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Performance indexes usually provide global evaluations of robot performances mixing their translational and/or rotational
capabilities. This paper proposes a definition of performance index, called direction-selective index (DSI), which has been
specifically developed for parallel manipulators and can provide uncoupled evaluations of robot translational capabilities along
relevant directions. The DSI formulation is first presented within a general framework, highlighting its relationship with traditional
manipulability definitions, and then applied to a family of parallel manipulators (4-RUU) of industrial interest. The investigation
is both numerical and experimental and allows highlighting the two chief advantages of the proposed DSIs over more conventional
manipulability indexes: not only are DSIs more accurate in predicting the workspace regions where manipulators can best perform
translational movements along specific directions, but also they allow foreseeing satisfactorily the dynamic performance variations
within the workspace, though being purely kinematic indexes. The experiments have been carried out on an instrumented 4-RUU
commercial robot.

1. Introduction

Performance evaluation is one of the most important
issues in the analysis and design of manipulators. Indeed,
performance indexes may provide useful hints in the design
and optimization of robots. In 1982, Salisbury and Craig
firstly proposed the condition number of the transpose of
the Jacobian matrix J as a measure of the workspace quality
[1]. Some years later, Yoshikawa introduced the concept of
manipulability, based on the Jacobian matrix, in order to find
the best postures for manipulators [2]. Subsequently, in [3],
Gosselin and Angeles suggested using the global conditioning
index in order to evaluate the dexterity of a robot over a given
workspace. Such an index is basically an integral mean of the
condition number discussed in [1]. In [4], the definitions of
manipulability, condition number, and dexterity index have
been revisited in order to be applied to parallel robots. Novel
formulations have been proposed, which are different from
the ones introduced in [1–3].

Performance indexes based on the Jacobian matrix may
be affected by the presence of inhomogeneities in the velocity

ratios that may lead to ineffective results. Such a problem
was found in [5] in the analysis of the Jacobian matrix of
serial manipulators. It was solved by defining a characteristic
length of the manipulator and by proposing a weight-
ing positive matrix that allows obtaining a homogenous
Jacobian. Unfortunately, such a solution cannot be easily
extended to parallel manipulators. The first formulation of
a dimensionally homogeneous Jacobian matrix overcoming
this problem for planar parallel manipulators was introduced
in [6]. Such a Jacobian relates the actuator velocities to
the ones of the Cartesian coordinates of two points of
the mobile platform. Following such a reasoning, in [7],
a new dimensionally homogeneous Jacobian matrix was
formulated by relating the velocities of three points (coplanar
with the mobile platform joints) to the actuator ones.
The same approach has been proposed in [8] for force
transmission analysis, and then it has been reformulated in
[9] for the dexterity analysis of parallel manipulators.

A simple performance index based on the Jacobian
matrix has been also presented in [10]. The proposed index
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is derived by developing an upper bound on the norm of the
rate of change of the Jacobian matrix. Such an upper bound
has a significant role in a sufficiency condition for Jacobian
rank preservation. It is proved that the index proposed in [9]
provides information coherent with manipulability [2] and
the condition number [1], while being easier to compute.

In [11], the dexterity index has been exploited together
with a space utility ratio in order to compose a mixed
performance index for optimizing translational parallel
manipulators. The introduction of the space utility ratio
index ensures avoiding disproportion between the reachable
workspace volume and the structure of the robot by using the
ratio between the total workspace volume and the physical
size of the manipulator.

A performance investigation on translational parallel
manipulators has been presented in [12]. The performance
index is given by the minimum and the maximum eigen-
values of the stiffness matrix obtained from the Jacobian as
proposed in [13]. The effectiveness of this index has been
proved by applying it to an innovative parallel manipulator
whose kinematics is analyzed in [14].

Successively, in [15, 16], a kinetostatic performance
index, called power manipulability, has been introduced.
Power manipulability is related to the power within the
mechanism and is fully homogeneous, whether the manipu-
lator contains active joints of different type, or the task space
combines both translation and rotation motion.

A different approach for the computation of manipu-
lator dexterity has been proposed in some recent studies
[17, 18], where a generalized transmission index that can
evaluate the motion/force transmissibility of fully parallel
manipulators has been defined through virtual coefficients
and not through Jacobian matrix. Contrary to the other
indexes, such a transmission index is frame-free (i.e., its
value does not depend on the reference frame in which
it is computed). Moreover, it can be used to identify a
good transmission workspace, where not only is the parallel
manipulator effective in terms of motion/force transmission,
but also far from its singularities.

All the aforementioned indexes provide global evalua-
tions of robot performances mixing the translational capa-
bilities of robots or the rotational ones. However, in [4], the
concept of manipulability has been extended to evaluate the
translational and rotational capabilities of parallel manipu-
lators. In such a case, the Jacobian matrix has been split in
two submatrices, Jt and Jr , evaluated separately. Following a
similar reasoning, in [19], it is proved that it is useful to split
the Jacobian matrix Jt in order to extend the manipulability
definition further and analyze the translational performance
of a robot along a specific direction, which originated
the concept of direction-selective performance index (DSI).
In [19], DSI formulation has been adopted to study and
compare the performances along different directions of a
3-UPU manipulator and a delta-like (4-RUU) manipulator.
Generally speaking, when uncoupled DSIs are available for
horizontal and vertical movements, they may be usefully
adopted to foresee performances on those tasks (e.g., the
pick-and-place task), which consist of continuous sequences
of vertical and horizontal displacements. Additionally, DSIs

may be usefully employed to optimize the location of target
frames with respect to a robot, or of a robot within its
workcell.

There are two main motivations for this paper:

(i) experimentally proving the practical usefulness of
DSIs in predicting the regions within the workspace
where a manipulator can best perform a specific
movement;

(ii) showing that DSIs, though being purely kinematic
indexes, allow foreseeing dynamic performance vari-
ations within the workspace satisfactorily.

In order to prove the practical usefulness of DSIs, in this
work, their formulation is applied to foresee performance
dissimilarities in the vertical and horizontal movements of
an industrial parallel manipulator belonging to the family
of four-leg delta-like (4-RUU) manipulators: the Adept
Quattro. Additionally, a comparative study is performed
between the results obtained by applying DSIs and manip-
ulability. The DSI formulation adopted in this paper is more
general than the one first introduced in [19], while several
mathematical formulations of manipulability are considered.
The analyses made are both numerical and experimental.

The experimental investigation has been done mainly
because the numerical results highlight major differences in
the best performance regions identified by the DSIs and the
manipulability indexes. The experiments have been carried
out by instrumenting the robot with an MEMS accelerometer
and by making the robot perform extensive tests consisting
in constant-length vertical and horizontal movements of the
moving platform within the whole workspace: the expected
and the real performances of the robot have then been
compared. The results from the experimental investigation
prove the validity of the hints inferred through the proposed
DSI formulation and hence its practical usefulness. In
particular, as theoretically expected, DSIs turn up to be far
more descriptive than manipulability.

The rest of the paper is set out as follows. Section 2
provides the definition of DSI within a general framework.
Then, in Section 3, the DSI definition is applied to the
family of 4-RUU parallel manipulators. Section 4 shows the
results of a numerical investigation aimed at assessing and
comparing the shapes of the DSIs and of manipulability
indexes within the workspace of the Quattro robot. Planar
and spatial graphical representations of the shapes of the
indexes are provided. The experimental campaign and its
results are then presented and discussed in Section 5. Finally,
Section 6 draws the conclusions.

2. Definition of Direction-Selective Index

The congruence equation of the position analysis of a parallel
manipulator can be generally defined as F(q, x) = 0, where
q denotes the joint variable vector, x is the generalized
coordinates of the end effector, F is an n-dimensional implicit
function of q and x, and 0 is the n-dimensional zero vector.
By differentiating the congruence equation with respect to
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time, the velocity relation Jx · ẋ− Jq · q̇ = 0 is achieved, where
Jx = ∂ fi/∂xj and Jq = −∂ fi/∂qk.

The two matrices Jx and Jq are the n × n Jacobian
matrices of, respectively, the end-effector coordinates and
the joint variables. Such matrices obviously depend on the
configuration of the manipulator. From these equations,
there immediately follow the expressions of J := J−1

x · Jq and
J−1 := J−1

q ·Jx and also the solutions of the forward (ẋ = J· q̇)
and of the inverse (q̇ = J−1 · ẋ) velocity kinematic problems.

In parallel robotics, forward position kinematics is
usually harder to solve than inverse kinematics. Sometimes
the analytical solution of the forward problem is not even
available. Hence, the analytical expression of the inverse
Jacobian matrix J−1 is usually easier to achieve than J.

One of the most popular performance indexes is the
manipulability index defined by Yoshikawa in [2] as follows:

μ =
√

det(J · JT). (1)

Such an index was conceived for serial robots, hence it
is based on the Jacobian matrix of the forward kinematic
problem. However, as previously discussed, in parallel
manipulators, the inverse Jacobian matrix is usually avail-
able, which suggests introducing some small changes to the
index definition. By recalling that if λi are the eigenvalues
of a generic square matrix, the eigenvalues of its inverse are
1/λi, and that the determinant of a matrix is equal to the dot
product of its eigenvalues, a definition of the manipulability
more suitable to parallel manipulators can be inferred

μ = 1√
det(J−T · J−1)

. (2)

By making use of such a definition, the values of μ become
comparable with those computed through Yoshikawa’s for-
mulation and become identical to such values in case of
square Jacobian matrices. Moreover, the values taken by μ
are coherent with the singularity analysis for parallel robots
defined in [20].

Other measure criteria of manipulability can be used
in the performance analysis of parallel manipulators [4];
manipulability can indeed be also defined by means of

(i) the Euclidean norm (or Frobenius norm) ‖J · JT‖F =√∑n
i, j=1 |ai j|2,

(ii) the infinity norm ‖J · JT‖∞ = max1≤i≤m
∑n

j=1 |ai j|,

where ai j are the elements of the matrix J · JT. By following
a reasoning similar to the one leading to (2) from (1),
the following further definitions of manipulability can be
provided for parallel manipulators:

μF = 1
‖J−T · J−1‖F ,

μ∞ = 1
‖J−T · J−1‖∞ .

(3)

In order to try discriminating the performances related to
linear and rotational displacements of the end effector of a

robot, the Jacobian matrix may be split into two parts, Jt
and Jr (J = [Jt | Jr]

T), which can be evaluated separately [4].
The submatrix Jt contains the ratios between the end-effector
translations and the joint displacements; the submatrix
Jr contains the ratios between the end-effector rotations
and the joint displacements. Hence, different performance
indexes can be computed making use of Jt and Jr . Of
course, such indexes still provide a global evaluation of the
performances mixing either the translational capabilities of
robot in the three directions or the rotational ones.

When parallel robots are considered, Jt and Jr are more
easily computed through inverse kinematics; consider

(i) the matrix Jxt, submatrix of Jx comprising the partial
derivates with respect to the translational coordinates
of the end effector,

(ii) the matrix Jxr , submatrix of Jx comprising the partial
derivates with respect to the rotational coordinates of
the end effector.

In the following (4), the matrices J−1
t and J−1

r are then
the inverse matrices for the translational and the rotational
inverse velocity analyses:

J−1
t = J−1

q · Jxt, J−1
r = J−1

q · Jxr . (4)

The analyses based on the Jacobian submatrix J−1
t and the

values of the performance indexes that may be computed
from such a matrix are usually affected by the units adopted
to measure the end-effector velocities and the joint ones.
Some “normalization” criteria hence need to be adopted to
make the results of the analyses comparable regardless of the
features of the manipulator active joints (see [7, 20]). As a
matter of fact, the coefficients of J−1

t are the ratios between
the linear velocities of the end effector and the velocities
of the active joints, which might be either translational or
rotational. In case of fully translational joints, the analysis of
the matrix J−1

t can be directly performed and leads to dimen-
sionless indexes. Alternatively, if active joints are rotational,
in order to keep the performance indexes dimensionless, it
may be appropriate to modify the elements of matrix J−1

t

so as to relate the end-effector translational velocities to
the tangent velocities of the drive cranks, rather than to
their angular velocities. A new dimensionless matrix J−1

Dt can
therefore be adopted when the active joints are rotational;
J−1
Dt is obtained by premultiplying J−1

t by a diagonal matrix D
made up of the lengths of the drive cranks.

J−1
Dt = D · J−1

t , JDt = Jt ·D−1. (5)

By replacing J−1 (and its transpose matrix) in (2) and (3),
with J−1

t or J−1
Dt (and its transpose matrix), according to

the features of the active joints, it is possible to get the
manipulability indexes referring to end-effector translational
degrees of freedom. In particular, in case of fully rotational
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active joints, it holds

μt = 1√
det
(

J−T
Dt · J−1

Dt

) ,

μFt =
1∥∥∥J−T

Dt · J−1
Dt

∥∥∥
F

,

μ∞t =
1∥∥∥J−T

Dt · J−1
Dt

∥∥∥∞
.

(6)

The idea behind direction-selective indexes (DSIs) relies on
splitting matrices J−1

t or J−1
Dt into three column vectors in

order to extend the manipulability formulation further and
make it suitable to analyze robot performances along specific
directions. As an example, the following holds in case of fully
rotational active joints:

J−1
Dt =

[
J−1
X | J−1

Y | J−1
Z

]
. (7)

DSIs can then be straightforwardly obtained by replacing J−1

(and its transpose matrix) in (2) with J−1
X , J−1

Y , or J−1
Z (and

their transpose vectors)

μX = 1√
det
(

J−T
X · J−1

X

) =
(

J−T
X · J−1

X

)− 1/2
,

μY = 1√
det
(

J−T
Y · J−1

Y

) =
(

J−T
Y · J−1

Y

)− 1/2
,

μZ = 1√
det
(

J−T
Z · J−1

Z

) =
(

J−T
Z · J−1

Z

)− 1/2
.

(8)

The DSIs μX , μY , and μZ are here proposed to evaluate
independently the translational capabilities of a manipulator
along the axes of its world reference frame. The performances
along any other relevant direction can be straightforwardly
evaluated by suitably rotating the world reference frame, so
that one axis coincides with the selected direction.

3. DSI Formulation for 4-RUU Parallel
Manipulators

In order to assess the capability of the proposed indexes to
foresee manipulator performance variations along selected
directions, the definitions just provided for μX , μY , and μZ
have been applied to a generic 4-RUU parallel manipulator.

4-RUU manipulators are four-leg and four-degree-of-
freedom parallel manipulators conceived for performing
high-speed and high-acceleration pick-and-place operations.
The kinematic and dynamic models for this family of parallel
robots are reported in [21]. Due to their architecture, these
robots can produce Schöenflies motions (i.e., translations
along the X, Y and Z direction and a rotation about the Z
axis), which are required in most pick-and-place operations,
including packaging, picking, packing, and palletizing tasks.
An example of 4-RUU manipulator is sketched in Figure 1,

which also shows some essential geometrical parameters of
the robot, of its workspace, and the robot world reference
frame. The robot moving platform takes the shape of
a rhombus whose side has length 2d. The platform is
connected to the fixed base by four identical RUU serial chain
legs, that is, legs with one revolute (R) and two universal (U)
joints (see Figure 1).

Let {x0, y0, z0, θ0}T be the end-effector pose, and
{ϕ1,ϕ2,ϕ3,ϕ4}T the active joint coordinates. In order to
compute the performance indexes for the studied family of
parallel manipulators, since the active joints are all rotational,
the following formulation of the translational matrix JDt is
used:

J−1
Dt = J−1

q ·D · Jxt. (9)

Matrix J−1
q is the inverse of the Jacobian matrix Jq and is

defined as follows:

J−1
q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
jq1

0 0 0

0
1
jq2

0 0

0 0
1
jq3

0

0 0 0
1
jq4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

with:

jqi = b

[
z0 cosϕi +

(
a− x0 − d

√
2

2
− d cos

(
π

4
− θ0

))

× sinϕi

]
(i = 1, 3),

jqj = b

[
z0 cosϕj +

(
a− y0 − d

√
2

2
+ d sin

(
π

4
− θ0

))

× sinϕj

] (
j = 2, 4

)
.

(11)

Matrix Jxt is the translational part of the Jacobian matrix Jx
and is defined as follows:

Jxt =

⎡
⎢⎢⎢⎢⎢⎢⎣

x0 + A + B − C1 y0 + D − B z0 − E1

x0 + A− B y0 + D + B − C2 z0 − E2

x0 − A− B + C3 y0 −D + B z0 − E3

x0 − A + B y0 −D − B + C4 z0 − E4

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(12)

where A = d cos((π/4)−θ0), B = d(
√

2/2), Ck = a+b cosϕk,
D = d sin((π/4)− θ0), and Ek = b sinϕk (k = 1,. . .,4).

Finally, matrix D takes the following form: D = b · I4,
where I4 is the identity matrix of size four and b is the crank
length.
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Figure 1: Schematic representation of a 4-RUU parallel robot and of its workspace.

The DSIs μX , μY , and μZ can be computed through (8) by
simply extracting the column vectors J−1

X , J−1
Y , and J−1

Z from
J−1
Dt ,

J−1
X = J−1

q · {x0 + A + B − C1, x0 + A− B,

x0 − A− B + C3, x0 − A + B}T · b,

J−1
Y = J−1

q · {y0 + D − B, y0 + D + B − C2, y0 −D + B,

y0 −D − B + C4
}T · b,

J−1
Z = J−1

q · {z0 − E1, z0 − E2, z0 − E3,

z0 − E4}T · b.
(13)

4. Numerical Investigation on an Industrial 4-
RUU Manipulator: DSI versus Manipulability

A numerical investigation has been carried out by applying
the theory developed above to an industrial 4-RUU manip-
ulator (the Adept Quattro). The goal of the investigation
is to point out the different suggestions provided the
manipulability indexes, in terms of regions of the workspace
where the robot performances should be optimal. In order
to achieve exhaustive predictions of the robot performances
over its full workspace (shown in Figure 1), it has been
necessary to discretize the workspace through a regular and
thick grid. The grid has been constructed by selecting 12
equally spaced horizontal planes, located at zu (u = 1,. . .,12)
in the robot world reference frame. Half the planes belong
to the upper cylindrical region of the workspace, and half
to the lower truncated conic region. Each plane contains 11

concentric circles of radius rv (v = 1,. . .,11). Each circle is split
into 36 points with polar angle θw (w = 1,. . .,36). Hence, the
grind comprises 396 points spread through the entire volume
of the workspace.

The cylindrical coordinates of each point P of the grid
have been transformed into Cartesian coordinates in the
robot world frame using the following basic expressions:

xP = rv cos θw,

yP = rv sin θw,

zP = zu.

(14)

The performance indexes in all the grid points have then
been computed by setting x0 = xP , y0 = yP , and z0 = zP . The
rotation of the end effector (θ0) has instead been set equal to
zero in all the grid points.

Table 1 collects the chief geometrical parameters of the
Quattro robot and of its workspace (refer to Figure 1 for the
meaning of each parameter).

Figures 2 through 7 show the values taken by the
manipulability indexes μt (Figure 2), μFt (Figure 3), and μ∞t
(Figure 4) and by the DSIs μX (Figure 5), μY (Figure 6),
and μZ (Figure 7) over the robot workspace.

In these figures, a spatial view of the shapes of the
indexes is given. So as to simplify the comparison among the
predictions of the indexes, regardless of each index values
and range of variation, the best performance regions take
dark red color in all the figures, while the worst performance
regions take dark blue color.

It may be immediately recognized that the manipulability
indexes μt, μFt , and μ∞t have similar shapes; these indexes
depict spherical-like and concentric isomanipulability sur-
faces. The indexes always take their best values in the inner
regions of the workspace, which are hence identified as
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Table 1: Quattro robot geometric and workspace parameters.

Symbols Values (mm)

a 265

b 370

c 830

d 80

e 780

f 220

g 180

h 700

m 1140

the best performance regions. The vertical position of such
regions depends on the formulation chosen. The index values
then decrease in the regions closer to the boundaries of the
workspace. The shape shown by the manipulability indexes
is rather intuitive; the best manipulator performances seems
to be achievable close to the center of the manipulator
workspace. However, considerably different hints come
from the DSIs μX , μY , and μZ , that is, when considering
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Figure 4: Manipulability index μ∞t .
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Figure 5: DSI μX .

the expected performances for translations along different
directions.

Let us first consider μX and μY (Figures 5 and 6), whose
shapes are nearly identical, apart from a rotation by π/2
radians about the Z axis. The isomanipulability regions are
no longer spherical like and concentric, but rather half-oval
in the best performance regions and elliptical like elsewhere.
Additionally, the best performance regions are not located
at the center of the workspace, but they are close to the
boundaries and symmetrical across the axis orthogonal to
the selected direction (e.g., orthogonal to axis Y in the case of
μX ; see Figure 5). The worst performance regions are instead
the ones which are furthest from the symmetry axis.

As far as μZ is concerned, Figure 7 shows that the best val-
ues of the index are found in a ring like region surrounding
the upper part of the workspace. Less satisfactory values are
instead computed for the lower part of the workspace.

A better understanding of the shapes of these indexes
can be obtained by plotting the values they take on some
significant sample planes within the workspace. A few
examples are shown in the Figures from 8 through 12,
where isomanipulability curves are shown. These figures
allow highlighting better the differences between DSIs and
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manipulability. Since the shapes of the three manipulability
indexes are alike (see Figures 2, 3, and 4) and are very
different from the ones of the DSIs, in the following analyses
and figures only the manipulability index μt will be compared
with the DSIs.

Figures 8, 9, and 10 show the values taken in theXY plane
with coordinate Z = −900 by the manipulability index μt,
and by the DSIs μX and μY . Such figures clarify the above-
mentioned differences between the best performance region
predictions. It is apparent that the use of μt seems to lead to
conclusions that are misleading: for example, the existence
of four best performance regions rotated π/2 degrees with
respect to each other and is in contrast with the results
provided by the DSIs, where two best performance regions
rotated π degrees with respect to each other, appears close
to the workspace boundaries and symmetrically displaced
across the direction orthogonal to the selected direction of
motion.

The values taken in the YZ plane with coordinate X = 0
by μt and by the DSI μZ are instead plotted in Figures 11 and
12. The manipulability index μt (Figure 11) reaches its best
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Figure 8: Manipulability index μt in the XY plane (Z = −900).
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Figure 9: DSI μX in the XY plane (Z = −900).

values in a region located close to the middle of the axisY and
close to the bottom (i.e., to low values of Z) of the this planar
slice of the workspace. The manipulability values decrease in
the areas close to the boundaries of the workspace and take
the less satisfactory values at the top of the workspace.

Conversely, Figure 12 shows that μZ takes its best values
in a curved region crossing the planar slice of the workspace
and achieving the very best values at the upper right and left
boundaries. The region close to the bottom of workspace is
where the less satisfactory values are computed.

5. Experimental Validation

The numerical results shown demonstrate that there are
significant discrepancies between the predictions made by
manipulability indexes and the DSIs. In order to assess
experimentally which indexes provide the best predictions,
some relevant experimental tests have been carried out on
the Adept Quattro manipulator.
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Figure 10: DSI μY in the XY plane (Z = −900).

−1200

−1150

−1100

−1050

−1000

−950

−900

−850

−800

−750

0 200 400 600−600 −400 −200

0.4

0.5

0.6

0.7

0.8

0.9

1

Y (mm)

Z
(m

m
)

Figure 11: Manipulability index μt in the YZ plane (X = 0).

The experiments have been carried out with two objec-
tives:

(i) evaluating the translational velocity performances of
the robot moving platform within the workspace,

(ii) comparing the measured performance variations
with the predictions inferred by the indexes analyzed.

Such a comparison makes sense given the apparent depen-
dence on the Jacobian matrix elements of both the indexes
and the translational velocities.

The moving platform of the Quattro robot has been
instrumented with an uniaxial PCB MEMS accelerome-
ter model 3741 (see Figure 13) alternatively employed to
measure accelerations along the X and the Z axes of the
robot world reference frame (see Figure 1). The adopted
accelerometer has a measuring range of ±30 G and a
frequency range between 0 (DC) and 2 kHz. An HBM MGC
signal conditioner with ML10 modules has been used to
power the MEMS accelerometer and to filter its output
signals (a low-pass filter having a Butterworth characteristic
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Figure 12: DSI μZ in the YZ plane (X = 0).

and a cut-off frequency of 200 Hz has been employed). The
filtered data have been acquired and logged by means of an
LMS Pimento analyzer. Finally, experimental data have been
processed (high pass filtered and integrated numerically) and
compared to the performance index values using Matlab-
Simulink.

The experimental tests have been carried out performing
several repetitions of either straight horizontal displacements
or straight vertical displacements in all the grid points into
which the workspace has been split (see the grid definition
in Section 4), and where performance indexes have already
been computed.

As far as the Adept V+ software program written to run
the robot is concerned, it is worth highlighting that

(i) the “continuous path” feature of the robot controller
has been disabled to avoid modifications of the
desired path during the manipulator motion;

(ii) the “speed” command has been set equal to 100%
(i.e., no speed limitation has been introduced in path
planning);

(iii) the sharpest acceleration profile (square-wave) has
been adopted.

As far as the horizontal (along the X direction) dis-
placements are concerned, around each grid point, the end-
effector has been made to perform a sequence of five 30 mm
straight forward displacements and five 30 mm straight back-
wards displacements. The peak-to-peak amplitude of the dis-
placements is 60 mm. The midpoint of these displacements
coincides with the grid point considered. The amplitude
chosen for the displacements has been selected after some
trials to attain two concurrent results: to let the robot achieve
relevant velocities at the midpoints and to allow assessing
the robot performances in an adequate number of grid
points throughout the workspace. The repetition of identical
displacements has been motivated by the need of checking
the repeatability of the measured accelerations.

Similar tests have been carried out with vertical displace-
ments (along the Z direction): at each grid point, the end
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Figure 13: (a) The MEMS accelerometer (in the dotted circle) fixed on the moving platform. (b) The experimental setup.
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Figure 14: Sample horizontal velocities and displacements of the
robot end effector measured at a grid point of the workspace.

effector has been made perform a sequence of six 30 mm
straight upwards displacements and five 30 mm straight
downward displacements. The peak-to-peak amplitude of
the displacements is again 60 mm, and the midpoint of
these displacements coincides with the grid point considered.
The acceleration data collected during the tests have been
processed in order to gather the maximum horizontal and
vertical velocity achieved by the end effector at each grid
point. Maximum velocities are necessarily reached at the
midpoints of the displacements (i.e., at the grid points of
interests). As previously mentioned, velocities have been
computed from accelerations by numerical integration. Sig-
nal detrending has been obtained by filtering the acceleration
signals through a second-order Butterworth high-pass filter
with passband frequency at 0.2 Hz.

A sample plot of the horizontal velocities computed is
shown in Figure 14. The same figure also shows the displace-
ments computed through double integration; the mentioned
60 mm peak-to-peak amplitude of the displacements can
be recognized. By comparing the two plots, it can be also
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Figure 15: Sample vertical velocities and displacements of the robot
end effector measured at a grid point of the workspace.

verified that maximum velocities are reached at about the
midpoints of the paths. The same considerations hold for the
vertical velocities (see Figure 15).

For each direction of motion (horizontal or vertical) and
for each sequence of displacements (i.e., for each grid point),
the very maximum absolute value of velocity achieved during
the repetition of the displacements has then been detected
and related to the grid point. For example, the subplots (b)
of the Figures from 16 through 21 show the velocity values
computed for the points belonging to three horizontal half-
planes XY and three vertical half-planes YZ. The horizontal
half-planes are located at Z = −800 mm (Figure 16), Z =
−900 mm (Figure 17), and Z = −1050 mm (Figure 18).
The vertical half-planes are instead located at X = 0 mm
(Figure 19), X = 100 mm (Figure 20), and X = 200 mm
(Figure 21). Velocity values have been normalized in order
to take 1 as the maximum value.

The Figures from 16 through 21 also show the values
taken by the studied performance indexes in the same planes;
manipulability index μt is shown in the subplots (a) of the
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Figure 16: Manipulability index μt (a), normalized velocity along the X direction (b), and DSI μX computed in the horizontal half-plane
XY with Z = −800 mm (c).
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Figure 17: Manipulability index μt (a), normalized velocity along the X direction (b), and DSI μX computed in the horizontal half-plane
XY with Z = −900 mm (c).
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Figure 18: Manipulability index μt (a), normalized velocity along the X direction (b), and DSI μX computed in the horizontal half-plane
XY with Z = −1050 mm (c).
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Figure 19: Manipulability index μt (a), normalized velocity along the Z direction (b), and DSI μZ computed in the vertical half-plane YZ
with X = 0 mm (c).
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Figure 20: Manipulability index μt (a), normalized velocity along the Z direction (b), and DSI μZ computed in the vertical half-plane XZ
with X = 100 mm (c).
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Figure 21: Manipulability index μt (a), normalized velocity along the Z direction (b), and DSI μZ computed in the vertical half-plane XZ
with X = 200 mm (c).
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Figure 22: Scattered diagram of manipulability μt versus velocity
along the X direction (horizontal half-plane XY with Z =
−900 mm).
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Figure 23: Scatter diagram of DSI μX versus velocity along the X
direction (horizontal half-plane XY with Z = −900 mm).

figures, while the DSIs μX and μZ are shown in the subplots
(c).

It should be observed that in these figures the comparison
among numerical and experimental data is restricted to half-
planes in consequence of the already proved symmetrical
shapes of all the indexes.

It can be immediately recognized that in all cases the
proposed DSIs μX and μZ show shapes very similar to
the normalized maximum velocities. Not only do the best
performance regions predicted by the DSIs fit well with the
experimentally recorded data, but the performance varia-
tions foreseen by DSIs seem to be in good agreement with
the recorded velocity variations. What is more important, the
predictions provided by DSIs are considerably more accurate
than the predictions provided by the manipulability index
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Figure 24: Scatter diagram of manipulability μt versus velocity
along the Z direction (vertical half-plane YZ with X = 0 mm).
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Figure 25: Scatter diagram of DSI μZ versus velocity along the Z
direction(vertical half-plane YZ with X = 0 mm).

μt. For example, in the case of horizontal displacements
at Z = −900 mm (Figure 17), μt suggests an inexistent
best performance region at the center left of the half-
plane (across the X axis), while in the case of vertical
displacements, regardless of the plane, it completely misses
the best performance region locations.

As final evidence of the usefulness of the suggested DSIs,
in the Figures from 22 through 25, μt, μX , and μZ have been
related to the normalized maximum velocities achieved at
each grid point of the vertical and horizontal half-planes
shown in Figures 17 and 19. Generally speaking, though
the definitions of the adopted indexes are purely kinematic,
it would be informative for good performance indexes
to provide satisfactory estimates of dynamic performance
variations within the workspace. In other words, a perfor-
mance index would be practically useful if, for example, an
increase of the robot velocity could be predicted through a
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corresponding increase of the performance index. Figures 22
and 24 show that this is not the case when manipulability
is considered; there seems to be no meaningful correlation
between μt and the end-effector velocities in the horizontal
and vertical directions. On the contrary, Figures 23 and 25
prove that data are less scattered when the DSIs μX and μZ
are considered; a satisfactory correlation appears between the
DSIs and the velocity values.

6. Conclusions

Direction-selective indexes (DSIs) have been proposed to
provide uncoupled evaluations of robot translational perfor-
mances along specific directions. Such indexes, which might
be considered an extension of the traditional manipulability
index, overcome the limitations of manipulability (but also
of other popular indexes such as the minimum singular value
and the condition number of the Jacobian matrix) which just
provide global evaluations of the robot capabilities that are
often of limited practical usefulness.

The experimental investigation carried out on a suitably
instrumented Adept Quattro commercial robot has proved
that the proposed DSI formulation can provide reliable
predictions of the robot performances in making movements
along specific directions. In particular, the comparison
among the values of DSIs (μX and μZ), manipulability
μt, and the normalized maximum velocities experimentally
recorded performing horizontal and vertical movements
in a large number of points has demonstrated that DSIs
can better foresee the best performance regions within the
workspace and that the performance variation predictions
made through the DSIs are in good agreement with the
recorded velocity variations. Overall the predictions made
through the DSIs are considerably more accurate than the
predictions provided by manipulability indexes.

So far, the effectiveness of DSIs has been assessed on
a single family of parallel manipulators (4-RUU), but the
results achieved are thought to have a general relevance; DSI
definition just recourses to vectors extracted by the inverse
Jacobian matrix and includes no constraints accounting for
a specific parallel robot architecture. The proposed indexes
can therefore be applied to any parallel robot architecture, as
long as an inverse Jacobian matrix can be computed.

In conclusion, DSIs, though being purely kinematic
indexes, may provide useful hints in foreseeing the robot
dynamic performances along relevant directions of motion
within the workspace. At robot design, installation, or
programming stages, such information could be usefully
employed to optimize the robot geometrical features, the
robot location within a workcell, the location of the target
frames with respect to the robot, and also the robot end-
effector paths. All these considerations make the DSIs a
useful tool for robot designers, manufacturers, and program-
mers.
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