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Based on the kineto-elastodynamic assumptions, the dynamic model of the six-degree-of-freedom parallel structure seismic
simulator is developed by virtue of the finite element method and the substructure synthesis technique. The kineto-elastodynamic
characteristics represented by the natural frequency, the sensitivity analysis, the energy ratios, and the displacement response of the
moving platform are investigated. It is shown that the second-order natural frequency is much higher than the first-order natural
frequency, and the first-order natural frequency is sensitive to the radius of the strut and the radius of the lead screw. In order to
improve the dynamic characteristic of the manipulator, the mass of the moving platform should be reduced or the stiffness of the
strut should be increased especially for the sixth strut. For the investigated trajectory, the displacement response of the moving
platform along the x direction is smaller than these displacement responses along the y direction and along the z direction. The
angular displacement response of the moving platform rotating about z-axis is slightly larger than those angular displacement
responses rotating about the x-axis and about the y-axis.

1. Introduction

A seismic simulator is one of the most important equipments
in the earthquake resistance testing. Due to the requirement
of the large and variable load capability, these kinds of
equipments are usually developed with the parallel structure
manipulators [1–4]. The parallel manipulator is a closed-
loop kinematic chain mechanism whose end effector is
linked to the base by several independent kinematic chains
[5–7]. For this type of manipulators, there are some potential
advantages such as high accuracy, rigidity, and speed. They
have been successfully used in the motion simulators,
robotic end effectors, and other circumstances like fast
pick-and-place operation. Many investigations have been
carried out on the parallel manipulators since the concept
was introduced. However, there is not many works on
the flexible dynamics of the parallel manipulator [8, 9]
compared with the vast of papers on the kinematics and rigid

dynamics due to the following facts: (i) computational cost;
(ii) geometrical complexity; (iii) unidentified mechanics
property. For the 6-PSS (prismatic-spherical-spherical joint)
flexible parallel manipulator under consideration in this
paper, which is developed for the six-degree-of-freedom
seismic simulator, the dynamics considering the structure
flexibility is fundamental for the modeling, design, and
control.

The demands of high speed, high load, high precision,
or lightweight structure from industry make it necessary
to consider the deformation, stiffness, and other dynamic
characteristics for the parallel manipulator [10–23]. Math-
ematical modeling of a general flexible parallel manipula-
tor is a challenging task since there is no availability of
closed-form solutions to the inverse kinematic model for
the flexible parallel manipulator. The nominal motion of
the manipulator involves changing geometries resulting in
varying system parameters. The equations of motion are
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usually configuration dependent and need to be computed at
each configuration of the manipulator [10]. The equations of
motion of a flexible five-bar manipulator were developed by
means of the instantaneous structural approach, and it had
been found that the mode shapes and natural frequencies of
this particular manipulator are invariant throughout most
of the workspace [11]. The design, dynamic modeling, and
experiment validation of a three-degree-of-freedom flexible
arm were presented in [12] on the assumption that all the
arm mass is concentrated at the tip and at the base. So
the dynamic of the arm becomes a lumped single mass
model instead of the usual distributed mass model. The
finite element method and the Euler-Lagrange formulation
were used in [13] to model the flexible link of a three-
degree-of-freedom parallel manipulator by assuming that the
influence of flexible motion on rigid motion is negligible.
With the piston being modeled as a mass-spring damper,
a set of twelve Lagrange equations for flexible Stewart
manipulator was derived by using tensor representation in
[14]. The dynamic model of the 3-PRR planar parallel
manipulator with flexible links was formulated by using
the Lagrange equations of the first type on the assumption
that the intermediate links being modeled with pinned-
free boundary conditions [15]. The Lagrange finite element
formulation was used to derive such a dynamic model for
the flexible planar linkage with two translational and one
rotational degrees of freedom, and then the dynamic model
was applied to the flexible link planar parallel manipulator
based on standard Kineto-elastodynamic assumptions [16].
Based on the model, strain rate feedback control using
PZT transducers was used to simulate the active control of
Kineto-elastodynamic responses. The dynamic finite element
analysis of the flexible planar parallel manipulator was
presented in [17] including the convergence analysis of
the natural frequencies and the mapping of the first-order
natural frequency with respect to the robot configuration.
It had also been found that the geometric stiffness and
the dynamic terms have a negligible effect on the response
for this particular manipulator. A substructure modeling
procedure was presented to develop the dynamic model for
the flexible planar parallel manipulator in [18]. The Craig-
Bampton method was used to reduce the model order and
assemble the complete dynamic model. On the assumption
that the deformations of the intermediate links are small
relative to the length of the links, a procedure for the
development of structural dynamic model for the 3-PRR
flexible parallel manipulator was presented in [19] based on
the assumed mode method. Without considering the effect
of nominal motion, reference [20] provided the stationary
vibration model of the sliding-leg parallel kinematic machine
where the links were modeled as finite elements and the
joint as virtual spring/dampers. Then, the nonstationary
model of the same mechanism was developed with the
elastodynamic method [21]. In the researches cited above,
there is little investigation on the Kineto-elastodynamic
characteristics of the six-degree-of-freedom parallel manip-
ulator while considering the natural frequency, the sen-
sitivity analysis, the energy ratios, and the displacement
response.
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Figure 1: Schematic diagram of the 6-dof parallel structure seismic
simulator.

This paper presents the Kineto-elastodynamic modeling
and the Kineto-elastodynamic characteristics analysis of the
6-PSS parallel structure seismic simulator. It is organized
as follows: in Section 2, the description of the seismic
simulator and the rigid dynamic equations are presented.
Section 3 gives the Kineto-elastodynamic model of the
manipulator developed by virtue of the finite element
method and the substructure synthesis technique. Section 4
investigates the Kineto-elastodynamic characteristics rep-
resented by the natural frequency, the sensitivity analy-
sis, the energy ratios, and the displacement response of
the moving platform through simulation. Section 5 gives
the conclusions.

2. System Description and Rigid Dynamics

2.1. Description. The schematic diagram of the 6-dof parallel
structure seismic simulator is shown in Figure 1. As shown
in Figure 1, the parallel manipulator is composed of a
moving platform and six sliders. In each kinematic chain,
the platform and the slider are connected via spherical ball-
bearing joints by a strut of fixed length. Each slider is driven
by DC motor via a linear ball screw. The lead screws of B1, B2,
and B3 are vertical to the ground.

For the purpose of analysis, the following coordinate
systems are defined. As shown in Figure 2, the coordinate
system O− xyz is attached to the fixed base; another moving
coordinate frame O′ −uvw is located at the center of mass of
the moving platform. The pose of the moving platform can
be described by a position vector r and a rotation matrix oRo′ .
Let the rotation matrix be defined by the roll, pitch, and
yaw angles, namely, a rotation of φx about the fixed x axis,
followed by a rotation of φy about the fixed y axis, and a
rotation of φz about the fixed z axis. Thus, the rotation matrix
is

oRo′ = Rot
(
z,φz

)
Rot

(
y,φy

)
Rot

(
x,φx

)
, (1)



Journal of Robotics 3

w

v u

i

Ci z

y
x

Ai

Bi O

O′

r

a

liwi

di

qiei

bi

Figure 2: Vector diagram of a PSS kinematic.
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Figure 3: The local coordinate system of the ith strut.

where sφ denotes the sine of angle φ, and cφ denotes the
cosine of angle φ. In the hypothesis of small rotations, the
angular velocity of the moving platform is given by [24, 25]

ω =
[
φ̇x φ̇y φ̇z

]T
. (2)

The orientation of each kinematic strut with respect to
the fixed base can be described by two Euler angles. As shown
in Figure 3, the local coordinate system of the ith strut can be
thought of as a rotation of φi about the z axis resulting in a
Ci − x′i y

′
i z
′
i system followed by another rotation of ϕi about

the rotated y′i -axis. So the rotation matrix of the ith strut can
be written as

oRi = Rot
(
z,φi

)
Rot

(
y′i ,ϕi

) =

⎡

⎢
⎢
⎢
⎣

cφicϕi −sφi cφisϕi

sφicϕi cφi sφisϕi

−sϕi 0 cϕi

⎤

⎥
⎥
⎥
⎦

,

i = 1, 2, . . . , 6.
(3)

The unit vector along the strut in the coordinate system O −
xyz is

wi = oRi
iwi = oRi

⎡

⎢
⎢
⎢
⎣

0

0

1

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

cφisϕi

sφisϕi

cϕi

⎤

⎥
⎥
⎥
⎦
. (4)

So the Euler angles φi and ϕi can be computed as follows:

cϕi = wiz,

sϕi =
√
w2
ix +w2

iy ,
(
0 ≤ ϕi < π

)
,

sφi =
wiy

sϕi
,

(
ϕi /= 0

)
,

cφi = wix

sϕi
,

(
ϕi /= 0

)
,

if ϕi = 0, then φi = 0.

(5)

2.2. Rigid Dynamics. When the seismic simulator is not at
a singular configuration, the rigid dynamic model can be
formulated by means of the principle of virtual work and the
concept link Jacobian matrices [25]. It can be expressed as

F = −J−T
⎡

⎣
fe

ne

⎤

⎦− J−T
⎧
⎨

⎩

⎡

⎣
mpg

0

⎤

⎦ +
6∑

i=1

JTivω

⎡

⎣
mi

iRo g

0

⎤

⎦

+JT
[

(mc1g)Te1
(
mc2g

)Te2
(
mc3g

)Te3
(
mc4g

)Te4
(
mc5g

)Te5
(
mc6g

)Te6

]T
⎫
⎬

⎭

+ J−T

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

mpv̇

oIp ω̇

⎤

⎥
⎦ +

6∑

i=1

JTivω

⎡

⎣
mi

iv̇i
iIi iω̇i

⎤

⎦ + JT
[
mc1q̈1 mc2q̈2 mc3q̈3 mc4q̈4 mc5q̈5 mc6q̈6

]T
⎫
⎪⎬

⎪⎭

+ J−T
⎧
⎨

⎩

⎡

⎣
0

ω ×
(
oIp ω

)

⎤

⎦ +
6∑

i=1

JTivω

⎡

⎣
0

iωi×
(
iIi iωi

)

⎤

⎦

⎫
⎬

⎭,

(6)
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where 0 =
[

0 0 0
]T

, Jivω is the link Jacobian matrix which
maps the velocity of the moving platform into the velocity of
the ith strut in the Ci − xi yizi coordinate system, mp, mci,
and mi denote the mass of the moving platform, the mass
of the slider, and the mass of the ith strut, respectively, oIp
is the inertia matrix of the moving platform taken about
the center of mass expressed in the O − xyz coordinate
system, iIi is the inertia matrix of the ith cylindrical strut
about their respective centers of mass expressed in the Ci −
xi yizi coordinate system, fe and ne are the external force

and moment exerted at the center of mass of the moving
platform, v̇ and ω̇ are the linear and angular acceleration
of the moving platform, iv̇i, iωi, and iω̇i are the linear
acceleration, the angular velocity, and acceleration of the
ith strut expressed in the Ci − xi yizi coordinate system,
respectively. q̈i denotes the joint acceleration, g is the gravity
acceleration, J is the Jacobian matrix which maps the velocity
vector of the moving platform into the velocity vector of
the actuating joint. F is the input force vector exerted at the
center of the slider. And

J = diag
( 1

wT
1 e1

1
wT

2 e2

1
wT

3 e3

1
wT

4 e4

1
wT

5 e5

1
wT

6 e6

)

×
⎡

⎣
w1 w2 w3 w4 w5 w6

a1 ×w1 a2 ×w2 a3 ×w3 a4 ×w4 a5 ×w5 a6 ×w6

⎤

⎦

T

,

Jivω =

⎡

⎢
⎢
⎢
⎢
⎣

[
iRo −S

(
iai
)
iRo

]
+
li
2
S
(
iwi

)
Jiω

1
li

{[
S
(
iwi

)
iRo −S

(
iwi

)
S
(
iai
)
iRo

]
−
(
iwi× iei

)[ wT
i

wT
i ei

(ai ×wi)
T

wT
i ei

]}

⎤

⎥
⎥
⎥
⎥
⎦
=
⎡

⎣
Jiv

Jiω

⎤

⎦,

S
(
iwi

)
=

⎡

⎢
⎢
⎢
⎢
⎣

0 − iwiz
iwiy

iwiz 0 − iwix

− iwiy
iwix 0

⎤

⎥
⎥
⎥
⎥
⎦

,

S
(
iai
)
=

⎡

⎢
⎢
⎢
⎣

0 − iaiz
iaiy

iaiz 0 − iaix

− iaiy
iaix 0

⎤

⎥
⎥
⎥
⎦

,

iωi = Jiω

⎡

⎣
v

ω

⎤

⎦,

q̈i = 1
wT
i ei

(
wT
i v̇ + (ai ×wi)

T ω̇ + wT
i (ω × (ω × ai))−wT

i (ωi × (ωi × liwi))
)

,

iω̇i = Jiω

⎡

⎣
v̇

ω̇

⎤

⎦ +
1
li

(Δ1 + Δ2),

Δ1 = −
(
iwi× iei

)

wT
i ei

((
wT
i ω
)(

aTi ω
)
−
(

wT
i ai
)(

ωTω
)

+ li|ωi ×wi|2
)

,

Δ2 =
(
iωT

i
iai
)(

iwi×iωi

)
−
(
iωT iω

)(
iwi× iai

)
,

iv̇i = Jiv

⎡

⎣
v̇

ω̇

⎤

⎦ + S
(
iωi

)
S
(
iωi

)
iai +

1
2
S
(
iwi

)
(Δ1 + Δ2)− li

2
S
(
iωi

)
S
(
iωi

)
iwi .

(7)
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ei, ai, and wi are shown in Figure 2; they are the unit vector
along the lead screw, the vector O′Ai, and the unit vector
along strut CiAi, respectively.

3. Kineto-Elastodynamic Model

The idea of substructure synthesis and the finite element
method are adopted to develop the Kineto-elastodynamic
model of the 6-PSS parallel structure seismic simulator.
The finite element method used here is based on the
basic assumptions [26] as follows. (1) The deflections of
the links of the manipulator obey the small deflection
theory. The small amplitude structural vibrations do not
have a significant effect on its rigid-body motion and
the coupling term between the elastic deformation and
the rigid-body motion is neglected. The true motion is
regarded as the sum of the rigid-body motion, and the
elastic motion. (2) The instantaneous structural approach
is adopted. At each instant, the manipulator is modeled as
an instantaneous structure undergoing elastic deformations
about its mean rigid body configuration. (3) The model is
based on the Euler-Bernoulli beam theory. (4) The transverse
deflections are modeled as a cubic polynomial of the nodal
displacement, the longitudinal deflections and the torsional
deflections are modeled as a first-order polynomial of the
nodal displacement. The manipulator is divided into seven
substructures, namely, one moving platform substructure
and six kinematic chain substructures which are composed
of the lead-screw assembly and the strut. Each strut is divided
into three elements. The moving platform and the sliders
are regarded as the rigid bodies since their deformations are
small relative to the elastic deformations.

3.1. Strut Dynamic Equation

3.1.1. Element Model. The nodal elastic displacement of the
element is shown in Figure 4. So the elastic displacement of
the element can be expressed as

δ =
[
δi δ j

]T
, (8)

where

δi =
[
ui vi wi θix θiy θiz

]T
,

δ j =
[
uj vj wj θjx θj y θjz

]T
.

(9)

The elastic displacement vector of an arbitrary point
P within the element can be expressed by the nodal
displacement of the element [27]

p =
[
u v w θ

]T = Nδ, (10)

where N is relational matrix which maps the nodal elastic
displacement vector of the element into that of the point P.

The polynomial of the nodal displacement of the element
is chosen to formulate the displacement of the point P.
The transverse displacement, the longitudinal displacement,
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Figure 4: Nodal elastic displacement of the element.

and the torsional displacement of the point P are modeled
as a cubic polynomial and a linear function of the nodal
displacement, respectively. So the longitudinal displacement
and the torsional displacement of the point P are expressed
as

u = a0 + a1x,

θ = d0 + d1x.
(11)

The transverse displacements of the point P can be expressed
as

v = b0 + b1x + b2x
2 + b3x

3,

w = c0 + c1x + c2x
2 + c3x

3.
(12)

Substituting (11) and (12) into (10) yields

p =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u

v

w

θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Hu(x)a

Hv(x)b

Hw(x)c

Hθ(x)d

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (13)

where

a =
[
a0 a1

]T
,

b =
[
b0 b1 b2 b3

]T
,

c =
[
c0 c1 c2 c3

]T
,

d =
[
d0 d1

]T
,

Hu(x) = Hθ(x) =
[

1 x
]

,

Hv(x) = Hw(x) =
[

1 x x2 x3
]
.

(14)

Considering the node i and the node j, where x = 0 and
x = l, respectively, yields

a = A−1
uθ δu,

b = A−1
vwδv,

c = A−1
vwδw,

d = A−1
uθ δθ ,

(15)



6 Journal of Robotics

where

δu =
[
ui uj

]T
,

δv =
[
vi θiz v j θjz

]T
,

δw =
[
wi θiy wj θj y

]T
,

δθ =
[
θix θjx

]T
,

A−1
uθ =

⎡

⎢
⎣

1 0

−1
l

1
l

⎤

⎥
⎦,

A−1
vw =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 0

− 3
l2
−2
l

3
l2

−1
l

2
l3

1
l2

− 2
l3

1
l2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(16)

Substituting (15) into (13) yields

p =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u

v

w

θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

hu(x)

hv(x)

hw(x)

hθ(x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Aδ = Nδ, (17)

where

hu(x) =
[

1 0 0 0 0 0 x 0 0 0 0 0
]

,

hv(x) =
[

0 1 0 0 0 x 0 x2 0 0 0 x3
]

,

hw(x) =
[

0 0 1 0 x 0 0 0 x2 0 x3 0
]

,

hθ(x) =
[

0 0 0 1 0 0 0 0 0 x 0 0
]

,

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

−1
l

0 0 0 0 0
1
l

0 0 0 0 0

0 − 3
l2

0 0 0 −2
l

0
3
l2

0 0 0 −1
l

0 0 − 3
l2

0 −2
l

0 0 0
3
l2

0 −1
l

0

0 0 0 −1
l

0 0 0 0 0
1
l

0 0

0 0
2
l3

0
1
l2

0 0 0 − 2
l3

0
1
l2

0

0
2
l3

0 0 0
1
l2

0 − 2
l3

0 0 0
1
l2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(18)

Considering the knowledge of material mechanics, the strain
of the point P is

ε =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε0

εby

εbz

εr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

du

dx

−y d
2v

dx2

−z d
2w

dx2

G

E

16Jk
πd3

dθ

dx

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (19)

where ε0 is the axial strain, εby and εbz are the flexural strain
in the plane Oxy and Oxz, respectively, εr is the torsional
strain, y and z are the distance along the y and z direction
from the axis of the element to the point P, G is the torsional
modulus, E is the Young’s modulus, Jk is the polar moment
of inertia of cross-section, d is the diameter of the strut.

Substituting (17) into (19) yields

ε =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h′u(x)

−yh′′v (x)

−zh′′w(x)

G

E

16Jk
πd3

h′θ(x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Aδ = Bδ, (20)

where

h′u(x) =
[

0 0 0 0 0 0 1 0 0 0 0 0
]

,

h′′v (x) =
[

0 0 0 0 0 0 0 2 0 0 0 6x
]

,

h′′w(x) =
[

0 0 0 0 0 0 0 0 2 0 6x 0
]

,

h′θ(x) =
[

0 0 0 0 0 0 0 0 0 1 0 0
]
.

(21)

So the stress is

σ = Eε. (22)

According to the knowledge of material mechanics, the
strain energy of the element can be expressed as

U = 1
2

∫∫∫

εTσdv. (23)

Substituting (20) and (22) into (23) yields

U = 1
2

∫∫∫

EδTBTBδdv = 1
2
δTE

∫∫∫

BTBdvδ = 1
2
δTkδ,

(24)

where

k = 1
2
E
∫∫∫

BTBdv (25)

is the element stiffness matrix. Substituting (20) into (25)
yields
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k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EA

l
0 0 0 0 0 −EA

l
0 0 0 0 0

0
12EIz
l3

0 0 0
6EIz
l2

0 −12EIz
l3

0 0 0
6EIz
l2

0 0
12EIy
l3

0 −6EIy
l2

0 0 0 −12EIy
l3

0 −6EIy
l2

0

0 0 0
GJk
l

0 0 0 0 0 −GJk
l

0 0

0 0 −6EIy
l2

0
4EIy
l

0 0 0
6EIy
l2

0
2EIy
l

0

0
6EIz
l2

0 0 0
4EIz
l

0 −6EIz
l2

0 0 0
2EIz
l

−EA
l

0 0 0 0 0
EA

l
0 0 0 0 0

0 −12EIz
l3

0 0 0 −6EIz
l2

0
12EIz
l3

0 0 0 −6EIz
l2

0 0 −12EIy
l3

0
6EIy
l2

0 0 0
12EIy
l3

0
6EIy
l2

0

0 0 0 −GJk
l

0 0 0 0 0
GJk
l

0 0

0 0 −6EIy
l2

0
2EIy
l

0 0 0
6EIy
l2

0
4EIy
l

0

0
6EIz
l2

0 0 0
2EIz
l

0 −6EIz
l2

0 0 0
4EIz
l

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (26)

where Iy and Iz are the principal moments of inertia
corresponding to the y axis and z axis, respectively, A is the
area of the cross-section of the uniform beam.

Based on the presented assumption, there are kinematics
relationships as follows:

ṗa = ṗr + ṗ,

p̈a = p̈r + p̈,
(27)

where ṗa and p̈a are the absolute velocity and the absolute
acceleration of a certain point within the element, ṗr and
p̈r are the velocity and the acceleration of the rigid-body
motion, and ṗ and p̈ are the velocity and the acceleration of
the elastic motion.

It can be proved that (see [27])

ṗr = Nr δ̇r = Nδ̇r ,

p̈r = Nr δ̈r = Nδ̈r ,
(28)

where δ̇r and δ̈r are the nodal velocity and the acceleration of
the rigid-body motion.

So the kinetic energy of the element can be expressed as

T = 1
2

∫ l

0
m(x)ṗTa ṗadx

= 1
2

∫ l

0
m(x)δ̇

T
a NTNδ̇adx

= 1
2
δ̇
T
a

∫ l

0
m(x)NTNdxδ̇a

= 1
2
δ̇
T
a mδ̇a,

(29)

where δ̇a is the absolute velocity of the node. And

m = 1
2

∫ l

0
m(x)NTNdx (30)

is the element mass matrix. For the uniform beam, the mass
function is

m(x) = ρA, (31)

where ρ is the density of the beam. So the element mass
matrix is
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m = ρAl

420

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

140 0 0 0 0 0 70 0 0 0 0 0

0 156 0 0 0 22l 0 54 0 0 0 −13l

0 0 156 0 −22l 0 0 0 54 0 13l 0

0 0 0
140Jk
A

0 0 0 0 0
70Jk
A

0 0

0 0 −22l 0 4l2 0 0 0 −13l 0 −3l2 0

0 22l 0 0 0 4l2 0 13l 0 0 0 −3l2

70 0 0 0 0 0 140 0 0 0 0 0

0 54 0 0 0 13l 0 156 0 0 0 −22l

0 0 54 0 −13l 0 0 0 156 0 22l 0

0 0 0
70Jk
A

0 0 0 0 0
140Jk
A

0 0

0 0 13l 0 −3l2 0 0 0 22l 0 4l2 0

0 −13l 0 0 0 −3l2 0 −22l 0 0 0 4l2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (32)

Substituting (23) and (29) into Lagrange equation yields

d

dt

(
∂T

∂δ̇

)
− ∂T

∂δ
+
∂U

∂δ
= f , (33)

where f denotes the resultant of the applied and the internal
forces exerted at the element. Thus, the kinematic differential
equation of the strut element within ith kinematic chain can
be achieved as follows:

mδ̈ + kδ = f −mδ̈r . (34)

Equation (34) can be expressed in the coordinate system O−
xyz as

MeiÜei + KeiUei = Fei −MeiÜeri, i = 1, 2, . . . , 6 (35)

where

Uei = RT
i δ,

Üei = RT
i δ̈, Üeri = RT

i δ̈r ,

Fei = RT
i f ,

Mei = RT
i mRi,

Kei = RT
i kRi,

Ri = diag
( (

oRi Rot
(
y,−π

2

))T (
oRi Rot

(
y,−π

2

))T

(
oRi Rot

(
y,−π

2

))T (
oRi Rot

(
y,−π

2

))T )

(36)

3.1.2. Strut Dynamic Equation. For the strut within ith
kinematic chain, the dynamic motion in the coordinate
system O − xyz can be assembled as

M′
siÜ

′
si + K′

siU
′
si = F′si −M′

siÜ
′
sri, (37)

where

M′
si =

3∑

j=1

AT
j MeiA j ,

K′
si =

3∑

j=1

AT
j KeiA j ,

F′si =
3∑

j=1

AT
j Fei =

⎡

⎢
⎢
⎢
⎣

F∗c2i
018×1

F∗c1i

⎤

⎥
⎥
⎥
⎦

,

A1 =
[

E12 012×12

]
,

A2 =
[

012×6 E12 012×6

]
,

A3 =
[

012×12 E12

]
,

(38)

where A j is the connectivity matrix which maps the total
nodal coordinates U′

si of the strut within the ith kinematics
chain into the jth nodal coordinate within the strut. Ü′

si

and Ü′
sri denote the the nodal acceleration of the elastic

motion and the rigid-body motion of the strut within the
ith kinematics chain. E12 is the unit matrix of order twelve.
F∗c1i is the internal force between the strut and the slider.
F∗c2i is the internal force between the rigid moving platform
and the strut. All the above coordinates are measured in the
coordinate system O − xyz.

3.2. Slider Dynamic Equation. The oscillation of the slider
along the axial direction of the lead-screw can be expressed
as

mciÜci + kciUci = fi −mciq̈i − eTi F∗c1i, (39)

where Uci is the elastic displacement of the slider along the
axial direction of the lead-screw. kci is the equivalent axial
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stiffness of the lead screw assembly that is composed of three
serially connected component, that is, lead screw, ball nut
which links slider with lead-screw and the two sets of support
bearings at both ends. Let kcsi, kcni, and kcbi denote their
respective axial stiffness then the equivalent axial stiffness can
be expressed as

1
kci
= 1
kcsi

+
1
kcni

+
1
kcbi

, kcsi = AsEs(L1i + L2i)
L1iL2i

, (40)

where As and Es stand for the cross-sectional area of the
lead screw and its Young’s modular, and L1i and L2i are
the distances between the nut and the two sets of support
bearings located at each end of the lead screw.

3.3. Deformation Compatibility Condition. The compatibility
of the deformations between the rigid moving platform and
the flexible strut can be expressed as

Uc2i =
[

E3 −S(ai)
]

Up, (41)

where Up denotes the generalized coordinates of vibration
motion of the moving platform, Uc2i = U′

si(1 : 3, 1 : 1)
denotes the elastic displacement of the corresponding node
within the flexible strut, S(ai) is the screw matrix of ai, and
E3 denotes the unit matrix of the order three.

The compatibility of the deformations between the rigid
slider and the flexible strut can be expressed as

eTi Uc1i = Uci, (42)

where Uc1i = U′
si(18 : 21, 1 : 1) is the elastic displacement of

the corresponding node within the flexible strut.

3.4. Substructure Motion Equation

3.4.1. Moving Platform Substructure. The oscillation equa-
tion of the rigid moving platform substructure in the
coordinate system O − xyz is

⎡

⎣
mpE3 03×3

03×3
oIp

⎤

⎦Üp

−

⎡

⎢
⎢
⎢
⎢
⎢
⎣

fe −mpv̇ −
6∑

i=1

F∗c2i

ne − oIp ω̇ − ω ×
(
oIp ω

)
−

6∑

i=1

ai × F∗c2i

⎤

⎥
⎥
⎥
⎥
⎥
⎦
= 0.

(43)

3.4.2. Kinematic Chain Substructure. Employing the defor-
mation compatibility conditions between the flexible strut
and the rigid slider and the boundary conditions of the slider,
the motion equation of the ith kinematic chain substructure
can be assembled as

MkiÜki + KkiUki = Fkci + Fkdi, (44)

where

Uki =
⎡

⎣
U′
si(1 : 18, 1 : 1)

Uci

⎤

⎦,

Mki =
⎡

⎣
M′

si(1 : 18, 1 : 18) M′
si(1 : 18, 21 : 21)

M′
si(21 : 21, 1 : 18) M′

si(21 : 21, 21 : 21) +mci

⎤

⎦

i = 1, 2, 3,

Mki =
⎡

⎣
M′

si(1 : 18, 1 : 18) M′
si(1 : 18, 20 : 20)

M′
si(20 : 20, 1 : 18) M′

si(20 : 20, 20 : 20) +mci

⎤

⎦

i = 4, 5,

Mki =
⎡

⎣
M′

si(1 : 18, 1 : 18) M′
si(1 : 18, 19 : 19)

M′
si(19 : 19, 1 : 18) M′

si(19 : 19, 19 : 19) +mci

⎤

⎦

i = 6,

Kki =
⎡

⎣
K′
si(1 : 18, 1 : 18) K′

si(1 : 18, 21 : 21)

K′
si(21 : 21, 1 : 18) K′

si(21 : 21, 21 : 21) + kci

⎤

⎦

i = 1, 2, 3,

Kki =
⎡

⎣
K′
si(1 : 18, 1 : 18) K′

si(1 : 18, 20 : 20)

K′
si(20 : 20, 1 : 18) K′

si(20 : 20, 20 : 20) + kci

⎤

⎦

i = 4, 5,

Kki =
⎡

⎣
K′
si(1 : 18, 1 : 18) K′

si(1 : 18, 19 : 19)

K′
si(19 : 19, 1 : 18) K′

si(19 : 19, 19 : 19) + kci

⎤

⎦

i = 6,

Fkci =

⎡

⎢
⎢
⎢
⎣

F∗c2i
015×1

0

⎤

⎥
⎥
⎥
⎦

,

Fkdi =
⎡

⎣
018×1

fi

⎤

⎦−MkiÜkri,

Ukri =
⎡

⎣
U′
sri(1 : 18, 1 : 1)

q̈i

⎤

⎦

(45)

Fkci is the internal forces between the elements within the
strut, Fkdi is the resultant force of the generalized inertial
force and the outside force.

3.5. Kineto-elasticdynamic Model of the Manipulator. Gather-
ing the dynamic equations of the substructures and employ-
ing the deformation compatibility conditions between the
rigid moving platform and the flexible strut yields

DTM′DÜ + DTK′DU = DTF′c + DTF′d, (46)
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where

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E6 06×96

E3 −S(a1) 03×96

016×6 E16 016×80

E3 −S(a2) 03×96

016×22 E16 016×64

E3 −S(a3) 03×96

016×38 E16 016×48

E3 −S(a4) 03×96

016×54 E16 016×32

E3 −S(a5) 03×96

016×70 E16 016×16

E3 −S(a6) 03×96

016×86 E16

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Up

Uk1(4 : 19, 1)

Uk2(4 : 19, 1)

Uk3(4 : 19, 1)

Uk4(4 : 19, 1)

Uk5(4 : 19, 1)

Uk6(4 : 19, 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

F′c =
⎡

⎣−
⎡

⎣
6∑

i=1

F∗c2i

⎤

⎦

T

−
⎡

⎣
6∑

i=1

ai×F∗c2i

⎤

⎦

T

FTkc1 FTkc2 FTkc3 FTkc4 FTkc5 FTkc6

⎤

⎦

T

,

F′d =
[ [

fe −mpv̇
]T [

ne − oIp ω̇ − ω × ( oIp ω)
]T

FTkd1 FTkd2 FTkd3 FTkd4 FTkd5 FTkd6

]T

(47)

Simplifying (46) yields the kineto-elasticdynamic model of
the manipulator

MÜ + KU = Fd, (48)

where

M = DTM′D, (49)

K = DTK′D, (50)

Fd = DTF′d. (51)

4. Kineto-Elastodynamic
Characteristics Analysis

In this section, the investigation on the Kineto-elasto-
dynamic characteristics of the 6-PSS parallel structure seis-

mic simulator is carried out through simulation. The pro-
gram is developed by the MATLAB software. The parameters
of the seismic simulator used for the simulation are given in
Tables 1, 2, 3, and 4.

The mass of the moving platform is mp = 200 kg. The
inertia parameters used in the simulation are given as

o′Ip =

⎡

⎢
⎢
⎢
⎣

17.333 0 0

0 17.333 0

0 0 33.333

⎤

⎥
⎥
⎥
⎦

kg ·m2,

iIi =

⎡

⎢
⎢
⎢
⎣

1.279 0 0

0 1.279 0

0 0 0.005

⎤

⎥
⎥
⎥
⎦

kg ·m2.

(52)

Other parameters used in the simulation are given as
E = 2.06× 1011 Pa, G = 79.38× 109 Pa, Es = 2.06×

1011 Pa, As = 1.96 × 10−3 m2, L1i + L2i = 1.1 m, ρ =
7800 kg/m3, di = 0.244 m, d = 0.05 m, h1 =
2 m, h2 = 1.5 m, h = 0.01 m, z0 = 1.744 m.

4.1. Natural Frequency. According to the vibration theory,
the rigidity of the system may be represented by the natural
frequency. The seismic simulator with the higher frequency
would have the higher stiffness.

From (48), we get

det
(−ω2M + K

) = 0, (53)

where ω denotes the natural frequency. The distribution of
the natural frequency is shown in Figure 5 when the pose of
the moving platform is given as φx = φy = φz = 0 and z = z0.

It is shown in Figure 5 that the second-order natural
frequency is much higher than the first-order natural
frequency.

4.2. Sensitivity Analysis. The sensitivity analysis is usually
used to evaluate the effect of the structural design variables
on the performance of the manipulator. From (48), we get

(−ω2
rM + K

)
ϕr = 0, (54)

where ϕr and ωr are the mode shape value and the natural
frequency of the vibration in the rth mode. Taking the
derivative of (54) with respect to the structural design value
pm such as the radius of the strut and the radius of the lead
screw yields

(

−2ωr
∂ωr
∂pm

M− ω2
r
∂M
∂pm

+
∂K
∂pm

)

ϕr

+
(−ω2

rM + K
) ∂ϕr
∂pm

= 0.

(55)
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Table 1: The parameters of the base platform (m).

1 2 3 4 5 6

xBi 0.400000 0.000000 −0.400000 0.400000 −0.400000 −2.000000

yBi −0.400000 0.400000 −0.400000 −2.000000 −2.000000 0.000000

zBi 0.000000 0.000000 0.000000 1.500000 1.500000 1.500000

Table 2: The parameters of the moving platform which are measured in the coordinate frame O′ − uvw (m).

1 2 3 4 5 6

xAi 0.400000 0.000000 −0.400000 0.400000 −0.400000 −0.681000

yAi −0.400000 0.400000 −0.400000 −0.681000 −0.681000 0.000000

zAi −0.166000 −0.166000 −0.166000 −0.037500 −0.037500 −0.037500

Table 3: The length of the strut CiAi (m).

1 2 3 4 5 6

li 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

Table 4: The mass parameters of the manipulator (kg).

1 2 3 4 5 6

mi 20 20 20 20 20 20

mci 50 100 50 50 50 100

Taking dot product of ϕr on both sides of the equation yields

ϕTr

(

−2ωr
∂ωr
∂pm

M− ω2
r
∂M
∂pm

+
∂K
∂pm

)

ϕr

+ ϕTr
(−ω2

rM + K
) ∂ϕr
∂pm

= 0.

(56)

Since

ϕTr
(−ω2

rM + K
) =

((−ω2
rM + K

)
ϕr

)T = 0,

ϕTr Mϕr = E.
(57)

give

−2ωr
∂ωr
∂pm

− ω2
rϕ

T
r

∂M
∂pm

ϕr + ϕTr
∂K
∂pm

ϕr = 0. (58)

so

∂ωr
∂pm

= − 1
2ωr

(

ω2
rϕ

T
r

∂M
∂pm

ϕr − ϕTr
∂K
∂pm

ϕr

)

. (59)

Figure 6 shows the sensitivity distribution of the manipulator
when the pose of the moving platform is given as φx = φy =
φz = 0 and z = z0. It is shown that the first-order natural
frequency is sensitive to the radius of the strut and the radius
of the lead screw.

4.3. Energy Ratio Distribution. The computation of the
energy ratio is usually used to evaluate the allocation of the
stiffness and the mass of the manipulator. Suppose that Tsr
andVsr are the maximum kinetic energy and elastic potential
energy of the substructures vibrating in its rth mode. TAr and
VAr denote the maximum kinetic energy and elastic potential
energy of the system vibrating in the rth mode. Thus,

TAr =
N∑

s=1

Tsr ,

VAr =
N∑

s=1

Vsr ,

(60)

where

Tsr = 1
2
ω2
rArT

s msAr
s ,

Vsr = 1
2

ArT
s ksAr

s .

(61)

Ar
s is the oscillating amplitude array of the substructure

vibrating in the rth mode. ms and ks denote the mass matrix
and the stiffness matrix of the substructure, respectively.

So the energy ratio of the substructure can be achieved as

Tsr
TAr

= γsr ,
N∑

s=1

γsr = 1,

Vsr

VAr
= μsr ,

N∑

s=1

μsr = 1,

(62)

where γsr and μsr denote the kinetic energy ratio and the
elastic potential energy ratio of the substructure, respectively.
Figure 7 shows the distributions of the kinetic energy ratio
and the elastic potential energy ratio, respectively, when the
pose of the moving platform is given as φx = φy = φz = 0
and z = z0. It is shown that the mass of the moving platform
should be reduced or the stiffness of the strut should be
increased in order to improve the dynamic characteristics of
the manipulator and the stiffness of the sixth strut must be
increased from the energy ratios computation.
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Figure 5: Distributions of the natural frequencies in the workspace. (a) First-order natural frequency. (b) Second-order natural frequency.
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Figure 6: Sensitivities of the first-order natural frequency to the structure parameters. (a) Radius of the struts. (b) Radius of the lead screws.

4.4. Displacement Response Analysis. The displacement
response analysis will be carried out by solving (48) subject
to the initial conditions

U0 = U(0),

U̇0 = U̇(0),
(63)

Since the damping in the structure is a very complex sub-
ject [28], the modal damping ratios of σr = 0.1% are added
to the Kineto-elastodynamic model of the manipulator.

From (48), we get
(−ω2M + K

)
ϕ = 0. (64)

Neglecting higher-order terms, the displacement vector U
of a multi-degree-of-freedom system can be expressed in
terms of the four dominant modal contributions. Thus, the
dynamic response of the system can be expressed as

U = ϕη, (65)

where ϕ =
[
ϕ1 ϕ2 ϕ3 ϕ4

]
is the modal matrix.

Substituting (65) into (50) and adding the modal damp-
ing ratio yields

ϕTMϕη̈ + ϕTCϕη̇ + ϕTKϕη = ϕTFd, (66)

where

ϕTMϕ = E4,

ϕTCϕ = C = diag
(

2σ1ω1 2σ2ω2 2σ3ω3 2σ4ω4

)
,

ϕTKϕ = Ω2 = diag
(
ω2

1 ω2
2 ω2

3 ω2
4

)

(67)

E4 is the unit matrix of order four.
Substituting (67) into (66) yields

η̈ + Cη̇ + Ω2η = N, (68)

where

N = ϕTFd. (69)
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The stiffness matrix and the mass matrix of the Kineto-
elastodynamic model of the parallel manipulator are time
varying. The common strategy of solving this kind of
problem is dividing the motion period into several small
time internals and regarding the stiffness matrix and the mass
matrix as constant in each small time interval [26].

Let T denote the motion period which is divided into n
intervals

Δt = T

n
. (70)

In the ith time interval (ti−1 < t < ti), the motion equation of
the manipulator is

η̈r + 2σrω
(i)
r η̇r +

(
ω(i)
r

)2
ηr = Nr , (r = 1, 2, . . . ,N). (71)

So the contribution of the rth mode to the displacement
response is

ηr(t) = 1

ω(i)
dr

∫ t

ti−1

Nr(τ)e−σrω
(i)
r (t−τ) sinω(i)

dr (t − τ)dτ

+
ηr(ti−1)
(
1− σ2

r

)1/2 e
−σrω

(i)
r (t−ti−1) cos

[
ω(i)
dr (t − ti−1)− ψr

]

+
η̇r(ti−1)

ω(i)
dr

e−σrω
(i)
r (t−ti−1) sinω(i)

dr (t − ti−1),

(r = 1, 2, . . . ,N),
(72)

where

ω(i)
dr =

(
1− σ2

r

)1/2
ω(i)
r , (73)

ψr = arctan
σr

(
1− σ2

r

)1/2 . (74)

Substituting t = ti into (73) yields

ηr(ti) = 1

ω(i)
dr

∫ ti

ti−1

Nr(τ)e−σrω
(i)
r (ti−τ) sinω(i)

dr (ti − τ)dτ

+
ηr(ti−1)
(
1− σ2

r

)1/2 e
−σrω

(i)
r Δt cos

[
ω(i)
drΔt − ψr

]

+
η̇r(ti−1)

ω(i)
dr

e−σrω
(i)
r Δt sinω(i)

drΔt, (r = 1, 2, . . . ,N).

(75)

Taking the derivative of (72) with respect to time and
substituting t = ti into it yields

η̇r(ti)

= 1

ω(i)
dr

∫ ti

ti−1

Nr(τ)
[
−σrω

(i)
r e

−σrω
(i)
r (ti−τ) sinω(i)

dr (ti − τ)

+ω(i)
dr e

−σrω
(i)
r (ti−τ) cosω(i)

dr (ti − τ)
]
dτ

− ηr(ti−1)

⎡

⎣ ω(i)
dr

(
1− σ2

r

)1/2 e
−σrω

(i)
r Δt sin

(
ω(i)
drΔt − ψr

)

+
σrω

(i)
r

(
1− σ2

r

)1/2 e
−σrω

(i)
r Δt cos

(
ω(i)
drΔt − ψr

)
]

− η̇r(ti−1)

⎡

⎣ σrω
(i)
r

ω(i)
dr

e−σrω
(i)
r Δt sinω(i)

drΔt − e−σrω
(i)
r Δt cosω(i)

drΔt

⎤

⎦

(r = 1, 2, . . . ,N).
(76)

It is shown from (75) and (76) that ηr(ti) and η̇r(ti) can be
achieved when ηr(ti−1) and η̇r(ti−1) are given. As for ti = 0,

ηr(0) =
(
ϕ(r)

)T
MU(0),

η̇r(0) =
(
ϕ(r)

)T
MU̇(0).

(77)

So the total displacement response can be achieved by
combining these modal contributions

U(ti) =
N∑

r=1

ηr(ti)ϕr(ti), (78)

It is the sum of the steady-state response and the transient
state response.

Assuming that the investigated trajectory of the moving
platform used in the simulation is expressed as

x = −0.1 +
amaxT2

2π

(
τ − 1

2π
sin(2πτ)

)
,

y = −0.1 +
amaxT2

2π

(
τ − 1

2π
sin(2πτ)

)
,

z = 1.644 +
amaxT2

2π

(
τ − 1

2π
sin(2πτ)

)
,

φx = −0.1 +
amaxT2

2π

(
τ − 1

2π
sin(2πτ)

)
,

φy = −0.1 +
amaxT2

2π

(
τ − 1

2π
sin(2πτ)

)
,

φz = −0.1 +
amaxT2

2π

(
τ − 1

2π
sin(2πτ)

)
,

(79)

where amax = 9.8 m/s2, τ = t/T , T = √
2πS/amax s

in seconds, and S = 0.2 m(rad). The motion period is
divided into 512 intervals. The displacement response of
the moving platform is shown in Figure 8. It is shown that



Journal of Robotics 15

×10−5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

8

6

4

2

0

−2

−4

−6

−8

−10

(m
)

Time (s)

(a)

×10−4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

2

1.5

1

0.5

0

−0.5

−1

(m
)

Time (s)

(b)

×10−4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

1.5

1

0.5

0

−0.5

−1

−1.5

(m
)

Time (s)

(c)

×10−4

φ
x

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

3

2

1

0

−1

−2

−3

Time (s)

(d)

×10−4

Time (s)

φ
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

4

3

2

1

0

−1

−2

−3

(e)

×10−4

Time (s)

φ
z

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

4

2

0

−2

−4

(f)

Figure 8: Displacement responses of the moving platform.(a) x direction, (b) y direction, (c) z direction, (d) φx direction, (e) φy direction,
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the displacement response of the moving platform along
the x direction is smaller than these displacement responses
along the y direction and along the z direction. The angular
displacement response of the moving platform rotating
about z axis is slightly larger than those angular displacement
responses rotating about the x axis and about the y axis.

5. Conclusion

Based on the Kineto-elastodynamic assumption, the model-
ing and the Kineto-elastodynamic characteristics of the 6-
PSS parallel structure seismic simulator have been system-
atically investigated through simulation. The conclusions are
drawn from the simulation as follows.

(1) The maps of the natural frequencies with respect to
the manipulator configuration have been achieved. It
is shown that the second-order natural frequency is
much higher than the first-order natural frequency.

(2) From the sensitivity analysis, the first-order natural
frequency is sensitive to the radius of the strut and
the radius of the lead screw.

(3) The mass of the moving platform should be reduced
or the stiffness of the strut should be increased in
order to improve the dynamic characteristic of the
manipulator, and the stiffness of the sixth strut must
be increased from the energy ratios computation.

(4) For the investigated trajectory, the displacement
response of the moving platform along the x-
direction is smaller than these displacement
responses along the y direction and along the z
direction. The angular displacement response of the
moving platform rotating about z-axis is slightly
larger than those angular displacement responses
rotating about the x-axis and about the y-axis.
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