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-e spine plays important roles in the quadruped locomotion. To investigate the effects of the spine on the quadruped trotting
motion, firstly, a sagittal passive model is proposed which contains four massless springy legs and two passive spinal joints. To
generate the trotting gait of the model, the multibody hybrid dynamics model is established based on the defined events. -e
combination of optimization tools is used to find the suitable solution space in which the model can maintain a periodic motion. It
reveals that the quadruped trottingmotion results from the coordinated features of the spine and the legs. By comparing themodel
with the rigid body, it is proven that the spinal joints can reduce the effect of the ground reaction forces on the body in a special
velocity range. -en, a hybrid controller whose objective is to maintain the kinematic coordination between the spinal joints is
applied and it replaces the passive spinal joints, and the results prove that it can make the model achieve a stable periodic motion.
Finally, the prototype of the quadruped robot with two spinal joints based on the model is established and its trotting motion is
achieved successfully. -e experiment results also indicate the compliant effect of the spine on the motion performance.
Consequently, the effects of the spine at trotting gait are helpful to guide the development of the quadruped robots.

1. Introduction

-emammals have the flexible motion ability to adapt to the
environments, which benefits from the coordination
mechanisms, including the levels of neural control, muscle
function, interlimb coordination, intersegmental coordi-
nation, and intuitive motion mechanism [1]. Studying the
dynamic features of the legged motion on the level of in-
tuitive motion mechanism has always been a hot research
topic in both biology and robotics areas.

A general finding reveals that when the humans or
mammals run, the legs act as springs and experience a
compression and extension process to improve the energy
efficiency and the compliance of the interaction with the
ground [2]. Accordingly, a general model template, Spring
Loaded Inverted Pendulum (SLIP), was proposed [3] and
extended [4–7]. To analyze the intuitive motion mechanism
of quadruped motion at different gaits, the planar model

including a rigid body and four massless springy legs was
established based on the SLIP model [8].

Although this model basically represents the dynamic
modes of the quadruped motion, it does not take the spine
into account. Many studies found out that the spine plays an
important role in the quadruped motion [9, 10]. -erefore,
some researchers added the spine element into the models to
investigate the effects of the spine on the motion perfor-
mance. Some research studies have revealed that the model
with a spinal joint has the advantages of decreasing the cost
of transport [11], optimizing the energy distribution [12, 13],
decreasing the ground reaction forces (GRFs) [14–16], and
improving the stability [17] and maneuverability [18]. In
addition, the number of the spinal joints in the quadruped
motion also has important effects on the motion perfor-
mance [19].

In this paper, we establish a planar passive model with
two spinal joints to investigate the effects of the spine on the
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dynamic performances of quadruped trotting motion. -e
Poincaré Mapping and combined optimization method are
used to search for the suitable parameters and generate the
periodic trotting gait. By comparing the model with the rigid
body, the effects of the spinal joints are found and discussed.
-en, the active control is applied and replacing the passive
spinal joints to analyze the effect of the coordination be-
tween two spinal joints appeared in the passive trotting
motion. In this process, a hybrid controller based on the
motion of the spinal joints is applied, which proves that
coordination between the spinal joints has the effect of
improving the stability of the passive model. Finally, the real
quadruped robot with two spinal joints is established. Some
experiments for the trotting motion show the effect of the
two spinal joints on the ground reaction forces.

2. Methods

2.1. Quadruped Model with Two Spinal Joints. First, we
propose a planar quadruped dynamic model with two
passive spinal joints, which is restricted in the sagittal plane,
as shown in Figure 1. Four massless springs inspired from
themammals [2] are used to act as the legs (forelimb stiffness
kf and hindlimb stiffness kh, the same initial length l0). -e
legs are marked as {1, 2, 3, 4} to represent the front left leg,
front right leg, hind left leg, and hind right leg, respectively.
ci indicates the elevation angle of the leg relative to the
vertical direction during the stance phase. Because the legs
are massless, there are no dynamics effects for the legs during
swing phase. -e attack angles are predefined (forelimb αf,
hindlimb αh). -at is, the legs will reach the attack angle to
prepare for standing on the ground. A parameter of swing
period ts is defined to avoid the situation where the legs will
touch the ground more than once. It is assumed that there is
no slid of the foot relative to the ground.

-e spine can be divided into two parts, thoracic and
lumbar vertebrae. -e thoracic and lumbar joint can sim-
ulate the motion of spine on the condition that the model
will not be more complex. -e spinal joints are defined as
passive joints (front joint ksf, hind joint ksh). As a result, the
stable motion of the model will result from the nonlinear
elastic oscillations. -e CoM is located at the geometrical
center of each part.-emass and inertia of the front, middle,
and hind body are (mf, m, mh) and (Ifc, Imc, Ihc). -e legs are
attached to the center of mass of the front and hind body.

-e lengths of geometrical center of each part to the spinal
joint are lf, lm, and lh.

2.2. Dynamics Model. We use the Lagrange method to es-
tablish the dynamics equations of the quadruped model. -e
generalized coordinate vector of the model is defined as q�

[x, z, φm, φf, φh]T ∈Q. Q is the configuration space. (x, z)
indicates the coordinate of the center of mass of the middle
body. φm, φf, and φh refer to the pitch angle of the middle
body, front body, and hind body, respectively. -ese five
independent parameters describe the dynamic motion of the
model.-e coordinate of the center of mass of the front body
[xf, zf] and hind body [xh, zh] can be stated from generalized
coordinates. -e dynamic equations of the motion were
derived by the Lagrange method as the following form:

M(q)€q + V(q, _q) � B(q) · u + JT
(q) · F, (1)

whereM(q) indicates the mass matrix. V(q, _q) indicates the
generalized torque caused by the centrifugal, Coriolis,
gravitational force, and spinal elastic force. B(q)u indicates
the generalized input torque. JTF represents the generalized
torque caused by the elastic legs. -e elastic force of each leg,
which also reflects the GRFs, acts on the model along the axis
of the legs.

-e system state variables are composed of continuous
state x and discrete state dis. -e continuous state x contains
the generalized coordinates and their derivatives. -e
continuous state space equations of the model with two
spinal joints can be obtained from the dynamic equations
and given as the following form:

_x �
_q

M− 1(q) −V(q, _q) + JT(q) · F + B(q) · u􏼂 􏼃
􏼢 􏼣

≕f(x) + g(x)u,

(2)

where the second item at the right side is equal to zero. Since
the model is passive and there is no impact occurring when
the legs stand on the ground, the continuous states have no
abrupt changes, and the dynamics model is a conservative
system. -e discrete states dis ([phase, ftdx]T) at any time
contain two elements: phase is used to identify which phase
each leg is in (prepare for touchdown by {1}, stance phase by
{2}, and swing phase by {3}) and ftdx is used to record the
touchdown position of each leg. -erefore, the state space of
the model can be described as the following form:

TQ ≔ qT
, _qT

, phase, ftdx􏼐 􏼑 q ∈ Q, _q ∈ R
dim(q)

, phasei ∈ 1, 2, 3{ }, ftdx

􏼌􏼌􏼌􏼌􏼌 ∈ R
4

􏼚 􏼛. (3)

2.3. Gait Generation. -e gait generation is implemented by
using and extending the framework proposed by Remy et al.
[20] due to its universality to different gaits where there are
different numbers of legs on the ground simultaneously. In
the motion simulation, the states of the model are monitored
all the time by the following event detection functions to
judge whether there is a transition between the phases of the
legs:

ei,1 � l0 cos αf,h􏼐 􏼑 − zf,h,

ei,2 � li − l0,

ei,3 � t − tsi,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where ei,j refers to the event detection function of the leg i
(i� 1, 2, 3, 4) in the phase j (j� 1, 2, 3). αf,h refers to the attack
angle of forelimb leg or hindlimb leg. li indicates the length
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of the leg in the stance phase. t refers to the duration that the
model has experienced from the initial moment. tsi indicates
the predefined moment when the leg finishes the swing
phase and enters the phase of preparing for touchdown.
Once an event is monitored by the event detection functions,
the corresponding leg enters the next phase, and the discrete
states are updated by the following state updating functions:

Δi,1: phase+
i � 2; ftd+

xi � xf,h + l0 sin αf,h􏼐 􏼑; δ+
i � 1,

Δi,2: phase+
i � 3; t+

si � t + ts; δ
+
i � 0,

Δi,3: phase+
i � 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where Δi,j refers to the state updating function of the leg i
(i� 1, 2, 3, 4) transiting from the phase j (j� 1, 2, 3) to the
next phase. Phase+ indicates the phase of the leg updated.
δ� [δ1, δ2, δ3, δ4] is used to identify whether the legs are in
the stance phase (stance δi � 1, swing δi � 0).-en, the hybrid
dynamics equations based on the defined events are given as

􏽘 :
_x � f(x), X− ∉ S,

X+ � Δ X−( ), X− ∈ S,
􏼨 (6)

where S ≔ X ∈ TQ | e � 0, _e> 0{ } ⊂ TQ indicates the sub-
space in the state space which meets equation (3). -e
solving of the hybrid dynamics equations is implemented by
the differential equation solving tool of MATLAB-ode45.

2.4. Searching for thePeriodicMotion. In order to achieve the
periodic trottingmotion, themethod of Poincaré Mapping is
used which was proposed to numerically search for the
periodic motion [21]. -e periodic motion with a starting
state vector X must meet the following equation:

P(X, p) − X � 0, (7)

where state vector X is the fixed point of Poincaré Mapping
and the corresponding Poincaré section is S. p refers to the
system parameters.

For the periodic trotting motion, we define the initial
phase� [3 1 1 3]T. -e model moves starting from the liftoff
event of the leg 1 and leg 4, and the leg 2 and leg 3 are ready
to stand on the ground. Since the trotting gait has the
symmetrical feature [22, 23], we defined the terminal event

e∗ as the liftoff event of the leg 2. -e phase of the terminal
moment should be symmetrical to the initial phase, and all
legs are in the air. So the initial discrete states ftdx have no
influences on the locomotion, and the discrete vector is
removed from the state vectorX. -en, the state vectorX for
searching is reduced to

X � z,φm,φf,φh, _z, _φm, _φf, _φh􏽨 􏽩
T
. (8)

In addition, the searched system parameters are given by
p� [kf, kh, ksf, ksh, αf, αh]T because these parameters are
directly related to the dynamic characteristics. Other system
parameters are preset and remain unchanged.-e total mass
of the model m0 � 20 kg, the original length of the leg
l0 � 0.4m, and the gravitational constant g ≈ 10m/s2. -e
related parameters are listed in Table 1. -e symbol ∗ in-
dicates the solution space of the initial states.

-en, the problem of periodic motion is translated into
solving for equation F(X, p)�P(X, p)−X� 0 at different
velocities. -e solution space consists of eight variables in
the state vector X and six variables in the system parameter
vector p. To solve this problem, the optimization method is
applied.

-e cost function is defined as the norm of the error
vector by the following form:

C(X, p) � ‖P(X, p) − X‖. (9)

First, the particle swarm optimization (PSO) is used as a
tool for preliminary searching because it has a lower de-
pendency on the initial states and can randomly select
multiple sets of initial states [24, 25]. -e accurate searching
is solved numerically with the MATLAB optimization tool
Global-Search. -e method for accurate searching not only
possesses the global searching ability, but also has the ad-
vantages of fast convergence and high accuracy. -e final
cost of all simulation results reaches a reasonably low value
(10-4 as the norm of the error vector for 8 state variables).

2.5. Comparison with theModel of Rigid Body and the Canine.
To investigate the effect of the spinal joints on the quadruped
motion, a model with rigid body is used as the baseline
comparison, as shown in Figure 2.-is model has equivalent
system parameters to the model with spinal joints. To reduce

kf

l f
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φm
lm

(xm, zm)

(xf, zf)
(xh, zh) lh

φh
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γi

l 0
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z

Figure 1: Quadruped model with two spinal joints.
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the difference between two models as far as possible, the
model with rigid body possesses the same stiffness and attack
angle of the legs to the model with two spinal joints.

In the simulation process, we change the velocity to
compare the dynamic performances of two models. -e
biological research found that the trotting gait of the Canine
has a range of Froude numbers [26] (1∼2.2, by
Fl � v/(gl0)

− 2). So, we choose the velocity range, 0.84m/
s∼3.74m/s (Fl: 0.42∼1.87), as the investigating region, which
covers a lower velocity range.

First, the stability of periodic motion is compared be-
tween two models based on the Floquet theorem [27, 28].
-e stability of the model is estimated according to the
eigenvalue of the Jacobian matrix A, which is numerically
computed in the following equation:

ΔXk+1
� Xk+1

− X∗ ≈
zP(X)

zX

􏼌􏼌􏼌􏼌􏼌􏼌􏼌X∗
· ΔXk

� A · ΔXk
. (10)

Equation (10) indicates that the disturbance ΔX of the
fixed point X in the stride-to-stride mapping leads to a
deviation in the next stride through the Matrix A. -e ei-
genvalue of the Jacobian matrix A is important. If there is an
eigenvalue larger than 1, the disturbance will accumulate
over the time and the dynamic motion will leave the limit
cycle finally. On the contrary, the motion with all

eigenvalues smaller than 1 will makes the disturbance
eliminated and keeps stable by its own self-stability.
-erefore, the maximum magnitude of the eigenvalues
max(||eig(A)||) is used as themetric to assess the self-stability
behavior.

Second, the ground reaction force (GRFs) is used as the
metric to evaluate the compliance performance. -e lower
GRFs mean that for mammals or real quadruped robots, the
interaction with the ground is compliant and the payload
and damage on the leg are small. -rough the comparison
between two models, the effect of the spine on the com-
pliance performance can be found.

2.6. Controller of the Model. It is known that although the
passive model is able to achieve periodic motion, the motion
is nominally stable [12]. When the eigenvalues of the motion
are larger than 1, especially, the model cannot reject dis-
turbances. To improve the stability of the model, a hybrid
controller is used, as shown in Figure 3.-e feedback control
based on the virtual constraints [29] is applied for the
control of the continuous states to analyze the effects of the
coordination between the spinal joints on the motion sta-
bility. -e linear quadratic regulator (LQR) [30] is applied
for the control of the discrete states to adjust the attack angle
at every half cycle.

Table 1: Related variables of the model with two spinal joints.

Variables Values Parameter
[mf, m, mh] [7, 6, 7] (kg) Mass of each part of the body
[Ifc, Imc, Ihc] [0.2, 0.04, 0.2] (kg∗m2) Inertia of each part of the body
[lf, lm, lh] [0.159, 0.076, 0.159] (m) Half of length of each part of the body
[ksf, ksh] [∗, ∗] (N∗m/rad) Stiffness of spinal joints
[kf, kh] [∗, ∗] (N∗m) Stiffness of forelimb and hindlimb leg
[αf, αh] [∗, ∗] (rad) Attack angle of forelimb and hindlimb leg
l0 0.4 (m) Rest length of the legs
ts 0.08 (s) Predefined swing time
[x, z] [∗, ∗] (m) Coordinate of the middle body
[φm, φf, φh] [∗, ∗, ∗] (rad) Pitch angle of each part of the body
[phase0] [3, 1, 1, 3] Initial phase of each leg
[ftdx0] [0.1441, −0.1089, −0.5862, −0.3331] (m) Initial foot position of each leg
δ0 [0, 0, 0, 0] Initial state coefficient of each leg

(x, z) φ

kh

l 0 kf

x
O

z

l

Figure 2: Quadruped model with rigid body.
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For the continuous states, the spinal joints of the model
are chosen as the controlled joints, and the control object is
to maintain the coordinated relation between the spine and
the legs. -e relationship between the generalized coordi-
nates is a holonomic constraint that does not work on the
model. -erefore, the output,

y � h(q) ≔ H · q − hd(q), (11)

is termed a virtual constraint that is required to be equal to
zero [29], where y indicates the angular output of two spinal
joints which is the deviation of actual motion and expected
motion. H is the mapping matrix from the generalized
coordinates to the rotation angles of two spinal joints (θf �φf
−φm, θh �φm −φh). hd(q) indicates the expected rotation
angles of the spinal joints that are restrained by the rela-
tionship with the generalized coordinates. Because x is one
of the generalized coordinates and is directly related to the
leg motion, it is selected as the independent variable in the
constraint. Importantly, x is a monotone increasing variable.
-e expected rotation angles can be expressed as the Nth
degree polynomial of x:

hdi(q) � 􏽘

N

k�0
ai,ks

k
i (q), i � f, h, (12)

where ai,k indicates the kth coefficient of the Nth degree
polynomial of front or hind spinal joint. -e role of s(q) is to
transfer the function depending on time into the function
depending on generalized coordinate x, which is expressed
as follows:

s(q) �
xm − xcycle − xd,min

xd,max − xd,min
, (13)

where xd,min and xd,max indicate the minimum and maxi-
mum displacement of the expected motion in half cycle. xm
and xcycle indicate the current position and the position
recorded at the half cycle event.

-e expected motion is a nominal motion, which results
from the passive motion without controller. -e virtual

constraint can be achieved with a feedback controller. -at
is, the function of the feedback controller is to guarantee the
angular motion of the spinal joints and its coordination with
the legs as the behavior that passive model shows. -erefore,
the input actuators are set in parallel with the passive spinal
joints. -e control torque u is set as the following form:

u � u∗ + v,

u∗ � − LgLfh􏼐 􏼑
− 1

L2
fh(x),

v � − LgLfh􏼐 􏼑
− 1

KP · y + KD · _y( 􏼁,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

where LgLfh andL2
fh are the Lie derivatives of the output

function, which is computed from the second derivatives of
the output function (11):

€y �
z

zq
zh
zq

· _q􏼠 􏼡
zh
zq

􏼢 􏼣f(x)

􏽼√√√√√√√√√√􏽻􏽺√√√√√√√√√√􏽽
L2

f
h

+
zh
zq

g(x)

􏽼√√√􏽻􏽺√√√􏽽
LgLfh

u.
(15)

By substituting the controller (14) into equation (15), the
following equation can be obtained:

€y + KD _y + KPy � 0. (16)

-is equation is independent of the state space equa-
tions.KP andKD are the gain matrixes.-erefore, the system
can be in the critical damping state when the gains meet
KP > 0,KD � 2

���
KP

􏽰
.

For the discrete states, due to the lack of dynamic effects
of the legs during the swing phase, the attack angle us � [αf,
αh]T is the main control input, which is used to eliminate the
deviations of the states. -e Poincaré Mapping can be
expressed as X(k+ 1)�P(X(k), us(k)). By the differencing
linear method, equation (10) is transferred into the following
discrete form:

ΔX(k + 1) � A · ΔX(k) + B · Δus(k), (17)

where ΔX�X−X∗ indicates the controlled states.
Δus � us − u∗s indicates the control input of the discrete

u

Discrete state feedback controller

Continuous state feedback controller

Y
Half cycle?

N

us

Xl 0

lh
l f

lm

Figure 3: Control block diagram of the hybrid controller.
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system. A and B are state matrix and control matrix, which
are computed:

A �
zP
zX

􏼌􏼌􏼌􏼌􏼌􏼌􏼌X�X∗,us�u∗s

,

B �
zP
zus

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌X�X∗,us�u∗s

.

(18)

According to the optimal control theory, the feedback
control based on the discrete events is

Δus � −KΔX, (19)

where K is the gain matrix of state feedback, which is
computed by the Riccati equation. -erefore, the control
input for discrete states is

us(k) � u∗s − K X(k) − X∗( 􏼁. (20)

3. Results and Discussion

3.1. Motion of the Model with Two Spinal Joints. -e dy-
namics characteristics of the model are investigated at dif-
ferent velocities taking 1m/s as the interval in the range
0.84m/s∼3.74m/s (Fl: 0.42∼1.87). A large amount of sim-
ulation operations is carried out to find the suitable initial
system parameters and state parameters to achieve the pe-
riodic motion at different velocities. As a result, the motion
presents the same characteristics in the velocity range.

Figures 4 and 5, respectively, show the dynamics char-
acteristics and the leg behavior of the periodic motion at
2.44m/s (Fl: 1.22). It is found that the springy legs in the
model experience a process of compression and extension
like the behavior of the SLIP model [2]. -e feature is not
changed even though the spine is added. As a result, the
spine coordinated with the springy legs according to a
specific dynamics characteristic. -e ground reaction forces
and the gait sequence of four legs presented in Figures 5(a)
and 5(d) meet the features of the trotting motion, in which
the diagonal legs nearly move simultaneously.

In addition, through a large amount of simulations at
different velocities, there is an interesting phenomenon that
the rotation amplitude of the spinal joints has nothing to do
with the set velocity, as shown in Figure 6. During the stance
phase, the front and hind body rotate at opposite direction
aiming at dropping the barycenter of the middle body.
During the swing phase, the front and hind body rotate with
a smaller amplitude at opposite direction aiming at raising
the barycenter of the middle body. -is is a motion pattern
accompanied with the oscillation of barycenter of the middle
body.

-e finding in the simulation can be explained according
to the function of the spine at trotting gait. -e biological
research that studies the function of spinal muscle in dif-
ferent gaits reveals that when the motion at trotting gait has
larger motion acceleration, the muscle in the spine will be
induced to generate the bending motion in the sagittal plane,
which is used to balance the forces and bigger vertical os-
cillation. In the simulation process, the suitable stiffness

leads to the normal motion. It means that the motion pattern
of the spinal joints and corresponding elastic torque can not
only stabilize the motion oscillation, but also balance the
forces in the springy legs.

3.2. Dynamics Characteristics at Different Velocities. -e
stiffness of the spinal joints and legs, the attack angle of the
legs, and the vertical displacement of the body in the solution
space are chosen to investigate the changing of the dynamic
features of the periodic motion at different initial velocity.

In Figures 7(a) and 7(b), the required stiffness of the
spinal joints and the legs at different velocities are recorded.
It is found that no matter at which velocity the model is
moving, the stiffness of the front spinal joint is larger than
that of the hind spinal joint. -e stiffness of the hind joint
nearly keeps constant at different velocities and the stiffness
of the front joint has an increasing tendency with the velocity
increasing. It is similar to the structure feature of mammals.
-e thoracic vertebra has a hard and straight structure to
protect the internal organs, and the lumbar vertebra pos-
sesses a soft structure to bend to adapt to different gaits [31].
It is regarded that the soft feature of the hind spinal joint is
ensured with the constant small stiffness. -e changing of
the stiffness of the front spinal joint means that a larger
stiffness is needed to increase the output torque to balance
the inertia effect caused by the increasing velocity. It also
coordinates with the stiffness changing of the legs to adapt to
a higher speed locomotion.

-e stiffness characteristic of the legs shown in
Figure 7(b) is consistent with the fact that at a higher ve-
locity, the leg with a relative low stiffness [32] allows for
ensuring compliance and absorbing the large kinetic energy
into the potential energy, which eliminates the possibility of
occurring of high frequency oscillation and reduces the
damage on the legs. In addition, the matching between the
stiffness of front spinal joint and hind spinal joint is also used
to coordinate with the legs in order to counteract the effect of
ground reaction forces on the body stability. -erefore, it is
suggested that the suitable stiffness combination of two
spinal joints and four legs should be established to generate
the self-stable periodic trotting motion for the model
[12, 14].

It is found in Figure 7(c) that with the velocity in-
creasing, the vertical displacement decreases. It means that
when the legs are lifted off the ground the angle relative to
the vertical direction is bigger at a higher speed. Meanwhile,
the attack angle increases (Figure 7(d)). As a result, to obtain
the periodic motion with a higher speed, the bigger stride
length and swing range of the leg are necessary for the model
with two spinal joints. Overall, the model with two spinal
joints is able to be used as the template of the quadruped
trotting motion and to reflect the coordination between the
spine and the legs.

3.3. Comparison between TwoModels. -e eigenvalue of the
Jacobian matrix represents the self-stable feature of the
periodic motion when the motion states of the model
produce some deviations caused by other disturbances. In
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Figure 8(a), it is found that the variation tendencies of the
eigenvalues of the two models are almost the same. -e
difference of the values is also small. -at means compared
with the model with rigid body, the added spine has no
obvious effects on the local stability which is numerically
computed to reflect the sensibility to the initial small per-
turbations. -e two models possess the same velocity range
(2.14m/s–2.64m/s) in which the maximum magnitude of
the eigenvalues is smaller than 1. In addition, it is worth
noting that the starting point of the velocity area whose

eigenvalue is smaller than 1 is close to the Froude number
(2m/s, Fl: 1) at which the mammals transform from the
walking gait to trotting gait.

Figure 8(b) shows the peak ground reaction forces of
forelimb and hindlimb of the two models. It is found that the
peak GRFs of the model with two spinal joints are all smaller
than those of themodel with rigid body in the range of Froude
numbers of Canine’s trotting gait (Fl: 1∼2.2). Furthermore, it
is interesting that reduction is more obvious in the range
where the eigenvalues are smaller than 1. -e maximum
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reduced amplitude of the peak forces can reach 90N. As a
result, the added spine has an important effect on the trotting
motion. It has the function of reducing the ground reaction
forces and improving the compliant interaction with the
ground. In addition, it is found that when the velocity is
higher than 2.64m/s, both the stiffness and GRFs of the
forelimb will be bigger than those of the hindlimb.

3.4. Control for the Model at Trotting Gait. As described
above, the periodic trotting motion of the model with two
spinal joints is nominal. Due to the existence of the nu-
merical errors in the initial states, the model will lose stability
if the maximum eigenvalue is bigger than 1 at one velocity.
Figure 9 shows the feature of the ground reaction forces
imposed on the passive model at 1.84m/s. During three
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cycles of motion, the model loses the support of the legs and
falls down because of the accumulation of the errors.

Figure 10 shows the ground reaction forces of the models
when they move at low speed and high speed, which include
the speeds whose maximum eigenvalues are bigger than 1. It
is found that they all fall down when the control has not been

added. Furthermore, the bigger the maximum eigenvalue is,
the more quickly the model loses stability. While the control
input whose purpose is to ensure the motion coordination is
applied into the model, the model will adjust the motion
state through a few cycles. -en, the model will enter the
stable pathway. Meanwhile, the ground reaction forces reach
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a stable state after a period of fluctuation.-is means that the
coordination between the spine and leg contribute to the
stable motion.

3.5. Quadruped Robot Based on theModel. -e above results
explain the effects of the spine on improving the perfor-
mance of the quadruped motion during the trotting gait. It
contributes to guide the design and development of the
quadruped robot. Hence, the physical prototype of the
quadruped robot is designed and established based on the
quadruped model, as shown in Figure 11. It has two
compliant spinal joints which is achieved by compliant
control methods. -e legs have two freedoms, hip joint and
knee joint. -e knee joint is actuated by the motor through
the link mechanism. -erefore, the motors are all placed on
the body.-rough the gait planning and motion control, the
trotting motion is achieved, as shown in Figure 12. It means
that the quadruped robot with two spinal joints is able to
move at trotting gait.

In order to demonstrate the effect of the two spinal joints
on the motion performance as described above. -e com-
parative experiments are carried out. In the experiments, the
quadruped robot is controlled in two modes. Five groups of
experiments in which the quadruped robot is able to
maintain steady periodic motion are carried out and
recorded. -e ground reaction forces of legs are collected by
the force sensor in the foot, and the torque of the leg joint is
computed according to the motor torque and the reduction
ratio. In these two modes, the legs are all controlled by the
impedance control methods. In order to reduce the differ-
ences between these two modes, the structure of the
quadruped robot is maintained invariant. -e quadruped
robot possesses two spinal joints. -e only difference is the
applied control method. In the first mode, the spinal joints
are controlled by position control methods to maintain the
fixed position, which is considered as the “rigid” spine due to
the ‘stiff’ feature of position control. In the second mode, the
spinal joints are controlled by the compliant control
methods. In the reality motion of the quadruped robot, the

First cycle

Second cycle

Figure 12: Trotting motion of the quadruped robot.

Figure 11: Quadruped robot with two spinal joints.
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spinal joints show very small amplitude of motion and make
the robot keep compliant interaction with the ground by the
output compliant torque.

Table 2 shows the peak ground reaction forces and the
peak torque of the leg joint in the experiments, in which the
mean indicates the average value of five groups, and the SD
indicates the standard deviation of these experimental
sample data. Figure 13 shows the curves of the ground
reaction forces when the quadruped robot controlled by two
modes moves in one group of these experiments. -e red
dashed line and black solid line indicate the first mode and
second mode, respectively. It is found from the table and
figure that the peak ground reaction forces of the legs show
obvious decline, which meant that when the compliant
spinal joints are added, the interaction between the legs with
the ground is improved. In addition, it is found that the
torque of the leg joints has a small range of reduction when
the compliant control is applied into the spinal joints.
Hence, the comparative experiments reflect the effect of the
spinal joints on the motion performance, especially the
interaction with the ground.

4. Conclusions

In this paper, a model with two passive spinal joints is
proposed to study the effects of the spine motion on the

performance of the quadruped trotting gait. It reveals that
the quadruped trotting motion is able to be described by this
model because of the similarity of the feature of the gait and
stiffness to the mammal. It is suggested that the suitable
stiffness combination of the spinal joints and legs plays an
important role in the periodic motion creation. -ere is an
interesting finding that the spinal joints have specific motion
at different velocities. By comparing with the spine motion
of the model with rigid body, it is found that although the
rotation angle of the spinal joints is very small, the spinal
joints capture important influences on stabilizing the forces
and making the interaction with the ground more compliant
in a special velocity range. In addition, a hybrid controller is
added and replaced the passive spinal joints in the model.
-e results reveal that the control based on the kinematic
coordination between the spinal joints can eliminate the
initial perturbation and obtain a real stable periodic motion.

-is study not only helps us to have a good under-
standing of the coordination between the spinal joints but
also comprehends the effects of the spine on the trotting
motion. Hence, the prototype of the quadruped robot with
two spinal joints was established, and the trotting motion
was also achieved. Finally, the experiments of quadruped
robot demonstrate the effect of the spinal joints on the
motion performance, especially the interaction with the
ground. Furthermore, the simulation results contribute to

Table 2: Peak ground reaction forces and torque by two control modes.

Control mode First mode Second mode
Mean SD Mean SD

Peak GRF (N) Front leg 90.9 9.0 82.3 14.6
Hind leg 73.0 15.3 59 18.1

Peak torque of leg joints (N∗m)

Front hip 12.2 0.7 11.8 1.0
Front knee 14.6 0.4 13.8 0.5
Hind hip 16.2 1.9 15.0 1.8
Hind knee 15.0 1.0 15.4 1.4
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expanding the model to a large range of gaits and guiding us
to developing the quadruped robots which can move at a
large range of velocities and gaits. In the future, the dynamic
analysis and the motion control of the quadruped robot will
be further carried out.

Data Availability

-e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

-is work was supported by the National Natural Science
Foundation of China (Grant no. 51705382).

References

[1] F. Lacquaniti, R. Grasso, and M. Zago, “Motor patterns in
walking,” News in Physiological Sciences, vol. 14, no. 1,
pp. 168–174, 1999.

[2] M. H. Dickinson, C. T. Farley, R. J. Full et al., “How animals
move: an integrative view,” Science, vol. 288, no. 5463,
pp. 100–106, 2000.

[3] R. Blickhan, “-e spring mass model for running and hop-
ping,” Journal of Biomechanics, vol. 22, no. 11-12,
pp. 1217–1227, 1989.

[4] M. M. Ankaralı and U. Saranlı, “Analysis and control of a
dissipative spring- mass hopper with torque actuation,” Ro-
botics: Science & Systems Vi, 2010.

[5] H. E. Orhon, C. Odabas, I. Uyanik et al., “Extending the lossy
spring-loaded inverted pendulum model with a slider-crank
mechanism,” in Proceedings of the the 17th International
Conference on Advanced Robotics, Istanbul, Turkey, July 2015.

[6] G. Garofalo, C. Ott, and A. Albu-Schaffer, “Walking control of
fully actuated robots based on the bipedal SLIP model,” in
Proceedings of the IEEE International Conference on Robotics
and Automation, Saint Paul, MN, USA, May 2012.

[7] Z. Li, Y. Tan, S. Zeng, and H. Y. Luo, “Dynamics analysis and
planning for a specific leg model with A variable stiffness
element,” International Journal of Simulation Modelling,
vol. 4, no. 16, pp. 707–719, 2017.

[8] P. Nanua and K. J. Waldron, “Energy comparison between
trot, bound, and gallop using a simple model,” Journal of
Biomechanical Engineering, vol. 117, no. 4, pp. 466–473, 1995.

[9] M. Hildebrand, “Motions of the running cheetah and horse,”
Journal of Mammalogy, vol. 4, no. 40, pp. 481–495, 1959.

[10] R. M. Alexander, N. J. Dimery, and R. F. Ker, “Elastic
structures in the back and their role in galloping in some
mammals,” Journal of Zoology, vol. 207, no. 4, pp. 469–482,
2009.

[11] B. M. Haueisen, Investigation of an Articulated Spine in a
Quadruped Robotic System, -e University of Michigan, Ann
Arbor, MI, USA, 2011.

[12] Q. Cao and I. Poulakakis, “Quadrupedal bounding with a
segmented flexible torso: passive stability and feedback
control,” Bioinspiration & Biomimetics, vol. 8, no. 4, p. 46007,
2013.

[13] Q. Cao and I. Poulakakis, “On the energetics of quadrupedal
running: predicting the metabolic cost of transport via a
flexible-torso model,” Bioinspiration & Biomimetics, vol. 10,
no. 5, p. 56008, 2015.

[14] Q. Deng, S. Wang, W. Xu, J. Mo, and Q. Liang, “Quasi passive
bounding of a quadruped model with articulated spine,”
Mechanism and Machine Deory, vol. 52, pp. 232–242, 2012.

[15] X. Wei, Y. Long, C. Wang, and S. Wang, “Rotary galloping
with a lock–unlock elastic spinal joint,” Proceedings of the
Institution of Mechanical Engineers, Part C: Journal of Me-
chanical Engineering Science, vol. 229, no. 6, pp. 1088–1102,
2014.

[16] W. Z. Li, B. R. Wang, and D. J. Chen, “Gait planning for
quadruped robot with parallel spine,” Journal of Zhejiang
University (Engineering Science), vol. 52, no. 7, pp. 1267–1274,
2018.

[17] Z.Wei, G.M. Song, andH. Y. Shun, “Kinematic modeling and
trotting gait planning for the quadruped robot with an active
spine,” Journal of Southeast University (Natural Science
Edition), vol. 49, no. 6, pp. 1019–1025, 2019.

[18] K. Weinmeister, P. Eckert, H. Witte, and A. J. Ijspeert,
“Cheetah-cub-S: steering of a quadruped robot using trunk
motion,” in Proceedings of the 2015 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR),
West Lafayette, IN, USA, October 2015.

[19] Q. Zhao, H. Sumioka, X. Yu, K. Nakajima, Z. Wang, and
R. Pfeifer, “-e function of the spine and its morphological
effect in quadruped robot locomotion,” in Proceedings of the
2012 IEEE International Conference on Robotics and
Biomimetics, Guangzhou, China, December 2012.

[20] C. D. Remy, K. Buffinton, and R. Siegwart, “MATLAB
framework for efficient gait creation,” in Proceedings of the
International Conference on Intelligent Robots and Systems,
San Francisco, CA, USA, September 2011.

[21] T. Mcgeer, “Passive dynamic walking,” De International
Journal of Robotics Research, vol. 9, no. 2, pp. 62–82, 1990.

[22] J. J. Robilliard, T. Pfau, and A. M. Wilson, “Gait character-
isation and classification in horses,” Journal of Experimental
Biology, vol. 210, no. 2, pp. 187–197, 2007.

[23] M. H. Raibert, “Running with symmetry,” De International
Journal of Robotics Research, vol. 5, no. 4, pp. 3–19, 1986.

[24] M. Clerc and J. Kennedy, “-e particle swarm—explosion,
stability, and convergence in a multidimensional complex
space,” IEEE Transactions on Evolutionary Computation,
vol. 6, no. 1, pp. 58–73, 2002.

[25] S. Pouya, M. Khodabakhsh, A. Spröwitz, and A. Ijspeert,
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