖 = 1, 2, 3).
4. Total Stiffness Matrix and the Elastic 
Deformation of 2SPS+RRPR PM

Based on principle of virtual work in [22], it is known that 
when a deformed mechanical system keeps a static balance 
under all external wrenches, the sum of the work generated 
by all external wrenches along virtual displacements of the 
mechanical system and the work produced by all internal 
wrenches along virtual deformations of the same mechanical 
system must be zero. �erefore, the sum of the work gener-
ated by (��푎1, ��푎2, ��푎3, ��푎, ��푐1, ��푐2) along deformations of 
the 2SPS + RRPR PM and the work produced by (�,�) along 
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Figure 4: �eoretical solutions of elastic deformations of 2SPS + RRPR PM.
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Here 

� = −[�−1�−1
�푟 (��푇)−1]

−1

= −(��푇��푟�)6×6 = (

�푘11 �푘12 ⋅ ⋅ ⋅ �푘16
�푘21 �푘22 ⋅ ⋅ ⋅ �푘26
.
.
.

.

.

.
.
.
.

.

.

.

�푘61 �푘62 ⋅ ⋅ ⋅ �푘66

),

�

(20)

here � is a 6 × 6 symmetric total stiffness matrix of this 
manipulator; (�푑�푋�, �푑�푌�, �푑�푍�, �푑�휑�, �푑�휑�, �푑�휑�) are the 6 elastic 
deformation components of platform. When given (�,�), the 
elastic differential deformation of this manipulator can be 
solved from Equation (19).

5. Analytic Solved Example of Elastic 
Deformation for 2SPS+RRPR PM

In the 2SPS + RRPR type PM, let initial independent pose var-
iables vary vs. time � when given pose parameters (�훼, �훽, �휆, �푍�), 
see Figures 4(a) and 4(b).

Set �퐿 = 1.2m, �푙 = 0.6m; � = −[20 30 60]�N and 
� = [−0.3 − 0.31]� Nm, �퐸�푖 = 2.11 × 1011 Pa, the diameter of 
piston and cylinder for active legs �푟�(�푖 = 1, 2, 3) are �퐷�푖1 = �퐷�푖2 = 0.04m, �퐸�푖�퐼�푖1 = �퐸�푖�퐼�푖2 = 26502N ⋅m2, �퐴 �푖1 = �퐴 �푖2 =
0.0013m2. By using the relevant theoretical equations and 
Matlab, the extensions of �� and α are solved, see Figure 4(a). 
�e position components (�푋�, �푌�, �푍�) of the moving platform � are solved, see Figure 4(b). �ree active forces �퐹��(�푖 = 1, 2, 3),  
one active torque ��, two constrained forces ��푐1 and ��푐2 are 
solved, see Figures 4(c) and 4(d). �e longitudinal deformations �푑�푟�(�푖 = 1, 2, 3) of �� are solved, see Figure 4(e). �e position 
deformations of � at � are solved, see Figure 4(f). �e angular 
deformations of � are solved, see Figure 4(g). �e transverse 
deformations �푑�푐�(�푗 = 1, 2) and ��2 + ��

v
 and the rotational 

deformations ��1 and ��2 of �2 are solved, see Figure 4(h).
When �1 = 1.8, �푟3 = 1.7, �푟2 = 1.66m. �훼 = 0∘ , � is solved 

from Equations (7) and (20) as follows:

6. A FE Model of 2SPS + RRPR PM and Its 
Solutions

A 3D assembly mechanism of the 2SPS + RRPR PM is con-
structed in SolidWorks [25]. Next, its finite element (FE) 
model is generated in ANSYS, see Figure 5. All relative geom-
etry and material parameters of the 3D simulation assembly 
mechanism are the same as that in Section 5. �e 3 equivalent 
revolute joints for 3 actuated revolute joints and 4 equivalent 
spherical joints for 4 actuated spherical joints are constructed, 
see Figure 5(a). �e applied loads are shown in Figure 5(b). 
�e boundary condition are explained as follows:

(21)

�퐾 = (
0.0923 0.0130 0.0266 0.0038 0.1466 −0.02790.0130 0.2417 0.7799 −0.1465 0.0052 −0.00420.0266 0.7799 4.2941 0.0905 −0.0097 −0.00900.0038 −0.1465 0.0905 0.2721 0.0150 −0.00100.1466 0.0052 −0.0097 0.0150 0.2338 −0.0446−0.0279 −0.0042 −0.0090 −0.0010 −0.0446 0.0084

).

the displacements of point � in {�퐵} must be zero. Let 
(�푑�푋�, �푑�푌�, �푑�푍�) be 3 translational components of the elastic 
differential deformation of � at � in {�퐵}; (�푑�휑�, �푑�휑�, �푑�휑�) be 
3 rotational components of the elastic differential deforma-
tion of � in {�퐵}. �us, based on the theorem of work and 
energy equal to each other, from Equation (7) to Equation 
(17), it leads to

�us, from Equations (7), (14), and (15), it leads to

(18)

(

�푑�푟1�푑�푟2�푑�푟3�푑�푐
�푑�휃
�푑�푐2

)

�푇

(

�퐹�푎1�퐹�푎2�퐹�푎3�푇�푎�퐹�푐1�퐹�푐2

) = −(

�푑�푋�표�푑�푌�표�푑�푍�표�푑�휑�푥�푑�휑�푦�푑�휑�푧

)

�푇

(��)

⇒ (

�푑�푟1�푑�푟2�푑�푟3�푑�푐
�푑�휃
�푑�푐2

)

�푇

[−(��푇)−1] = −(

�푑�푋�표�푑�푌�표�푑�푍�표�푑�휑�푥�푑�휑�푦�푑�휑�푧

)

�푇

,

(

�푑�푟1�푑�푟2�푑�푟3�푑�푐
�푑�휃
�푑�푐2

)

�푇

(�−1)�푇 = (

�푑�푋�표�푑�푌�표�푑�푍�표�푑�휑�푥�푑�휑�푦�푑�휑�푧

)

�푇

⇒ �−1(

�푑�푟1�푑�푟2�푑�푟3�푑�푐
�푑�휃
�푑�푐2

)

= (

�푑�푋�표�푑�푌�표�푑�푍�표�푑�휑�푥�푑�휑�푦�푑�휑�푧

) ⇒ (

�푑�푟1�푑�푟2�푑�푟3�푑�푐
�푑�휃
�푑�푐2

) = �(

�푑�푋�표�푑�푌�표�푑�푍�표�푑�휑�푥�푑�휑�푦�푑�휑�푧

).

(19)

(

�푑�푋�표�푑�푌�표�푑�푍�표�푑�휑�푥�푑�휑�푦�푑�휑�푧

) = �−1(

�푑�푟1�푑�푟2�푑�푟3�푑�푐
�푑�휃
�푑�푐2

) ⇒ (

�푑�푋�표�푑�푌�표�푑�푍�표�푑�휑�푥�푑�휑�푦�푑�휑�푧

)

= �−1�−1
�푟 (

�퐹�푎1�퐹�푎2�퐹�푎3�푇�푎�퐹�푐1�퐹�푐2

), (
�퐹�푎1�퐹�푎2�퐹�푎3�푇�푎�퐹�푐1�퐹�푐2

)

= −(��푇)−1(��),⇒ (
(

�푑�푋�표�푑�푌�표�푑�푍�표�푑�휑�푥�푑�휑�푦�푑�휑�푧

)
)

= �−1(��) ⇒ �−1

= −�−1�−1
�푟 (��푇)−1 ⇒ (��) = �(�푑�푋�표�푑�푌�표�푑�푍�표�푑�휑�푥�푑�휑�푦�푑�휑�푧

),
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 5: Simulation solutions of elastic deformations of EF model of the 2SPS + RRPR PM. (a) Equivalent spherical joint � and revolute joints �1 and �2, (b) load condition, (c) FE model of 2SPS + UPR PM and its elastic deformation, (d) elastic deformation of �, (e) elastic deformation ���, (f) elastic deformation ��� and (g) elastic deformation ���.
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7. Analysis of Stiffness and Elastic Deformation 
of 2SPS+RRPR PM

Several conclusions are obtained from theoretical and simu-
lation solutions as follows:

(1) � �e solved results of FE model in most cases are 
approximate numerical results which depend on 
some key factors such as finite element dimension and 
type, equivalence between actual joints and simulation 
joints, selected material parameter, solver, reasonable 
boundary constraints and connection constraints [23].

(2) � It is known from Table 1 that the elastic deformations 
of FE model of this PM are basically coincident with 
that of theoretical ones in Section 5.

(3) � It is known from Figures 4(e) and 4(h) that the 
transverse elastic deformations �푑�푐�(�푗 = 1, 2) 
(0.5→1.2 × 10−4) of �2 due to the constrained forces ��� 
are greatly larger than the longitudinal elastic defor-
mation ��� (0.5→2.5 × 10−7) of � = −[�−1�−1

�푟 (��푇)−1]
−1

= −(��푇��푟�)6×6 = (

�푘11 �푘12 ⋅ ⋅ ⋅ �푘16
�푘21 �푘22 ⋅ ⋅ ⋅ �푘26
.
.
.

.

.

.
.
.
.

.

.

.

�푘61 �푘62 ⋅ ⋅ ⋅ �푘66

), due to active forces ���. It implies that the constrained wrench has great 
influence on the elastic deformation of this PM.

(4) � It is known from Figure 4(c), h that the transverse 
elastic deformations �푑�푐�(�푗 = 1, 2) of �2 due to the 
constrained forces ��� is larger than the transverse 
elastic deformation ��

v
 of �2 due to active torque ��v. 

�e transverse elastic deformations and elastic rota-
tional deformation of the SPS-type legs �푟�(�푖 = 1, 3) is 
0. �erefore, the diameter of piston and cylinder of �2 
should be increased.

(5) � It is known from Figure 4(h) that the elastic rotational 
deformation ��1 of �2 due to ��푐1 and the elastic rota-
tional deformation ��2 of �2 due to ��푐2 are inversely 
proportional to each other.

8. Conclusions

A 2SPS + RRPR parallel manipulator with asymmetrical struc-
ture is suitable for the helicopter rotor supporting base.

�e formulas for solving the stiffness matrix and the elastic 
deformation of its three asymmetrical legs are derived. �e 
formulas for solving its total stiffness matrix and the elastic 
deformation are derived based on the Jacobian matrix and the 
stiffness matrix of three asymmetrical legs. Both the stiffness 
matrix of its three asymmetrical legs and its total stiffness 
matrix are 6 × 6 symmetric matrices, although this manipula-
tor has asymmetrical structure.

�e constrained wrench must be taken into account when 
establishing its total stiffness matrix and solving its elastic 
deformation.

�e proposed methodological results can be applied to 
other less mobility parallel manipulators with asymmetrical 
structure and active legs for solving the elastic deformations 
of asymmetrical active legs and the elastic deformations of 
moving platform.

(1) � If no setting is given, all the assembly parts in the 
FE model may constitute the same elastic body. 
�erefore, each of the assembly spherical joints in 
FE model constitutes the same elastic body. �e sim-
ulation 3D assembly of spherical joints is used only 
for varying the pose of PM and the workload applied 
on � at �.

(2) � All the relative geometry parameters of the 3D sim-
ulation assembly mechanism are the same as that in 
Section 5. �e material parameters of �푟�(�푖 = 1, 2, 3) are 
set as the same as that in Section 5.

(3) � Construct 3 equivalent spherical joints for 4 actuated 
spherical joints, see Figure 5(a). Here, the diameters 
at the two ends of the SPS-type legs �푟�(�푖 = 1, 3) are 
reduced sharply.

(4)  � Construct 3 equivalent revolute joints for the actu-
ated revolute joints �푅1, �푅2, �푅3, see Figures 5(a) and 
5(b). Here, two holes for each of equivalent revo-
lute joints are constructed and kept coincident with 
each other; the rotational stiffness and the axial 
stiffness are set as 0 and 1 × 1010 N/mm, respec-
tively, according to the requirement for revolute 
joint in so�ware.

(5) � Each of the 3 linear active legs with prismatic joints is 
formed using the elastic linear rod, which is assigned 
by the alloy steel. Set SPS leg �푟1 = 1.8, SPS leg �푟3 = 1.7, 
RRPR leg �푟2 = 1.66m.

(6) � A fixed constraint is added onto the base, which is 
assigned by the alloy steel with rigid body.

(7) � �e workload wrench � = −[20 30 60]�N and 
� = [−0.3 − 0.31]�Nm are applied onto � at �, which 
is assigned by the alloy steel with the rigid body, see 
Figure 5(b).

Some solved results of the elastic deformations are shown 
in Figures 5(c)–5(g) and Table 1.

An existing CAD so�ware provides a function for auto-
matically optimal mesh in order to avoid singularity element 
and to obtain the suitable results of finite element analysis 
(FEM). �erefore, the 3D assembly mechanism of the 
2SPS + RRPR PM is automatically meshed by the function for 
automatically optimal mesh.

Table 1:  Simulation solved results of elastic deformations of EF 
model of 2SPS + RRPR PM.

Elastic deformation of �, mm Position of � (m)
FE model �eoretical �� �� ��

�� 0.9058 0.8934 FE model position of No. 
19319 joint��� −0.8387 −0.8550 −0.049 0.317 1.71��� −0.3434 −0.2547 �eoretical position of ���� 0.0258 0.0534 0 0.3192 1.6540
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��1, ��2:	 Rotational deformations of �2�푑�훼, �푑�훽, �푑�휆:	� Differential deformations of 3 Euler 
angles of ��:	� One of (�훼, �훽, λ, �훾1, �훾2), �푠� = sin�휑, �푐� = cos�휑, �푡� = tan�휑���:	� �e length of �푟�, �푗 = 1 for piston, �푗 = 2 for 
cylinder�퐴 ��, �퐷��:	 �e cross-section and the diameters of ��||,⊥, |:	� Perpendicular, parallel collinear 
constraint.
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