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Timoshenko’s theory is adopted in order to accurately describe the freely vibrating dynamics of a multilink flexible manipulator. It
is herein presented an analytical modelling strategy that extends previous works through a more refined model which accounts for
elastic complicating effects along with lumped inertial loads which are typically mounted on joints of manipulators; in this regard,
more accurate results are provided. The eigenproblem is presented from an analytical point of view through a matrix formulation,
thus providing an essentially closed formula. Apart from the limitations of the implementing calculator, the formulation can take
into account an arbitrary number of links in an arbitrary settled configuration, thus allowing relevant analytical analysis and
avoiding the need to recur to nonimmediate numerical schemes. Once the analytical model is introduced, solutions are compared
to both those achieved by previous models and those obtained by a finite elements method.

1. Introduction

Within the frame of robotic applications, high-performance
research has recently pushed designers to realize lighter
multi-link manipulators; these requirements, indeed, ensure
the attainment of high velocities by keeping energy con-
sumptions low and smaller actuators/brakes. The result is
a more manageable system which, however, presents non-
negligible problems related to its higher deformability along
with large displacements. The high deformability is mainly
responsible for induced vibrations during the operations,
and, therefore, the need to implement a suitable controller,
aimed at significantly reducing the vibrations, becomes a
logical consequence. Moreover, when large displacements
are contextually involved within the mathematical model,
further complications arise, for example, nonlinear strain-
displacement relations, noninertial frame effects, time-
varying boundary conditions.

In recent decades, many authors have dealt with the
above-mentioned problem, and, in this regard, a certain
number of models, along with currently open mathematical

questions, have been identified. A perusal of these references
shows two main problems which the researchers are faced
with: (i) the need to implement the dynamic analysis of a
local vibrating behaviour and (ii) the capability of extending
such a local vibratory analysis to domains larger than
those close to an established geometrical configuration. The
former problem is essentially related to the description of
vibrating linear systems around their stable and static con-
figuration, whilst the latter problem involves the description
of large displacements. It is in this mentioned context that a
controlling strategy must be implemented.

Several researchers have, in the past, analysed robotic
manipulators with deformable links in order to investigate
the related dynamics and/or controllers. Significant contri-
butions can be attributed to [1, 2], which are related to
single link manipulators carrying a payload at one end; in
particular, Bellezza et al. [1] deal with an Euler-Bernoulli
beam model whilst White and Heppler [2] consider the case
of one only flexible slewing beam based on Timoshenko’s
theory. Recently, Chaolan et al. [3] analyzed only one flexible
hub-beam system by accounting for the influence of shear
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and axial deformation and thus by covering the complexity
of dealing with large deformations of the particular system
investigated (i.e., one hub-beam).

Ower and Van de Vegte [4] based on an Euler-Bernoulli
beam model, along with a Lagrangian approach, presented
a flexible manipulator model; their analysis did not involve
large displacements, rather the vibration is investigated
in the neighbourhood of an established configuration; in
this regard the problem is linearized and, therefore, a
linear transfer function matrix has a sense in the discussed
frequency domain.

Tomei and Tornambe [5], again on the base of an Euler-
Bernoulli beam, developed an approximate model through a
Lagrangian approach and solved the equations by using the
Ritz method. The authors also reported the set of explicit
equations for one- and two-link models only.

De Luca and Siciliano [6] used a similar order of approx-
imation to that of Tomei and Tornambe [5] and, in addition,
assumed simplifying end mass-boundary conditions in order
to settle the set of governing equations. In spite of the
promise to investigate large displacements, the equations
of the model of De Luca and Siciliano [6] were used to
analyze the vibratory behaviour of only two links in the
neighbourhood of an established configuration; this was
mainly caused by the fact that the mode shapes became
time-varying for the mass boundary conditions, indeed, time
varying.

Chen [7] established the generalized dynamic model for
a planar n-link flexible manipulator basing the relevant
analysis on a similar order of approximation of the previous
two discussed references.

Lee [8] mentions a certain incompatibility in dealing
with the modelling of flexible robots with the bending
mechanism through the conventional Lagrangian approach.
In particular, Lee [8] raises a question regarding certain free
link elongations and the need to include this influence in
order to reduce modelling inaccuracy, which was the case
of previous works. Therefore, in the hypothesis of an Euler-
Bernoulli beam, Lee [8] proposes a new link deflection model
to fix the mentioned incompatibilities. Moreover, Zhang et
al. [9] pointed out that the assumed-mode method leads
to inaccurate models for flexible links because mode shapes
change continuously as the solution proceeds in time (i.e.,
as mentioned beforehand, large displacements involve non-
linear time-varying systems); in this regard Zhang et al. [9]
stressed the need to develop an accurate model in order
to investigate and design reliable control techniques, and,
therefore, obtained a system of partial differential equations
for a two-link Euler-Bernoulli manipulator by using the
principle of Hamilton.

In summary, the analysis of the relevant literature
essentially shows models of manipulators developed on the
base of Euler-Bernoulli beams; a part of these references
introduce nonsharable approximations and/or solve the
relevant equations by using the assumed-mode method
within the frame of time-varying systems. Within the frame
of the difficulties related to the mathematical formulation of
the problem herein being dealt with, Pascal [10] could also
deserve further attention. In any case, a full mathematical

description/solution of (i) local vibrations (ii) superimposed
on large displacements of flexible multi-link manipulators
cannot be considered a closed question yet neither in its
single aspects (i) or (ii) nor on the whole (i) and (ii).

This work aims at introducing a mathematical model
which is able to analytically describe the freely vibrating
dynamics of a robotic manipulator assembled through
multiple links around static stable configurations established
a priori. In this regard, apart from the model approximations
related to the classical (Euler-Bernoulli) or uniform shear
deformable theory (Timoshenko) in linear elasticity; the
governing equations do not contain any approximation. The
mathematical formulation in this paper is introduced in such
a manner that a general configuration for multilink can
be easily settled by recursively assembling blocks in matrix
equations. The model herein dealt with must be considered
superior to the previously published models at least for
being able to deal with complicating effects such as uniform
transversal shear effects along with concentrated masses on
the joints. To the best of the authors’ knowledge, only the
works by Milford and Asokanthan [11] and di Castri et al.
[12] could be considered of comparable accuracy and, in
spite of this conviction, it will be herein shown, by numerical
comparisons, as the model proposed in this paper can
either contain the previous two works [11, 12] as particular
cases, and can recover large discrepancies occurring from the
model presented in [11].

It is stressed that the modal characterization of the system
presented by Milford and Asokanthan [11] derived from
partial differential equations governing the free vibrations
of a two-link flexible manipulator only and neglected the
influence of the beam-by-beam axial dynamics. In this paper
the modal analysis of a multi-link flexible manipulator is
presented by using the Timoshenko beam theory. Moreover,
an analytical treatment of the boundary conditions and
the corresponding formulation also includes the local axial
dynamics of the structure. The axial dynamics could be
neglected at a single level beam (as a minor and decoupled
influence), but it should be included in the general config-
uration of a robotic manipulator due to its global coupling
with the flexural behaviour. Therefore, the present model,
being able to efficiently and accurately extract eigendata,
aims at founding bases for simulating the dynamic behavior
(free and forced) of multilink flexible manipulators, thus also
allowing to design control strategies for the same structures.
Generally speaking, the author is required to choose between
Timoshenko and Euler-Bernoulli formulations, depending
on the desired accuracy on predictions but keeping in mind
that axial contributions should never be neglected because
they are coupled with the flexural ones.

The modelling procedure is based on a modular mathe-
matical description; each link corresponds to a block in the
matrix formulation of the system, so that the addition or the
elimination of that link is equivalent to adding or deleting
its corresponding block. This new introduced formulation
enables the extraction of exact modal data without the need
to use numerical methods as, for example, the finite element
method which also requires convergence tests. Flexibilities
are assumed to be distributed along the links only, whilst
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joints are treated as rigid; the effect of this assumption on
modal data is discussed through several simulations.

A final numerical example is carried out by referring to
the structural parameters of a typical industrial manipulator
with three links used for the handling of loads. Simulation
results point out how some differences can exist between
the present model and the simplified ones. In order to
validate the model herein presented, for all the analyzed
cases the calculated frequencies are compared with those
achieved through a finite element package. Peculiar mode
shapes are also accurately depicted in order to offer a fruitful
comparison with respect to future results coming from more
accurate or approximate models.

The paper is organized as follows. In Section 2 the
multi-link manipulator model, the geometrical and mass
properties of the links, and the adopted reference systems
are presented; moreover, the partial differential equations
describing the system, the boundary conditions, and the
resolving technique used to calculate modal data in detail
are derived and discussed. Section 3 reports tables and
comments about the comparison between the proposed
model and those in [11, 12], while Section 4 is dedicated to
the industrial manipulator with three links by providing ana-
lytical and numerical results, and graphical representations
of the natural modes. Finally, in Section 5 conclusions are
drawn.

2. Theoretical Analysis

2.1. Problem Formulation. Based on the enumeration of
n links of a flexible multibody system (Figure 1), the
link-by-link nomenclature is represented in Figure 2 with
respect to its undeformed configuration. The manipulator
is restricted in the horizontal plane. The links are of
homogenous, isotropic and linearly elastic material with
constant cross-sections; they have length Li, cross-sectional
area Si, volumetric density ρi, Young’s modulus of elasticity
Ei, cross-sectional moment of inertia Ii, shear modulus Gi

and shear correction factor ki, for i = 1, . . . ,n, where n
is the number of links. Each link presents a rigid body
of mass Mi and moment of inertia Ji at its tip that for
i = 1, . . . ,n − 1 accounts for the presence of possible
joint motors; i = n can represent a payload. The effects
deriving from the geometrical offset between the joint axis
and the corresponding link attachment are neglected in
the mathematical formulation. The known uniform shear
deformable assumptions are taken into account within the
small deformation of linear elasticity.

The derivation of the modal data for each configuration
of the manipulator is dealt with by blocking the joints and
solving the corresponding differential eigenvalue problem.
In particular, the obtained results can depend on the
relative orientations between links; therefore, without loss
of generality, it will be assumed that the joint variable at
point O1 (we say θ1) always has null value. For a chosen
configuration, the manipulator is fixed at point O1 and
internal blocked joints at points Oi avoid relative rotations
between links.

0

1

· · ·

i− 1

i
n− 1 n

· · ·

Figure 1: The analyzed multibody system.

The coordinate system (O0,X0,Y0,Z0) is the global one
whilst the coordinate system (Oi,Xi,Yi,Zi) is associated to
link i. The origin of frame (Oi,Xi,Yi,Zi) is at point Oi and
the Xi-axis coincides with the undeformed axis of the ith
link. The angle between the X1 and X0 axes, that is, θ1, is
always null for the above-mentioned reasons, so that frame
(O0,X0,Y0,Z0) and frame (O1,X1,Y1,Z1) will be coincident;
the angle between the Xi and Xi−1 axes is denoted with θi,
and the set {θi : i = 2, . . . ,n} will define the configuration of
interest with respect to which natural frequencies and mode
shapes will be obtained.

In the assumption of small deformations, the coordinates
of a generic point Pi of the ith link, with respect to the corre-
spondent reference system (Oi,Xi,Yi,Zi), can be represented
by [xi + ui(xi, t)vi(xi, t)0]T , where the two functions ui(xi, t)
and vi(xi, t), respectively, represent the axial and transverse
displacements undergone by the considered point.

2.2. Mathematical Modelling. In the analysis of the ith link,
let ψi(xi, t) be the slope of the deflection curve when the
shearing force is neglected and βi(xi, t) the angle of shear in
the same cross-section; then the total slope of the deformed
axis is given by [13]

∂vi(xi, t)
∂xi

= ψi(xi, t) + βi(xi, t), (1)

where vi(xi, t) is the transverse deflection of the ith link
and ψi(xi, t) is the cross-section rotation produced by the
the bending component of deflection. According to the
Timoshenko beam theory, the stress-displacement relations
are given by the following equations:

Mi(xi, t) = EiIi
∂ψi(xi, t)
∂xi

,

Ti(xi, t) = kiGiSi

[
∂vi(xi, t)
∂xi

− ψi(xi, t)
]

,

Ni(xi, t) = EiSi
∂ui(xi, t)
∂xi

,

(2)

where ui(xi, t) is the axial displacement function, Mi(xi, t) is
the bending moment of the ith Timoshenko link, andTi(xi, t)
and Ni(xi, t) are the transverse shear force and the axial
force of the link, respectively. Considering the link subjected
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Figure 2: Notation describing of the multi-link flexible manipulators.

to the transverse distributed load qi(xi, t) and to the axial
distributed load pi(xi, t), the dynamic equilibrium equations
of stress are given by

∂Mi(xi, t)
∂xi

+ Ti(xi, t) = ρiIi
∂2ψi(xi, t)

∂t2
,

∂Ti(xi, t)
∂xi

− ρiSi ∂
2vi(xi, t)
∂t2

= −qi(xi, t),

∂Ni(xi, t)
∂xi

− ρiSi ∂
2ui(xi, t)
∂t2

= −pi(xi, t).

(3)

When substituting expressions (2) in these latter equa-
tions, we get a system of partial differential equations
the unknown axial displacement ui(xi, t), for the unknown
deflection vi(xi, t), and the unknown rotation ψi(xi, t)
describing the dynamics of the ith link:

EiIi
∂2ψi(xi, t)

∂x2
i

+ kiGiSi

(
∂vi(xi, t)
∂xi

− ψi(xi, t)
)

= ρiIi
∂2ψi(xi, t)

∂t2
,

(4)

kiGiSi

(
∂ψi(xi, t)
∂xi

− ∂2vi(xi, t)
∂x2

i

)
+ ρiSi

∂2vi(xi, t)
∂t2

= qi(xi, t),

(5)

EiSi
∂2ui(xi, t)

∂x2
i

− ρiSi ∂
2ui(xi, t)
∂t2

= −pi(xi, t). (6)

In particular, (4) and (5) are coupled through the
dynamics of the Timoshenko beam theory and describes two
coupled modes of deformation: one mode of deformation is
the transverse deflection of the link as measured by vi(xi, t)
and the other mode is the transverse shearing deformation
βi(xi, t), as indirectly measured by (1) and the bending
rotation ψi(xi, t). Finally, (6) is the mode of axial deformation
of the link, as measured by ui(xi, t).

For each link of the manipulator there will be a system
of partial differential equations describing the deformations

of the link; if we consider n links, 3 × n of such equations
will describe the overall system dynamics. By formulating the
exact boundary conditions, in the case of free vibration, it
will be possible to achieve the system differential eigenvalue
problem associated to a generic configuration, whose eigen-
values and eigenfunctions will represent the sought modal
data.

2.3. Modal Analysis. The free vibration problem of the
system is now considered; for such a case, the distributed
forces qi(xi, t) and pi(xi, t) are zero, and, in this regard, the
dynamics of the ith link is described by the following partial
differential equations:

EiIi
∂2ψi(xi, t)

∂x2
i

+ kiGiSi

(
∂vi(xi, t)
∂xi

− ψi(xi, t)
)

= ρiIi
∂2ψi(xi, t)

∂t2
,

(7)

kiGiSi

(
∂ψi(xi, t)
∂xi

− ∂2vi(xi, t)
∂x2

i

)
+ ρiSi

∂2vi(xi, t)
∂t2

= 0, (8)

EiSi
∂2ui(xi, t)

∂x2
i

− ρiSi ∂
2ui(xi, t)
∂t2

= 0. (9)

Coupled (7) and (8) can be reduced to a single equation
both for vi(xi, t) and ψi(xi, t), having [14]

EiIi
ρiSi

∂4vi(xi, t)
∂x4

i

− Ii
Si

(
1 +

Ei
kiGi

)
∂4vi(xi, t)
∂x2

i ∂t2

+
∂2vi(xi, t)

∂t2
+

ρiIi
kiGiSi

∂4vi(xi, t)
∂t4

= 0

(10)

for the transverse deflection vi(xi, t) and

EiIi
ρiSi

∂4ψi(xi, t)

∂x4
i

− Ii
Si

(
1 +

Ei
kiGi

)
∂4ψi(xi, t)

∂x2
i ∂t2

+
∂2ψi(xi, t)

∂t2
+

ρiIi
kiGiSi

∂4ψi(xi, t)
∂t4

= 0

(11)

for the rotation ψi(xi, t).
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Now, assuming separation of variables in the form

ψi(xi, t) = Ψi(xi)ejωt , vi(xi, t) = Vi(xi)ejωt,

ui(xi, t) = Ui(xi)ejωt
(12)

with natural frequency ω, (11), (10), and (9) can be, respec-
tively, expressed as ordinary differential equations in the
following form:

EiIi
ρiSi

Ψ′′′′i (xi) + ω2 Ii
Si

(
1 +

Ei
kiGi

)
Ψ′′i (xi)− ω2Ψi(xi)

+ ω4 ρiIi
kiGiSi

Ψi(xi) = 0,

(13)

EiIi
ρiSi

V ′′′′
i (xi) + ω2 Ii

Si

(
1 +

Ei
kiGi

)
V ′′
i (xi)− ω2Vi(xi)

+ ω4 ρiIi
kiGiSi

Vi(xi) = 0,

(14)

EiSiUi
′′(xi) + ω2ρiSiUi(xi) = 0, (15)

with unknown parameter ω and unknown functions Ψi(xi),
Vi(xi) and Ui(xi).

Now, given the above 3 × n relations, we need 6 × n
boundary conditions to completely define the differential
eigenvalue problem corresponding to an arbitrary configu-
ration of the multi-link manipulator; in fact, as will be seen
later, such a number of boundary conditions is equal to the
number of coefficients characterizing the spatial solutions of
(13), (14), and (15).

We observe that, for a chosen configuration, the bound-
ary conditions are formulated by writing relations between
forces and moments in correspondence to each joint section;
since the equilibrium conditions at inner blocked joints Oi

depend on the joint variables θi, it results that boundary
conditions are configuration dependent.

Figure 2 shows all the specified sections of the manipu-
lator for the formulation of the boundary conditions; they
correspond to the fixed joint at O1, where three equations
will be written, the inner joints Oi (i = 1, 2, . . . ,n) between
link i and link i−1, where we will have six equations for each
joint, and the free end of the structure, correspondent to the
end effecter, for which three other equations will be derived.
Such equations are herein immediately explicated:

(i) O1 section:

ψ1(x1, t)
∣∣
x1=0 = 0, (16)

v1(x1, t)|x1=0 = 0,
(17)

u1(x1, t)|x1=0 = 0, (18)

(ii) Oi section (i = 2, . . . ,n):

ψi−1(xi−1, t)
∣∣
xi−1=Li−1

− ψi(xi, t)
∣∣
xi=0 = 0, (19)

vi−1(xi−1, t)|xi−1=Li−1
sin θi + ui−1(xi−1, t)|xi−1=Li−1

cos θi

− ui(xi, t)|xi=0 = 0,

vi−1(xi−1, t)|xi−1=Li−1
cos θi − ui−1(xi−1, t)|xi−1=Li−1

sin θi

− vi(xi, t)|xi=0 = 0,

Ei−1Ii−1
∂ψi−1(xi−1, t)

∂xi−1

∣∣∣∣∣
xi−1=Li−1

+ Ji−1
∂2ψi−1(xi−1, t)

∂t2

∣∣∣∣∣
xi−1=Li−1

− EiIi
∂ψi(xi, t)
∂xi

∣∣∣∣∣
xi=0

= 0,

ki−1Gi−1Si−1

[
∂vi−1(xi−1, t)

∂xi−1
− ψi−1(xi−1, t)

]∣∣∣∣
xi−1=Li−1

+Mi−1
∂2vi−1(xi−1, t)

∂t2

∣∣∣∣∣
xi−1=Li−1

− EiSi ∂ui(xi, t)
∂xi

∣∣∣∣
xi=0

sin θi

− kiGiSi

[
∂vi(xi, t)
∂xi

− ψi(xi, t)
]∣∣∣∣

xi=0
cos θi = 0,

Ei−1Si−1
∂ui−1(xi−1, t)

∂xi−1

∣∣∣∣
xi−1=Li−1

+Mi−1
∂2ui−1(xi−1, t)

∂t2

∣∣∣∣∣
xi−1=Li−1

− EiSi ∂ui(xi, t)
∂xi

∣∣∣∣
xi=0

cos θi

+ kiGiSi

[
∂vi(xi, t)
∂xi

− ψi(xi, t)
]∣∣∣∣

xi=0
sin θi = 0,

(20)

(iii) EE section (end-effector)

EnIn
∂ψn(xn, t)

∂xn

∣∣∣∣∣
xn=Ln

+ Jn
∂2ψn(xn, t)

∂t2

∣∣∣∣∣
xn=Ln

= 0,

knGnSn

[
∂vn(xn, t)
∂xn

− ψn(xn, t)
]∣∣∣∣

xn=Ln

+Mn
∂2vn(xn, t)

∂t2

∣∣∣∣∣
xn=Ln

= 0,

EnSn
∂un(xn, t)

∂xn

∣∣∣∣
xn=Ln

+Mn
∂2un(xn, t)

∂t2

∣∣∣∣∣
xn=Ln

= 0.

(21)

Using solutions (12) into (16)–(21), the boundary condi-
tions for the analyzed reference configuration of the manip-
ulator reduce to

(i) O1 section:

Ψ1(x1)|x1=0 = 0, (22)

V1(x1)|x1=0 = 0, (23)

U1(x1)|x1=0 = 0, (24)
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Figure 3: Rectangular hollow section of the adopted industrial
manipulator.

(ii) Oi section (i = 2, . . . ,n):

Ψi−1(xi−1)|xi−1=Li−1
− Ψi(xi)|xi=0 = 0

Vi−1(xi−1)|xi−1=Li−1
sin θi + Ui−1(xi−1)|xi−1=Li−1

cos θi

− Ui(xi)|xi=0 = 0,

Vi−1(xi−1)|xi−1=Li−1
cos θi − Ui−1(xi−1)|xi−1=Li−1

sin θi

− Vi(xi)|xi=0 = 0,

Ei−1Ii−1Ψ
′
i−1(xi−1)

∣∣
xi−1=Li−1

− ω2Ji−1Ψi−1(xi−1)|xi−1=Li−1

− EiIiΨi(xi)|xi=0 = 0,

ki−1Gi−1Si−1
[
V ′
i−1(xi−1)−Ψi−1(xi−1)

]∣∣
xi−1=Li−1

− ω2Mi−1Vi−1(xi−1)|xi−1=Li−1
− EiSi U ′

i (xi)
∣∣
xi=0 sin θi

− kiGiSi
[
V ′
i (xi)−Ψi(xi)

]∣∣
xi=0 cos θi = 0,

Ei−1Si−1U
′
i−1(xi−1)

∣∣
xi−1=Li−1

− ω2Mi−1Ui−1(xi−1)|xi−1=Li−1
− EiSi U ′

i (xi)
∣∣
xi=0 cos θi,

+ kiGiSi
[
V ′
i (xi)−Ψi(xi)

]∣∣
xi=0 sin θi = 0,

(25)

(iii) EE section (end-effector):

EnInΨ
′
n(xn)

∣∣
xn=Ln − ω2JnΨn(xn)|xn=Ln = 0,

knGnSn
[
V ′
n(xn)−Ψn(xn)

]∣∣
xn=Ln − ω2MnVn(xn)|xn=Ln = 0,

EnSn U
′
n(xn)

∣∣
xn=Ln − ω2MnUn(xn)|xn=Ln = 0.

(26)

Equations (13)–(15), expressed for all the n links of the
structure, and the boundary conditions (22)–(26) define the

(a) (b)

(c) (d)

Figure 4: Test scenarios: (a) θ2,3 = 45◦, 45◦; (b) θ2,3 = −45◦, 90◦;
(c) θ2,3 = 90◦, −90◦; (d) θ2,3 = −90◦, −90◦.

differential eigenvalue problem for the multi-link manipula-
tor in the chosen nominal configuration; by determining the
constant ω such that the problem admits nontrivial solutions
Ψi(xi), Vi(xi), and Ui(xi) satisfying the boundary conditions,
it is possible to obtain natural frequencies and mode shapes
of the system for an assigned set {θi : i = 2, . . . ,n}. To this
end, let us consider (14) in the following form:

EiIiV
′′′′
i (xi) + ω2ρiIi

(
1 +

Ei
kiGi

)
V ′′
i (xi)

+ ω2

(
ω2 ρ

2
i Ii
kiGi

− ρiSi
)
Vi(xi) = 0.

(27)

From the characteristic equation associated to (27) it is
possible to calculate the following two solutions for each
ω frequency:

λ2
i1 =

−ρiIiω2(1 + (Ei/kiGi)) +
√
Ω

2EiIi
, (28)

λ2
i2 =

−ρiIiω2(1 + (Ei/kiGi))−√Ω
2EiIi

, (29)

where Ω is a positive or zero quantity defined by

Ω = ω4ρ2
i I

2
i

(
1 +

Ei
kiG i

)2

− 4EiIiω2

(
ω2 ρ

2
i Ii
kiGi

− ρiSi
)

= ω4ρ2
i I

2
i

(
1− Ei

kiG i

)2

+ 4ω2ρiSiEiIi.

(30)

It is observed that for ω = [(kiGiSi)/(ρiIi)]1/2 , solution
(28) is zero; this limit value of ω, denoted by ωlim, delimits
two different vibratory behaviors. In fact, for ω < ωlim,
(28) and (29), respectively, give two real solutions ±λi1
and two imaginary solutions ± jλi2, whereas, for ω > ωlim,
four imaginary solutions ± jλi1 and ± jλi2 are obtained. As
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can be easily verified, the frequency spectrum represented
by ω < ωlim is very broad if it is calculated with typical
parameters of numerous flexible manipulators; this allows
comprising many cases of real interest. For this reason, the
resolving procedure for the derivation of the modal data is
explicitly reported in the following, referring to the first of
the above “frequency behaviour conditions”; nevertheless, it
is remarked that for the case ω > ωlim, natural frequencies
and mode shapes should be derived in a very similar manner,
by only changing the general solutions of (13) and (14).

Now, for ω < ωlim, (13)–(15) have the solutions

Ψi(xi) = Ai1 cosh(λi1xi) + Ai2 sinh(λi1xi)

+Ai3 cos(λi2xi) + Ai4 sin(λi2xi),
(31)

Vi(xi) = Ai1 cosh(λi1xi) + Ai2 sinh(λi1xi)

+ Ai3 cos(λi2xi) + Ai4 sin(λi2xi),
(32)

Ui(xi) = Bi1 cos
(
ωxi
ci

)
+ Bi2 sin

(
ωxi
ci

)
, (33)

where ci = (Ei/ρi)
1/2 is the well-known longitudinal wave

speed.
The coefficients Aik and Aik (k = 1, . . . , 4) are not inde-

pendent, but related through (8); in fact, substituting solu-
tions (12) into it for vi(xi, t) and ψi(xi, t) and using expres-
sions (31) and (32), we obtain the following relations:

Ai1 = ti1Ai2,

Ai2 = ti1Ai1,

Ai3 = ti2Ai4,

Ai4 = −ti2Ai3.

(34)

where

ti1 = 1
λi1

(
λ2
i1 +

ω2ρi
kiGi

)
,

ti2 = 1
λi2

(
λ2
i2 −

ω2ρi
kiGi

)
.

(35)

Moreover, inserting (34) into (31), the final form for the
solution Ψi(xi) is given by

Ψi(xi) = ti1Ai1 sinh(λi1xi) + ti1Ai2 cosh(λi1xi)

− ti2Ai3 sin(λi2xi) + ti2Ai4 cos(λi2xi).
(36)

Now, the expressions for Ψi(xi), Vi(xi), and Ui(xi) and
the boundary conditions can be used to derive the frequency
equation of the manipulator; indeed, substituting (32), (33),
and (36) into (22)–(26) we obtain 6×n equations with 6×n
unknown coefficients Aik and Biz (i = 1, . . . ,n, z = 1, 2, and
k = 1, . . . , 4). These equations can be expressed in matrix
form as

M(ω)c = 0, (37)

where

c = [A11A12A13A14B11B12 · · ·Ai1Ai2Ai3Ai4Bi1Bi2

· · ·An1An2An3An4Bn1Bn2]T
(38)

is the 6 × n vector of modal coefficients characterizing
the eigenfunctions of the assigned differential eigenvalue
problem, whereas

M(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⌊
MO1 (ω)

⌋
3×6 [0]3×6 · · · · · · · · · [0]3×6[

MO2,1 (ω)
]

6×6

[
MO2,2 (ω)

]
6×6

[0]6×6 [0]6×6

[0]6×6
. . .

...

...
[

MOi.i−1 (ω)
]

6×6

[
MOi,i(ω)

]
6×6

. . .
...

...
. . . [0]6×6

[0]6×6 [0]6×6

[
MOn,n−1 (ω)

]
6×6

[
MOn,n(ω)

]
6×6

[0]3×6 · · · · · · · · · [0]3×6
[

MOEE (ω)
]

3×6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(39)

is a square matrix of order 6 × n and represents the system
characteristic matrix, associated with the chosen nominal
configuration of the multi-link manipulator. Such a matrix,
whose elements are functions of the natural frequency ω, is
a block matrix partitioned as in (39). In particular, MO1 (ω)

and MOEE (ω) are blocks corresponding with the two extreme
sections of the structureO1 and EE, respectively; these blocks
have dimensions 3 × 6 since both represent three boundary
conditions and, respectively, concern the modal coefficients
(A11,A12,A13,A14,B11,B12) and (An1,An2,An3,An4,Bn1,Bn2).
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Table 1: Parameters of the flexible manipulator test.

Parameter Symbol Units Link 1 Link 2

Length Li m 0.5 0.54

Thickness hi mm 0.61 0.6

Width bi cm 5.1 5.1

Mass mi kg 0.121 0.129

Stiffness EiIi N m2 0.203 0.193

Tip load mass Mi kg 0.61 0.224

Tip load inertia Ji kg m2 1.5 · 10−3 1.3 · 10−4

MOi.i−1 (ω) and MOi.i(ω) are 6 × 6 blocks and can be
interpreted as a matrix representation of the six boundary
conditions at the inner blocked joint Oi between link
i-1 and link i, concerning the twelve modal coefficients
(As1,As2,As3,As4,Bs1,Bs2), where s = i − 1, i. The blocks
of M(ω) and all their coefficients are explicitly reported in
Appendix A.

The homogeneous system (37) admits nontrivial solu-
tions for the unknown coefficients Aik and Biz, (i = 1, . . . ,n,
z = 1, 2, and k = 1, . . . , 4) once the determinant of the
characteristic matrix M(ω) is settled to be zero:

det[M(ω)] = 0. (40)

Equation (40) is a transcendental equation whose alge-
braic expression can be obtained through a symbolic code,
but it requires a root-finding algorithm to find its denumer-
able infinite number of roots ωj ( j = 1, 2, . . .), recognized
as natural frequencies. Corresponding to each of these
roots there are the eigenfunctions Vi( j)(xi) and Ui( j)(xi)
that represent the jth axial-transverse mode shape, and the
eigenfunction Ψi( j)(xi) that represents the jth cross-section
rotation mode shape. Based on relations (32), (33), and (36),
the required modal coefficientsAik( j) and Biz( j) for the above-
mentioned eigenfunctions are obtained by substituting the
natural frequency ωj into the characteristic matrix and
solving the homogeneous system of (37).

Referring to the axial and transverse local components
of deformation Vi( j)(xi) and Ui( j)(xi), let us suppose to rep-
resent the deformed shape of the multi-link manipulator in
the global coordinate frame (O0,X0,Y0,Z0); for this scope, it
is primarily observed that the homogeneous transformation
matrix (43) settles the coordinate transformation between
frames (Oi,Xi,Yi, Zi) and (Oi−1,Xi−1,Yi−1,Zi−1), for i =
1, . . . ,n, that is [15],

Ai−1
i =

⎛
⎝Ri−1

i di−1
i

0T 1

⎞
⎠, (41)

where Ri−1
i is the rotation matrix describing the orientation

of frame i relative to frame i− 1 and has the following form:

Ri−1
i =

⎛
⎜⎜⎝

cos θi − sin θi 0

sin θi cos θi 0

0 0 1

⎞
⎟⎟⎠, (42)

whilst di−1
i = [ Li−1 0 0 ]T denotes the position of the origin

Oi of coordinate frame i relative to coordinate frame i − 1;

by definition, we set L0 equal to zero. Now, the position
of any point of the ith deformed link is expressed in the
coordinate frame (Oi,Xi,Yi,Zi) through the homogeneous
position vector

pi =

⎡
⎢⎢⎢⎢⎢⎢⎣

xi +Ui( j)(xi)

Vi( j)(xi)

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (43)

Finally, such a point is directly expressed in the global
coordinate frame (O0,X0,Y0,Z0) through a succession of
consecutive coordinate transformations which give the fol-
lowing global transformation:

p0 = A0
1A1

2 · · ·Ai−1
i pi. (44)

Relation (44) expresses the existing mapping between
the coordinate reference frame (Oi,Xi,Yi,Zi) and the global
reference frame (O0,X0,Y0,Z0), regarding the deformation
components of the n links, and it allows representation
of the jth axial-transverse mode shape of the multi-link
manipulator for the chosen configuration, after Vi( j)(xi)
and Ui( j)(xi) have been derived from the corresponding
differential eigenvalue problem.

3. Comparison between Analytical Models
for a Two-Link Flexible Manipulator

The model presented in this paper is here compared with
two existing analytical models developed by Milford and
Asokanthan [11] and di Castri et al. [12] for a two-link
flexible manipulator. In particular, Milford and Asokanthan
[11] refer to a flexible structure and take into account
bending contributions only associated to the Euler-Bernoulli
beam theory, whilst di Castri et al. [12] takes into account
axial beam-by-beam deformations along with the mentioned
bending contributions. Moreover, Milford and Asokanthan
[11] evaluated only the first three natural frequencies by
using an extremely flexible manipulator.

The comparison illustrated in this section points out that
the proposed model, according to the Timoshenko beam
theory, allows to include the other two models as particular
cases; moreover, this section also shows that the model
based on the Euler-Bernoulli assumptions along with axial
contribution can provide a significant superior accuracy to
that concerning previous models.

Only when an extremely reduced thickness of the links
is used, the three compared models give the same results;
differently, once the thickness increases, errors become
remarkable and nonnegligible, also exceeding 100%. In this
regard, the new matrix formulation introduced by (39)
represents an operative mathematical means for executing
reliable vibration analysis of this kind of structure. We
remark that all data presented in this section refer to natural
frequencies without being concerned with a mode shape
analysis.

To realize the comparison, the three analytical models
were numerically implemented in MATLAB R2007a. The
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Table 2: First ten natural frequencies (Hz); two-link manipulator, see Table 1; (L1/h = 833.3, LT/h = 1733).

θ2 = 0◦ θ2 = 45◦ θ2 = 90◦

Mode EB† EB‡ T Δ† Δ‡ EB† EB‡ T Δ† Δ‡ EB† EB‡ T Δ† Δ‡

1 0.2002 0.2002 0.2002 0.00 0.00 0.2114 0.2114 0.2114 0.00 0.00 0.2490 0.2490 0.2490 0.00 0.00

2 0.9557 0.9557 0.9557 0.00 0.00 0.8269 0.8269 0.8269 0.00 0.00 0.6531 0.6531 0.6531 0.00 0.00

3 4.8901 4.8901 4.8901 0.00 0.00 4.8558 4.8558 4.8558 0.00 0.00 4.8255 4.8255 4.8255 0.00 0.00

4 9.0744 9.0744 9.0744 0.00 0.00 8.9924 8.9924 8.9924 0.00 0.00 8.9161 8.9161 8.9161 0.00 0.00

5 14.500 14.500 14.499 0.01 0.01 14.460 14.460 14.460 0.00 0.00 14.428 14.428 14.428 0.00 0.00

6 20.650 20.650 20.650 0.00 0.00 20.579 20.579 20.578 0.00 0.00 20.535 20.535 20.534 0.00 0.00

7 36.447 36.447 36.446 0.00 0.00 36.298 36.298 36.297 0.00 0.00 36.150 36.150 36.149 0.00 0.00

8 36.746 36.746 36.745 0.00 0.00 36.756 36.756 36.755 0.00 0.00 36.812 36.812 36.811 0.00 0.00

9 62.872 62.872 62.870 0.00 0.00 62.759 62.760 62.757 0.00 0.00 62.682 62.682 62.680 0.00 0.00

10 70.917 70.917 70.914 0.00 0.00 70.870 70.870 70.867 0.00 0.00 70.842 70.842 70.839 0.00 0.00
†

Through the model by di Castri et al. [12] ‡Through implementation of the model by Milford and Asokanthan [11].

Table 3: First ten natural frequencies (Hz); two-link manipulator; (L1/h = 83.33, LT/h = 173.3).

θ2 = 0◦ θ2 = 45◦ θ2 = 90◦

Mode EB† EB‡ T Δ† Δ‡ EB† EB‡ T Δ† Δ‡ EB† EB‡ T Δ† Δ‡

1 3.9344 3.9344 3.9343 0.00 0.00 4.1907 4.1907 4.1906 0.00 0.00 5.0987 5.0987 5.0986 0.00 0.00

2 21.550 21.550 21.546 0.02 0.02 17.925 17.926 17.923 0.01 0.02 13.554 13.554 13.552 0.01 0.01

3 70.720 70.720 70.695 0.04 0.04 68.901 68.908 68.878 0.03 0.04 68.120 68.130 68.098 0.03 0.05

4 130.00 130.00 129.91 0.07 0.07 122.38 122.41 122.29 0.07 0.10 117.10 117.11 117.01 0.08 0.09

5 218.26 218.26 218.07 0.09 0.09 214.44 214.52 214.26 0.08 0.12 212.37 212.43 212.19 0.08 0.11

6 317.00 317.00 316.59 0.13 0.13 308.98 309.23 308.56 0.14 0.22 304.46 304.57 304.03 0.14 0.18

7 425.34 425.34 424.49 0.20 0.20 418.99 419.31 418.17 0.20 0.27 415.96 416.06 415.15 0.20 0.22

8 545.20 545.20 544.05 0.21 0.21 536.96 537.95 535.81 0.21 0.40 534.21 534.97 533.05 0.22 0.36

9 745.10 745.10 742.10 0.40 0.40 734.87 736.49 731.95 0.40 0.62 731.71 732.18 728.79 0.40 0.47

10 837.96 837.96 835.26 0.32 0.32 826.94 830.08 824.25 0.33 0.71 825.38 827.93 822.68 0.33 0.64
†

Through the model by di Castri et al. [12]. ‡Through implementation of the model by Milford and Asokanthan [11].

model presented by Milford and Asokanthan [11] was
implemented by using the equations reported into their
work; the model presented in this paper and the one by di
Castri et al. [12] were implemented through (39), which for
this case of two-link manipulator (n = 2) takes the following
form:

M(ω) =

⎛
⎜⎜⎜⎝

[
MO1 (ω)

]
3×6 [0]3×6[

MO2,1 (ω)
]

6×6

[
MO2,2 (ω)

]
6×6

[0]3×6
[

MOEE (ω)
]

3×6

⎞
⎟⎟⎟⎠. (45)

In particular, for the model herein derived in Section 2,
according to the Timoshenko beam theory, the blocks in (45)
are those reported in (A.1)–(A.4), whereas for the model by
di Castri et al. [12] (B.1)–(B.5) are used, referring to the
Euler-Bernoulli formulation. It is remarked that (B.1)–(B.5)
have herein been derived as new and, therefore, are of a
certain value.

In order to carry out the related numerical comparisons,
the geometric and mass properties of the two-link flexible

manipulator are settled as indicated in Table 1. These param-
eters refer to the extremely flexible manipulator presented
by Milford and Asokanthan [11] and are here used for the
verification of the predicted data.

For a more significant comparison between models,
various simulations have been carried out by varying the
slenderness of the structure; more precisely, the two ratios
L1/h and LT/h are used as reference parameters to charac-
terize each simulation, L1 being the original value indicated
in Table 1, LT = L1 + L2 the total manipulator length,
and, finally, h the referential thickness value. In order to
derive modal data as a function of the slenderness, the two
thicknesses h1 and h2 (Table 1) are multiplied in each case for
a common thickening factor between 1 and 100; in any case,
h, indicated into the following numerical tables/simulations,
refers to h2, which is always the minimum between the two
actual thickness values.

Tables 2–6 report the first ten natural frequencies
calculated through the three models when the slenderness
ratios L1/h and LT/h of the manipulator are, respectively,
calculated using a common thickening factor equal to 1
(original structure), 10, 25, 50 and 100. In the tables, T



10 Journal of Robotics

Table 4: First ten natural frequencies (Hz); two-link manipulator; (L1/h = 33.33, LT/h = 69.33).

θ2 = 0◦ θ2 = 45◦ θ2 = 90◦

Mode EB† EB‡ T Δ† Δ‡ EB† EB‡ T Δ† Δ‡ EB† EB‡ T Δ† Δ‡

1 10.931 10.931 10.929 0.02 0.02 11.675 11.675 11.673 0.02 0.02 14.363 14.363 14.360 0.02 0.02

2 63.399 63.399 63.334 0.10 0.10 51.705 51.716 51.653 0.10 0.12 38.348 38.353 38.309 0.10 0.11

3 190.90 190.90 190.43 0.25 0.25 186.38 186.49 185.95 0.23 0.29 185.36 185.54 184.94 0.23 0.32

4 356.79 356.79 355.14 0.46 0.46 322.97 323.92 321.40 0.49 0.78 303.66 303.97 302.12 0.51 0.61

5 602.80 602.80 598.84 0.66 0.66 587.48 589.46 583.77 0.64 0.97 582.51 584.21 578.87 0.63 0.92

6 882.58 882.58 873.79 1.0 1.0 831.00 839.66 822.29 1.1 2.1 817.71 819.88 808.78 1.1 1.4

7 1162.5 Axial 1162.5 0.0 — 1162.3 1178.9 1149.2 1.1 2.6 1162.3 1168.2 1148.7 1.2 1.7

8 1205.5 1205.5 1190.7 1.2 1.2 1466.9 1534.0 1448.4 1.3 5.9 1505.2 1519.1 1482.2 1.6 2.5

9 1571.6 1571.6 1548.7 1.5 1.5 1713.9 1953.4 1699.7 0.8 15 1901.2 1937.2 1867.8 1.8 3.7

10 1998.1 1998.1 1953.3 2.3 2.3 2012.6 2331.0 1973.0 2.0 18 2017.8 2321.7 1998.5 0.97 16
†

Through the model by di Castri et al. [12]. ‡Through implementation of the model by Milford and Asokanthan [11].

Table 5: First ten natural frequencies (Hz); two-link manipulator; (L1/h = 16.67, LT/h = 34.67).

θ2 = 0◦ θ2 = 45◦ θ2 = 90◦

Mode EB† EB‡ T Δ† Δ‡ EB† EB‡ T Δ† Δ‡ EB† EB‡ T Δ† Δ‡

1 22.771 22.771 22.756 0.07 0.07 24.349 24.350 24.333 0.07 0.07 30.107 30.110 30.085 0.07 0.08

2 135.87 135.87 135.28 0.44 0.44 109.58 109.68 109.12 0.42 0.51 80.514 80.557 80.178 0.42 0.47

3 395.12 395.12 391.11 1.0 1.0 386.31 387.26 382.59 0.97 1.2 385.43 387.00 381.78 0.96 1.4

4 750.85 750.85 736.83 1.9 1.9 656.26 666.58 643.75 1.9 3.5 615.82 618.74 603.33 2.1 2.6

5 1206.2 axial 1206.2 0.0 — 1203.8 1233.3 1174.8 2.5 5.0 1203.7 1224.6 1173.5 2.6 4.4

6 1261.0 1261.0 1226.1 2.8 2.8 1540.5 1729.7 1496.8 2.9 16 1650.5 1679.6 1579.7 4.5 6.3

7 1855.0 1855.0 1779.4 4.2 4.2 1965.7 2505.1 1918.4 2.5 31 2117.0 2484.5 2083.4 1.6 19

8 2570.1 2570.1 2440.4 5.3 5.3 2583.3 3263.2 2460.9 5.0 33 2604.7 3220.2 2504.8 4.0 29

9 3393.1 3393.1 3176.0 6.8 6.8 3267.1 4163.0 3080.3 6.1 35 3177.2 4128.4 2973.4 6.9 39

10 3567.6 axial 3567.6 0.0 — 3782.3 5096.1 3701.1 2.2 38 3959.8 5066.6 3788.9 4.5 34
†

Through the model by di Castri et al. [12]. ‡Through implementation of the model by Milford and Asokanthan [11].

Table 6: First ten natural frequencies (Hz); two-link manipulator; (L1/h = 8.33, LT/h = 17.33).

θ2 = 0◦ θ2 = 45◦ θ2 = 90◦

Mode EB† EB‡ T Δ† Δ‡ EB† EB‡ T Δ† Δ‡ EB† EB‡ T Δ† Δ‡

1 46.540 46.540 46.417 0.26 0.26 49.796 49.801 49.661 0.27 0.28 61.736 61.762 61.550 0.30 0.34

2 282.42 282.42 277.52 1.8 1.8 225.58 226.53 221.88 1.6 2.1 165.04 165.42 162.32 1.6 1.9

3 805.90 805.90 773.81 4.1 4.1 782.63 791.77 753.86 3.6 5.0 779.33 793.67 751.29 3.5 5.6

4 1229.9 axial 1229.9 0.0 — 1223.5 1356.8 1154.6 5.1 18 1221.2 1250.7 1132.4 7.1 10

5 1551.2 1551.2 1443.1 7.5 7.5 1841.4 2536.3 1780.6 2.4 42 2057.5 2522.5 1981.3 3.0 27

6 2589.5 2589.5 2326.6 11 11 2621.1 3515.9 2362.7 7.3 49 2737.4 3400.6 2515.9 6.5 35

7 3653.2 none 3294.0 11 — 3444.1 5198.8 3109.7 6.4 67 3271.8 5161.4 2887.0 7.5 79

8 3828.9 3828.9 3653.2 4.8 4.8 4124.3 6708.3 3906.9 3.2 72 4345.4 6603.4 4141.6 3.1 59

9 5336.2 5336.2 4425.3 21 21 5253.1 8728.3 4403.5 9.7 98 5165.3 8663.7 4372.5 9.2 98

10 6146.9 none 5590.4 10 — 6316.7 10799 5461.0 7.9 98 6548.3 10716 5305.6 12 102
†

Through the model by di Castri et al. [12]. ‡Through implementation of the model by Milford and Asokanthan [11].

denotes the model based on the Timoshenko theory, whilst
EB † and EB ‡, respectively, refer to the models by di Castri
et al. [12] and Milford and Asokanthan [11]. The Timo-
shenko shear coefficient ki (i = 1, 2), assuming a Poisson’s
ratio of 0.3, is taken from Cowper [16].

For each table, three nominal configurations of the two-
link manipulator are considered, that is, when θ2 is equal
to 0◦, 45◦, and 90◦; for each configuration, besides the ten

natural frequencies, the occurring natural frequency changes
are reported, calculated as

Δ j% = frequencyEB − frequencyT
frequencyT

· 100, j = 1, . . . , 10,

(46)

where EB refers both to EB † and EB ‡.
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A perusal of Tables 2–6 reveals the following interesting
findings.

Above any consideration, the model based on Tim-
oshenko theory herein introduced always provides lower
frequencies than the counterparts predicted by Milford and
Asokanthan [11] and di Castri et al. [12]. This can be verified
especially when thicker beams are taken into account (100,
50 and 25 times the original h1 and h2 of Table 1). It can
be of a certain value to notice that the shear deformation
theory provides an angle-correction dependence (i.e., the
discrepancy Δ depends on the particular configuration
established by θ2); this dependence is clear for the case of
Table 6 but decreases and becomes inconsistent for thinner
beams (Table 2).

Interestingly, a significant discrepancy must be noted
not only between the T-model and EB-models by Milford
and Asokanthan [11] and di Castri et al. [12] but also
between both these latter EB-models, as made explicit in
this work through (B.1)–(B.5). In particular, the numerical
comparison between the Euler-Bernoulli models shows
discrepancies which are extremely large for thicker beams
and for an angle θ2 different by zero; in this regard, significant
discrepancies (major than 2% up to the ∼20%) can even
be noticed when the simpler model EB† (if compared to
the Timoshenko model) is able to provide frequency values
with acceptable accuracy (lower than ∼2%). Such percent
discrepancies (between the EB models) are also evaluated
for values close to decades and can become negligible for
extremely flexible manipulators only (L/h > 80 in Tables 2
and 3).

It is stressed, therefore, how the numerical comparison
shows the ability of both the T-model and EB-model by
di Castri et al. [12] to contain the model by Milford and
Asokanthan [11] as a particular case, whilst this latter is
advisable to be used only for extremely flexible manipulators;
in particular, in the cases herein investigated errors lower
than 15% have been achieved for a two-link manipulator
having a global length to thickness ratio higher than 80.

3.1. Effect of Joint Flexibilities on Modal Data. All the natural
frequencies used for numerical comparisons of Tables 2–6
have been computed through analytical formulations which
assume rigid joints only. In particular, this can be easily
verified for the matrix formulation (39) herein proposed by
simply noting that geometric boundary conditions (16) and
(19) express perfect cantilevered relations for all the joints.

In order to investigate the effect on modal predictions
when the above assumptions are not ensured, simulations
have been carried out by employing apposite finite element
models of the two-link manipulator of Tables 2–6. Both
mechanical and electromechanical stiffnesses of each joint
have been modeled as torsional springs having stiffness kT1

for the shoulder joint and kT2 for the elbow one. As in the
previous simulations, the first ten natural frequencies have
been computed for different slenderness ratios of the robotic
structure and for different postures; the simulations have
been carried out through finite element models by using
Timoshenko beam elements B22 available in the software

package ABAQUS R. 6.6 [17]; manipulator meshes are made
in order to achieve convergence of finite element predictions
to analytical ones.

A torsional stiffness-dependent analysis for each posture
and slenderness ratio of Tables 2–6 has been performed;
graphical representations of the obtained results are reported
by Table 7. Rows and columns represent mode numbers
and postures, respectively. Inside each rectangle (for chosen
mode i and posture) the prediction on the ith natural
frequency is represented versus torsional stiffness kT1 and
kT2 changes; the slenderness ratios of Table 2 (©), Table 3
(×), Table 4 (�), Table 5 (∗) and Table 6 (♦) are taken into
account. An initial value of stiffness (1011 Nm/rad) has been
calibrated in such a way that finite element predictions match
those of rigid joints.

From trends of Table 7, one can note that moving
from rigid condition (i.e., kT = 1011 Nm/rad) toward the
pinned boundary condition natural frequencies remain
almost constant for each mode up to kT ∼= 106 Nm/rad.
Only one case differently behaves, that is, when thicker links
of Table 6 constitute the manipulator; however, this last case
represents an extremely reduced slenderness ratio (L1/h =
8.33). Significant frequency changes occur for kT lower than
106 Nm/rad although this is not the case for manipulator
extremely slender (i.e., L/h = 833).

In conclusion, the influence of flexibility joint on modal
predictions must be taken into account along with the
slenderness ratios; Table 7 is an attempt aimed at showing
the measure of such adependence. Therefore, based on the
fact that the proposed matrix formulation regards rigid
boundary conditions (16)–(21), Table 7 warns the need to
introduce flexibilities at joints when extremely stiff manip-
ulators are taken into account. To this end, although the
present model can be extensively used for several cases (e.g.,
Tables 2–5), the authors do not exclude future generalization
accounting for flexible joints.

4. Modal Analysis of
an Industrial Manipulator

In this section another comparison between the presented
model (T-model) and the model by di Castri et al. [12] is
carried out, referring to a typical industrial manipulator with
three links; this kind of structure can be met in industrial
plants for the handling of loads and their vibration analysis
can be of interest for many and various applications. Since
the model by di Castri et al. [12] was developed for a two-
link flexible manipulator, it has been easily extended to the
three-link case by using the new matrix formulation (39)
and the equations reported in Appendix B, which have been
derived in this work for a generic multilink Euler-Bernoulli
manipulator.

Exact modal data were derived through both analytical
models and a comparison between the first ten natural
frequencies and mode shapes has been reported. A parallel
numerical analysis with a finite element software package was
carried out to validate the predicted analytical values.

We assume that the industrial manipulator is made of
three identical links in aluminium with rectangular hollow
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Table 7: Natural frequencies as a function of joint flexibilities†. Slenderness ratios:© Table 2; × Table 3; � Table 4; ∗ Table 5; ♦ Table 6.
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Table 7: Continued.
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Table 7: Continued.
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†
ABAQUS R.6.6, B22 element.

Table 8: Parameters of the adopted industrial manipulator.

Parameter Symbol Units Link i (i = 1, 2) Link 3

Length Li m 1.5 1.5

Width of section hi cm 15 15

Height of section bi cm 20 20

Wall thickness ti cm 1 1

Young’s modulus Ei GPa 70 70

Mass density ρi kg/m3 2700 2700

Poisson’s ratio νi none 0.34 0.34

Tip load mass Mi kg 10 35

Tip load inertia Ji kg m2 0.3 0.5

section (Figure 3) whilst its mass and geometric properties
are reported in Table 8; Mi and Ji (i = 1, 2, 3), respectively,
represent mass and inertial loads due to the actuators and the
payload acting on the system.

The comparison between the T-model and the EB-
model is based on four nominal configurations of the
industrial manipulator, chosen among its admissible infinite
configurations as illustrated in Figure 4; such configurations
are obtained by varying the joint variables θ2 and θ3 for the
desired values. In particular, we settled θ2,3 = 45◦, 45◦ for
Figure 4(a), θ2,3 = −45◦, 90◦ for Figure 4(b), θ2,3 = 90◦,−90◦

for Figure 4(c), and θ2,3 = −90◦, −90◦ for Figure 4(d).
For each configuration, natural frequencies and mode

shapes are derived for both exact models T and EB by using
the following system characteristic matrix:

M(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎝

⌊
MO1 (ω)

⌋
3×6 [0]3×6 [0]3×6[

MO2,1 (ω)
]

6×6

[
MO2,2 (ω)

]
6×6

[0]6×6

[0]6×6

[
MO3,2 (ω)

]
6×6

[
MO3,3 (ω)

]
6×6

[0]3×6 [0]3×6
[

MOEE (ω)
]

3×6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(47)

whose blocks are, respectively, reported in Appendix A and
B.

It is observed that, while natural frequencies are directly
calculated through the frequency equation (40), mode shapes
are plotted by previously obtaining the system eigenfunctions
and then following the procedure indicated by (41)–(44).

Figures 5(a) and 5(b) report the first ten exact natural
frequencies and the translational part of the mode shapes,
the occurring natural frequency changes and the finite
element results. More precisely, the left column of both the
figures reports EB mode shapes and corresponding natural
frequencies, calculated through the model by di Castri et
al. [12] and finite elements as in parentheses calculated
through Euler-Bernoulli beam elements; differently, the right
column of the same figures refers to the Timoshenko beam
theory results. In the middle of the figures there are the
occurring natural frequency changes, calculated through
(46). All modes are ordered by frequency. Finally, Tables 9,
10, and 11 report all analytical and numerical results for
the other three chosen configurations of the manipulator,
without plotting the mode shapes.

Finite element analysis of the structure is carried out by
using ABAQUS R. 6.6, using B23 beam elements for the EB-
model mesh, and B22 beam elements for the T-model mesh.

Both meshes consist of 75 elements for each link of the
industrial manipulator, yielding a total of 225 elements in the
finite element models, value established after a convergence
analysis.

As we can see from all tables, finite element obtained
natural frequencies agree in all cases of interest with the exact
ones; this confirms the validity of the analytical approach
presented in this work and of the matrix formulation
given by (39). It can be considered a new mathematical
tool for reliable vibration analysis of multi-link industrial
manipulator without recurring to other models or software
packages for numerical investigations.
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I : 5.6571 (5.6571) I : 5.6464 (5.6464)0.19%

II : 21.6 (21.6) II : 21.24 (21.24)1.7%

III : 82.12 (82.12) III : 79.088 (79.088)3.8%

IV : 222.07 (222.07) IV : 210.86 (210.86)5.3%

V : 302.95 (302.95) V : 283.47 (283.47)6.9%

(a)

VI : 368.07 (368.07) 10.2% VI : 333.93 (333.93)

VII : 534.69 (534.69) 8.2% VII : 494.24 (494.24)

VIII : 623.9 (623.9) 5.2% VIII : 592.81 (592.81)

IX : 714.52 (714.52) 11.5% IX : 640.81 (640.81)

X : 899.92 (899.92) 16.3% X : 773.61 (773.61)

(b)

Figure 5: (a) Modes (Hz) of an industrial manipulator (see Table 8). (FEM: ABAQUS 6.6, B23, B22) left column: EB-model; right column:
T-model: θ2 = θ3 = 45◦. (b) Modes (Hz) of an industrial manipulator (see Table 8). (FEM: ABAQUS 6.6, B23, B22) left column: EB-model;
right column: T-model: θ2 = θ3 = 45◦.

Finally, only referring to the exact results, it is observed
that natural frequency changes between the T-model and
EB-model are not negligible, with a peak at about 17% for
some configurations; therefore, in some situations, as, for

example, when forced response is required or when a modal
control has to be actuated, the presented model can amend
to the lack of accuracy of traditional Euler-Bernoulli models,
giving accurate data also for industrial structures.
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Table 9: First ten natural frequencies (Hz); see Table 7; θ2,3 =
−45◦, 90◦.

Analytical solution Finite Element solution

Mode EB T Δ )%) ABAQUS
R.6.6, B23

ABAQUS
R.6.6, B22

1 6.1855 6.1701 0.25 6.1855 6.1701

2 25.596 25.222 1.48 25.596 25.222

3 59.147 56.594 4.51 59.147 56.594

4 208.91 199.87 4.52 208.91 199.87

5 309.93 280.47 10.5 309.93 280.47

6 398.82 368.74 8.16 398.82 368.74

7 534.23 496.22 7.66 534.23 496.22

8 647.83 571.65 13.3 647.83 571.65

9 762.02 702.55 8.46 762.02 702.55

10 890.88 802.90 11.0 890.88 802.90

Table 10: First ten natural frequencies (Hz); see Table 7; θ2,3 =
90◦,−90◦.

Analytical solution Finite Element solution

Mode EB T Δ )%) ABAQUS
R.6.6, B23

ABAQUS
R.6.6, B22

1 6.6640 6.6496 0.22 6.6640 6.6496

2 31.472 30.482 3.25 31.472 30.482

3 38.768 37.684 2.88 38.768 37.684

4 218.72 208.78 4.76 218.72 208.78

5 305.61 277.56 10.1 305.61 277.56

6 434.66 376.12 15.6 434.66 376.12

7 567.22 543.01 4.46 567.22 543.01

8 655.55 592.00 10.7 655.55 592.00

9 760.44 710.07 7.09 760.44 710.07

10 888.40 797.19 11.4 888.40 797.19

5. Conclusions

The configuration dependency of natural frequencies and
mode shapes of a planar multi-link flexible manipulator
has been investigated. The study has been based on the
Timoshenko beam theory and has regarded the formulation
and the resolution of the exact partial differential equations
describing the system. Detailed boundary conditions along
with the differential eigenvalue problem corresponding to
each configuration of the manipulator have been derived. A
new block matrix formulation herein introduced allows to
derive frequency equation associated to a chosen configura-
tion and to calculate corresponding exact modal data.

This new formulation allows an absolutely fast and
effective analytical methodology for performing the analysis
of interest with an arbitrary number of links; a link-to-
block relation is established and it is possible to modify
the structure by simply adding or deleting a block in the
characteristic matrix of the system.

Table 11: First ten natural frequencies (Hz); see Table 7; θ2,3 =
−90◦,−90◦.

Analytical solution Finite element solution

Mode EB T Δ )%) ABAQUS
R.6.6, B23

ABAQUS
R.6.6, B22

1 8.8552 8.8322 0.26 8.8552 8.8322

2 17.817 17.533 1.62 17.817 17.533

3 50.836 48.777 4.22 50.836 48.777

4 218.16 207.77 5.00 218.16 207.77

5 318.97 290.70 9.72 318.97 290.70

6 426.96 366.30 16.6 426.96 366.30

7 568.09 541.76 4.86 568.09 541.76

8 641.25 588.19 9.02 641.25 588.19

9 760.88 708.35 7.42 760.88 708.35

10 875.15 790.17 10.8 875.15 790.17

The proposed analytical method has been compared
against one of the most relevant models proposed in the
literature, developed by taking into account only transverse
deformations of the links and neglecting the axial ones,
which studies the configuration dependency of modal data
for a two-link Euler-Bernoulli flexible manipulator. The
present work shows that, as the previous kind of approx-
imation (only transverse deformations) can lead to several
tenths of a percentage error in predictions with respect to
the exact ones, an axial-transverse dynamic characterization
for links must be adopted for better and reliable results, as
herein proposed by the present authors. The comparison
has been carried out after an Euler-Bernoulli multilink
formulation has been derived as new; referring to the two-
link structure, several slenderness-dependent simulations,
carried out for more postures of the manipulator, have
stressed (i) the improvement in predictions when the
Timoshenko beam theory is adopted and (ii) the above-
mentioned discrepancies for Euler-Bernoulli formulations
whether axial contributions are neglected or not. Moreover,
the basic assumption of rigid joints has been validated
through extensive simulations aimed at evaluating frequency
changes versus flexible joints.

Finally, a case study for a typical three-link industrial
manipulator has been investigated; according to the matrix
characterizations developed in this work, modal data have
been computed through Timoshenko and Euler-Bernoulli
formulations for different postures of the robotic structure.
It has been pointed out that non negligible differences can
result for low modes too; thus, the present work has to
be viewed as an efficient tool for designers to rapidly have
useful knowledge on free vibration properties of manipulator
for structural optimization or control purposes, without
recurring to special-purpose software. Finite element anal-
yses have also validated all the analytical models herein
proposed.
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Appendices

A. Blocks of the Characteristic Matrix
(Timoshenko Beam Model)
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⎞
⎟⎟⎠, (A.3)
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MOEE (ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

EnInλn1 cosh(λn1Ln) EnInλn1 sinh(λn1Ln)
−ω2Jntn1 sinh(λn1Ln) −ω2Jntn1 cosh(λn1Ln)

knGnSn(λn1 − tn1) sinh(λn1Ln) knGnSn(λn1 − tn1) cosh(λn1Ln)
−ω2Mn cosh(λn1Ln) −ω2Mn sinh(λn1Ln)

0 0

−EnInλn2 cos(λn2Ln) −EnInλn2 sin(λn2Ln)
+ω2Jntn2 sinh(λn2Ln) −ω2Jntn2 cos(λn2Ln)

knGnSn(tn2 − λn2) sin(λn2Ln) knGnSn(λn2 − tn2) cos(λn2Ln)
−ω2Mn cos(λn2Ln) −ω2Mn sin(λn2Ln)

0 0

0 0

0 0

−EnSn
(
ω

cn

)
sin
(

ω

cnLn

)
EnSn

(
ω

cn

)
cos
(

ω

cnLn

)

−ω2Mn cos
(

ω

cnLn

)
−ω2Mn sin

(
ω

cnLn

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A.4)

B. Blocks of the Characteristic Matrix
(Euler-Bernoulli Beam Model)

MOi,i−1 (ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−αi−1 sin(αi−1Li−1) αi−1 cos(αi−1Li−1) αi−1 sinh(αi−1Li−1)

cos(αi−1Li−1) sin(θi) sin(αi−1Li−1) sin(θi) cosh(αi−1Li−1) sin(θi)

cos(αi−1Li−1) cos(θi) sin(αi−1Li−1) cos(θi) cosh(αi−1Li−1) cos(θi)

−Ei−1Ii−1α
2
i−1 cos(αi−1Li−1)

+ω2Ji−1αi−1 sin(αi−1Li−1)
−Ei−1Ii−1α

2
i−1 sin(αi−1Li−1)

−ω2Ji−1αi−1 cos(αi−1Li−1)
Ei−1Ii−1α

2
i−1 cosh(αi−1Li−1)

−ω2Ji−1αi−1 sinh(αi−1Li−1)

Ei−1Ii−1α
3
i−1 sin(αi−1Li−1)

−ω2Mi−1αi−1 cos(αi−1Li−1)
Ei−1Ii−1α

3
i−1 cos(αi−1Li−1)

−ω2Mi−1αi−1 sin(αi−1Li−1)
−Ei−1Ii−1α

3
i−1 sinh(αi−1Li−1)

−ω2Mi−1αi−1 cosh(αi−1Li−1)

0 0 0

αi−1 cosh(αi−1Li−1) 0 0

sinh(αi−1Li−1) sin(θi) cos
(

ω

ci−1Li−1

)
cos(θi) sin

(
ω

ci−1Li−1

)
cos(θi)

sinh(αi−1Li−1) sin(θi) − cos
(

ω

ci−1Li−1

)
sin(θi) − sin

(
ω

ci−1Li−1

)
sin(θi)

Ei−1Ii−1α
2
i−1 sinh(αi−1Li−1)

−ω2Ji−1αi−1 cosh(αi−1Li−1) 0 0

−Ei−1Ii−1α
3
i−1 cosh(αi−1Li−1)

−ω2Mi−1αi−1 sinh(αi−1Li−1) 0 0

0
−Ei−1Si−1

(
ω

ci−1

)
sin
(

ω

ci−1Li−1

)

−ω2Mi−1 cos
(

ω

ci−1Li−1

)
Ei−1Si−1

(
ω

ci−1

)
cos
(

ω

ci−1Li−1

)

−ω2Mi−1 sin
(

ω

ci−1Li−1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.1)
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MOi,i(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −αi 0 −αi 0 0

0 0 0 0 −1 0

−1 0 −1 0 0 0

EiIiα
2
i 0 −EiIiα2

i 0 0 0

0 −EiIiα3
i cos(θi) 0 EiIiα

3
i cos(θi) 0 −EiSi

(
ω

ci

)
sin(θi)

0 EiIiα
3
i sin(θi) 0 −EiIiα3

i sin(θi) 0 −EiSi
(
ω

ci

)
cos(θi)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.2)

MO1 (ω) =

⎛
⎜⎜⎝

0 1 0 1 0 0

1 0 1 0 0 0

0 0 0 0 1 0

⎞
⎟⎟⎠, (B.3)

MOEE (ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−EnInα2
n cos(αnLn)

+ω2Jnαn sin(αnLn)
−EnInα2

n sin(αnLn)
−ω2Jnαn cos(αnLn)

EnInα2
n cosh(αnLn)

−ω2Jnαn sinh(αnLn)

−EnInα3
n sin(αnLn)

−ω2Mn cos(αnLn)
EnInα3

n cos(αnLn)
−ω2Mn sin(αnLn)

−EnInα3
n sinh(αnLn)

−ω2Mn cosh(αnLn)

0 0 0

EnInα2
n sinh(αnLn)

−ω2Jnαn cosh(αnLn) 0 0

−EnInα3
n cosh(αnLn)

−ω2Mn sinhh(αnLn)
0 0

0

−EnSn
(
ω

cn

)
sin
(

ω

cnLn

)

−ω2Mn cos
(

ω

cnLn

)
EnSn

(
ω

cn

)
cos
(

ω

cnLn

)

−ω2Mn sin
(

ω

cnLn

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B.4)

αi = 4

√
ω2ρiSi

EiIi

. (B.5)
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