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To develop a robot that behaves flexibly in the real world, it is essential that it learns various necessary functions autonomously
without receiving significant information from a human in advance. Among such functions, this paper focuses on learning
“prediction” that is attracting attention recently from the viewpoint of autonomous learning. The authors point out that it is
important to acquire through learning not only the way of predicting future information, but also the purposive extraction of
prediction target from sensor signals. It is suggested that through reinforcement learning using a recurrent neural network, both
emerge purposively and simultaneously without testing individually whether or not each piece of information is predictable. In a
task where an agent gets a reward when it catches a moving object that can possibly become invisible, it was observed that the agent
learned to detect the necessary factors of the object velocity before it disappeared, to relay the information among some hidden
neurons, and finally to catch the object at an appropriate position and timing, considering the effects of bounces off a wall after
the object became invisible.

1. Introduction

Unlike factories and laboratories, the real world is too
complicated and diverse for robots to behave flexibly while
following some specific programs. To develop robots that
behave flexibly like humans in the real world, the robots
must autonomously learn in various environments and
acquire necessary knowledge and functions by themselves.
The acquired knowledge and functions enable the robots
to behave more appropriately, even in unfamiliar environ-
ments. Living beings acquire various functions and achieve
appropriate purposes by using these skills. “Prediction” is
one such function. It is a higher function that estimates a
future state from the past and present states considering both
dynamics of the environment and actions of the robot.

For developing highly intelligent robots, recent focus
has been on autonomous learning of prediction. When we
predict some information, we can usually know in the future
whether or not the prediction was correct. For a learning
system that predicts a future state from the present and
past states and actions, this signifies that training signals

can be obtained in the future even though they are not
provided by humans. In this sense, the learning of prediction
is autonomous although supervised learning is actually
utilized.

Many studies have investigated learning of prediction.
The dynamics or context that appears in a learning system
to predict the future states is utilized for state representation
[1–6]. In some of these, a recurrent neural network is used
as the learning system [1–4]. The learning of prediction has
also been used to establish curiosity-driven learning [7–10].
However, typically, the prediction target is given, that is, what
information should be predicted at what future timing; in
many cases, the sensor signals at the next time step are the
prediction target.

Regarding the abstraction process in robots, Brooks [11]
pointed out the following: “This abstraction is the essence of
intelligence and the hard part of the problems being solved.
Under the current scheme the abstraction is done by the
researchers leaving little for AI programs to do but search.”
When prediction is learned, the same holds true. A robot can
get many sensor signals, such as visual sensor signals, but it
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seems difficult and meaningless to predict all the signals in
some future. When considering the case of humans, we do
not seem to predict all the visual signals at all the steps in the
future. Therefore, the process of choosing a prediction target
should be considered.

The information about the prediction target should be
useful for achieving certain purpose and might be learned
through experiences. For example, when humans chase
and catch a batted ball, they seem to extract necessary
information from numerous sensor signals and then predict
the place where the ball will land as a prediction target and go
ahead of the ball. We can easily know that “Prediction of the
landing site” is useful “for catching the ball”, but that must be
a very intelligent process actually.

Schmidhuber has identified a very interesting and impor-
tant point that we do not care either unpredictable or
easily predictable information, but seem to “explore the
predictable” [9]. He also proposed a learning system to
realize this. However, to know whether a piece of information
is predictable, the system must first conduct tests to predict
the information. A method for discovering the prediction
target from linear independence has also been proposed [12],
but it only considers the sensor signals as inputs and does
not provide a way to consider the purpose of the robot.
Accordingly, it is difficult for this approach to realize a
purposive prediction.

In reinforcement learning, an agent or robot learns from
rewards and punishments based on trial and error. Therefore,
it is a highly autonomous and purposive learning although
the learning is generally very slow. If a neural network is
used to connect the sensors to the motors in parallel and
trained by training signals generated based on reinforcement
learning, the network is optimized to obtain more rewards
and less punishment, that is, to represent the value function
more accurately and to generate actions with more gain for
the value. Accordingly, with reinforcement learning it can be
expected that the functions that contribute toward obtaining
more rewards emerge in the neural network [13].

The objective of this paper is to clearly show that
the prediction function, including the choice of prediction
target, emerges purposively through reinforcement learning
using a recurrent neural network when a given task requires
prediction. In the learning system, the prediction of only
predictable and useful information emerges without indi-
vidual testing because only those predictions that contribute
toward obtaining a reward emerge through reinforcement
learning. Therefore, the system does not determine whether
each piece of information is predictable or not individually.
The curiosity-driven acceleration of learning is beyond the
scope of this study and will be addressed in the future work.

To compensate for the missing information in solving
a partially observable problem in reinforcement learning,
a recurrent neural network or other finite-state controllers
are often used [2, 3, 14–17]. Compensation of the missing
information from the past series of sensor signals can be
considered as a kind of “prediction” in a wide meaning.
However, none of these studies has claimed that prediction
should be considered in reinforcement learning. Further-
more, we usually call the function prediction when the

environment changes dynamically, and the regularity in the
dynamics is found. In the multiagent task in [15], the agent
needs to predict the other agent’s behavior to some extent
to accomplish its purpose in a discrete state space. However,
it is not shown how the agent predicts the other agent
behavior and how the predicted information is represented
inside the learning system after learning. Here, emergence
of both spatial and temporal prediction in a continuous
and dynamic environment through reinforcement learning
is examined, and it is analyzed how the internal states
represent the predicted information in the recurrent neural
network.

2. Learning System

The learning system does not employ any special techniques
for prediction, and a recurrent neural network is simply
trained by the training signals that are derived autonomously
on the basis of reinforcement learning. Therefore, it can be
understood that reinforcement learning trains the recurrent
network. Since the agent’s actions are discrete in the task,
while the state space is continuous, Q-learning [18] is used
as a reinforcement learning algorithm.

For the recurrent neural network, a popular 3-layer
Elman-type network is used, in which the outputs of hidden
neurons, 40 in number, are fed back as inputs of the
network at the next time step. The network is trained by
back propagation through time (BPTT) technique [19]. The
output function of each hidden or output neuron is the
sigmoid function ranging from −0.5 to 0.5, and 0.4 is added
before it can be used as a Q-value to match the value range
between the output and Q-value.

The initial weights from input to hidden neurons are
chosen randomly from −0.5 to 0.5, and those from hidden
neurons to output are all 0.0. The initial feedback connection
weights between hidden neurons are 0.0 except that the
weights for the self-feedback connections are 4.0. The max-
imum derivative of the output function is 0.25. Therefore,
under this setup, the error signal in BPTT propagates to the
past without divergence, because the products of the self-
feedback connection weight and the maximum derivative of
output function become 1.0. Furthermore, in the forward
computation, forming of bistable dynamics is promoted in
each hidden neuron.

First, the present state is given as an input to the network.
The recurrent network is expected to extract and store the
necessary information in its hidden layer without holding
the past state in the external memory. The output layer has
the same number of neurons as that of the possible actions,
and each output is used as the Q-value of the corresponding
action.

For the action selection, a two-step stochastic selection
is used. A small random number is added to each Q-value
derived by the network computation, and then an action is
chosen according to ε-greedy [4]. This not only assigns a
higher priority to the actions with larger Q-values but also
occasionally selects an action with a small Q-value. Both
these random factors decrease with the number of episodes
and finally become almost 0. We have not used a soft-max
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type action selection, such as Boltzmann selection, because
the actions with very small Q-value are rarely chosen.

In the learning phase, a training signal is given only
to the output of the chosen action at . The training signal
Tat ,t for the action at in the present state St is generated
autonomously using the maximum Q-value at the future
state st+1 after the action at :

Tat ,t = rt+1 + γmax
a′

Qa′(St+1)− 0.4, (1)

where r indicates a reward and γ indicates a discount factor.
0.4 is subtracted to match the value range between the
training signal and Q-value. The discount factor γ is set to
0.96 in this task. Further, if the training signal is greater
than 0.4 or less than −0.4, the value is set to 0.4 or −0.4,
respectively. Equation (1) indicates that at time t+1, the state
of the network at time t is restored and the network is trained
by the training signals generated by the equation, according
to BPTT.

3. Task Setting

To examine whether the prediction function emerges, we
used a task in which it is impossible to achieve a purpose
without a prediction. This task is performed on a field of
size 7.5 × 3.0, as shown in Figure 1. In the task, an agent
catches an object. The initial direction of motion and velocity
of the object are randomly chosen for each episode, and it
cannot be seen moving in some area. The object bounces off
walls. The agent gets a reward when the object approaches
it and the agent catches the moving object at an appropriate
position and timing. Therefore, considering the bounces, the
agent has to predict the appropriate position and time for the
approaching object before it becomes invisible.

The bottom left corner is defined as the origin, and the
initial location of the moving object is fixed at (0.0, 1.5). For
each episode, its initial velocity is chosen randomly between
0.50/step and 0.70/step and its direction is chosen between
−45◦ and 45◦ from the x-axis. The object’s direction of
motion and velocity is constant during the episode unless it
bounces off a wall. When it bounces, the angles of incidence
and reflection are equal, and the velocity is reduced to 80%
of the previous value. The agent is fixed on the line of x = 6.0
and can move only in the y direction. The initial y location
is chosen randomly from 0.25 to 2.75 for every episode,
enabling the agent to get a reward from any initial location,
each time it chooses the optimal action. At every time step,
the agent can choose one of the four actions: “catch,” “wait,”
“move up,” or “move down”. When it chooses move up or
move down, it moves 0.25 or −0.25 in the y direction. When
the action chosen is wait, the agent does not catch or move.

When the agent chooses the action catch, the episode
is complete, and the agent gets a reward when the relative
distance between the agent and the moving object is less than
1.0. The reward value r is generated by

r = 0.40× (2.0− d), (2)

where r varies depending on the relative distance d. When d
is 0.0, r becomes 0.8, which is the maximum value, and when
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Figure 1: Object catching task and a recurrent neural network.
An agent moves up or down and catches a moving object. The
initial direction of motion and velocity of the object are chosen
randomly for every episode. The invisibility area is also chosen
randomly in the range of x > 3.0. x, y coordinates of the object
and y coordinate of the agent are input to an Elman-type recurrent
neural network. Each input signal represents local information, as
shown in Figure 2.
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Figure 2: Localized input signals. Each input signal responds when
the object or agent exists around one specific location in x or y
coordinate. This localized representation helps to learn a strong
nonlinear mapping.

d is 1.0, r becomes 0.4, which is the minimum value. When
the agent chooses the catch action at d > 1.0, or when it does
not choose the catch action until the object goes beyond the x
limit of the field (x = 7.5), the episode is considered as failed
and is forced to terminate. In such cases, to decrease the Q-
value for the catch action, it is modified by the training signal
as

Tat ,t = rt+1 +Qa(st)− 0.4, (3)

and rt+1 = −0.1 is a punishment.



4 Journal of Robotics

Three signals, the x, y coordinates of the moving object
and y coordinate of the agent, are provided to the agent as
inputs. However, each signal is represented by signals, each of
which actually responds to a local area of the original signal.
With this representation, it becomes easy for the neural net-
work to learn a strong nonlinear input-output relation. The
x position of the moving object that ranges from 0.0 to 7.5 is
represented by 33 signals. Each signal represents local infor-
mation as shown in Figure 2. 4 of the 33 neurons have a value
other than 0.0, and the others have the value 0.0. The y posi-
tion of the object or agent is represented by 27 signals. There
are a total of 87 signals that are inputs of the neural network.

An invisibility area lies over the region where the x
coordinate is more than 3.0. When the object is in the
invisibility area, the agent cannot see it and all the input
signals representing the object location are all 0.0. Both the
beginning and end of the invisibility area are set randomly
within a range of 3.0–7.5 for every episode on the condition
that the end position is larger than the beginning position.
The agent is unaware of the beginning or end of the
invisibility area in advance. Therefore, the agent cannot
get a reward unless it predicts the position and timing of
the moving object when it comes close to the agent. The
prediction should be done using information acquired before
the moving object enters into the invisibility area.

4. Experimental Results and Investigation

4.1. Learning Results. The learning curve is shown in
Figure 3. The horizontal axis shows the number of episodes
and the vertical axis shows the average reward.

This figure indicates that the agent can catch the object
more accurately through iterative learning. The maximum
reward generated by (2) is 0.80, but the object and agent
locations are computed on a discrete time scale. Therefore,
even though the agent always chooses the optimal action, the
average relative distance is 0.144, as shown in Table 1. Table 1
also shows the performance after learning, compared with
the case where the agent always chooses the optimal action.

Figure 4 shows an example of agent behavior after
learning. In this case, the invisibility area is maximum, that
is, from x = 3.0 to x = 7.5, the velocity is 0.5/step, and the
angle of the object’s direction of motion from the x axis is
35◦. The agent can move only in the y direction along x =
6.0, but for easy understanding, Figure 4 is plotted assuming
the agent moves together with the object in the x direction.
In this case, the initial y location of the agent is 2.0.

According to Figure 5, the changes in Q-values for all
actions, except the catch action, are similar to each other;
however, for the catch action, the Q-value increases suddenly
from the 13th step (around x = 4.5), and the agent finally
chooses catch action at the 16th step. Therefore, the agent is
considered to choose the catch action at an appropriate time
step without catching the object at a wrong time before it
comes into the reward area.

Figure 5 shows the change of the Q-value for each action
in this episode.

The prediction of the catch timing for variable object
velocities is observed. While maintaining the angle of the

Table 1: The agent’s ideal and actual performance after learning for
three cases of invisibility area.

Range of the invisibility area
Ideal

Random Nothing Maximum

Average reward 0.685 0.685 0.681 0.742

Percentage with
which the agent
gets the reward

99.0 98.4 99.9 100

Relative distance
between the
agent and object
when the agent
chooses catch
action

0.270 0.260 0.296 0.144
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Figure 3: Learning curve. Change in the average reward according
to the number of episodes is shown. Broken line shows the ideal
average reward under the assumption that the agent always catches
the object at the optimal timing and place.

direction of motion constant, as shown in Figure 4, the
velocity of the object is varied, and the catch timing is
observed. Figure 6 shows the change in the Q-value of
the catch action for three velocities. Although the agent
cannot see the object in the latter half, the Q-value suddenly
increases around the reward area in all the three cases.

Next, the authors examine whether the agent can predict
the object location when it comes into the reward area.
Figures 7 and 8 show the y coordinate where the agent
catches the object for the two cases: with no invisibility area
and with the maximum invisibility area. In these figures, the
horizontal axis shows the initial angle of the object’s motion
from the x axis, and the vertical axis shows the y position
where the agent catches the object. In these cases, the initial
angle is determined from −45◦ to 45◦ at an interval of 1◦,
and the velocity is fixed at 0.6/step. To demonstrate whether
the agent can catch the object at appropriate positions, the
optimal position where the agent gets the maximum reward
for each angle is plotted, denoted by squares.

Figures 7 and 8 show that both position and timing of the
agent catching the object are appropriate except for the case
around−45◦ initial angle and no invisibility area. Even in the
case where the agent cannot see the object in the latter half of
the episode, the agent catches the object at an appropriate
position, considering that the object bounces off the wall.
However, it seems difficult for the agent to catch the object
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Figure 4: Sample object and agent trajectories for the object
moving at 35◦ with a velocity of 0.50/step, and the object cannot
be seen at x > 3.0. The agent does not move in the x direction
actually, but for easy understanding, it is shown to be moving in
the x direction along with the object.
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Figure 5: Change in Q-values in an episode. Four lines show the
change in Q-values for the actions, “catch”, “wait”, “move up”, and
“move down”. If the action is selected greedily, the action with the
maximum Q-value is chosen.
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Figure 6: Change in the Q-value for “catch” action for three
velocities. The timing for the increase in value differs, but the
position of the object at that timing is almost the same in all cases.
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Figure 7: Positions where the agent catches the object when the
initial object direction of motion varies (with no invisibility area).
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Figure 8: Positions where the agent catches the object when
the initial object direction of motion varies (with the maximum
invisibility area).

at around y = 3.0 in the case of the maximum invisibility
area.

In this task, when the object bounces off a wall, its
velocity is reduced to 80% of the previous value. Even if the
object is in the invisibility area, it bounces and its velocity
is reduced. If the agent cannot consider this property, it
cannot catch the object at an appropriate timing. The authors
examine whether the agent can really consider the reduction
in the object velocity due to the bounce in the invisibility
area, as follows.

If the velocity in the x direction is constant, the
optimal time step for each catch action is equal unless the
object bounces. The number of bounces increases with the
increasing initial angle from the x axis, and this decreases the
velocity. Then the initial angle is varied at an interval of 1◦,
with a constant velocity of 0.5/step in the x direction, and
the time step when the agent catches the object is observed.
In Figure 9, the optimal time step for catch actions is also
plotted together with the observed results. In Figure 10, the
optimal time step is plotted assuming that the object velocity
is not reduced by the bounce in the invisibility area.
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Figure 9: Catch timing when the initial motion of the object varies.
The optimal catch timing is also plotted.
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Figure 10: Catch timing when the initial motion of the object
varies. The optimal catch timing under the assumption that the
velocity is not reduced at the time of bounce in the invisibility area
is also plotted to show whether the agent can consider the reduction
in velocity due to the bounce by comparing it with Figure 9.

If the agent considers the reduction in velocity due to
the bounce, the plots are more similar in Figure 9 than in
Figure 10. In Figure 9, the time step is more similar to the
optimal. However, the agent does not always catch the object
at the optimal time step. The agent tends to catch the object
a little earlier than the optimal.

These results indicate that through reinforcement learn-
ing alone, the agent can predict the necessary information
such as the position or timing of the catch, considering the
bounce, by using information before the object disappears.

4.2. Investigation of Hidden Neurons. In this section, the
authors examine how the agent predicts the catch timing
before the object enters the invisibility area, and the agent
catches the object using the predicted information after some
time lag. It appears that many neurons influence each other
in a complex way, and prediction and catch are realized. In
other words, one neuron apparently represents several pieces
of information simultaneously and one piece of information
is represented by several neurons. That is the same as our
brain—a massively parallel system. Although it is difficult to
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Figure 11: Change in output of the 31st hidden neuron for the three
velocities. Broken circles indicate the timing just before the object
disappears. Important connection weight value from this neuron is
given in a box. In this case, the connection weight from the 31st
neuron to the 12th neuron is −2.14.
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Figure 12: Connection weights to the 31st neuron from the input
neurons that are responsible for the x location of the object. Lateral
axis indicates the most responsible point of each input neuron. For
example, the connection weight from the input neuron that takes
the maximum value at x = 2.25 is approximately −2.8.

clearly explain the mechanism, the authors try to elucidate
it. In most graphs shown in the following figures, three lines
represent changes in the output of the hidden neurons for
each of the three cases shown in Figure 6. Some important
connection weights from the neuron are indicated in the box
marked “weight”.

As shown in Figure 11, the output of the 31st hidden
neuron decreases at around 2.0 < x < 2.5, that is, a little
before the area where the agent may not see the object.
The broken circle is set on the timing just before the object
disappears at x = 3.0. Figure 12 shows the connection
weight of the 31st neuron from the input neurons that are
responsible for the x location of the object. It can be seen
that the 31st neuron has a large negative connection weight
from three input neurons, each of which responds when the
object exists at around x = 2.0, 2.25, or 2.5. This suggests
that the negative connection weights decrease the output of
this neuron.
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Figure 13: Output change of the 12th hidden neuron for the three
velocities. Broken circles indicate the timing just before the object
disappears.

−2

−1

0

1

2

3

W
ei

gh
t

va
lu

e

0 1.5 3 4.5 6 7.5

x

Figure 14: Connection weights to the 12th neuron from the input
neurons responsible for the x location of the object. Lateral axis
indicates the most responsible point of each input neuron.

As shown in Figure 13, the output of the 12th hidden
neuron increases just before the object comes into the area
where it may be invisible. The timing when the output
of 12th neuron increases is slightly later than that of the
decrease in output of the 31st neuron. The 12th neuron
is connected from the 31st neuron with a large negative
weight. Figure 14 shows the connection weights of the 12th
hidden neuron from the input neurons contributing to
the representation of the x coordinate of the object. This
neuron has a large positive connection weight from the input
neurons, which respond just before the object enters the area
where it is possibly invisible. These two types of connections,
from the 31st neuron and from some inputs, might increase
the output of the 12th neuron.

When the pattern of increase in the output of the
12th hidden neuron is observed, it is clear that the output
increases as the velocity of the object in the x direction
decreases. When the x velocity of the object is smaller, it stays
in the specific area for a longer period before entering the
area where it might be invisible. This suggests that both the
12th and 31st neurons play a role in detecting the x velocity
of the object, and the 12th neuron represents the velocity
of the object just before it enters the area where it might
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the object in the invisibility area and the output of the 12th hidden
neuron. The output varies according to the direction of motion and
velocity of the object, although the number of steps until the catch
is the same.
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Figure 16: Output change of the 8th hidden neuron for the three
velocities.

be invisible. The 12th neuron must represent the predicted
catch timing and contribute toward catching the object at the
appropriate timing even though the invisible area is wide.

Figure 15 shows the relation between the output of the
12th neuron just before the object passes the line of x = 3.0
and the number of steps from x = 3.0 to the catching
of the object. Although they have some correlation, there
is no one-to-one correspondence. As mentioned previously,
the representation is distributed and one neuron represents
several pieces of information simultaneously. In this case, this
neuron represents not only the predicted catch timing but
also some other information.

This 12th neuron has a large positive connection weight
to the 8th neuron, whose output is shown in Figure 16.
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Figure 17: Output change of the 28th hidden neuron for the three
velocities.
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Figure 18: Output change of the 29th hidden neuron for the three
velocities

Therefore, the delay of the timing of the decrease in the
output of the 12th neuron causes a delay in the timing when
the 8th neuron’s output decreases. It is interesting that the
difference of hidden output due to the object velocity in the
31st and 12th hidden neurons causes the delay of the signal
in the 8th hidden neuron.

Next, the 28th neuron (Figure 17), which has a negative
connection from the 8th neuron, responds later. Further-
more, the 28th neuron has a positive connection to the 29th
neuron; the response of the 29th neuron (Figure 18) follows
the response of the 28th neuron. The 29th neuron has a large
positive connection to the output neuron, which represents
the Q-value of the catch action whose response is shown in
Figure 6. Thus, the response of the 12th neuron is relayed
through some hidden neurons to the output neuron of the
Q-value for the catch action. This relay of hidden neurons
realizes the sudden increase in the Q-value for the catch
action, as shown in Figure 6.

4.3. Consideration. The important point in this study is
that the authors have not provided any knowledge in
advance about the following items; the agent has learned
them autonomously through reinforcement learning alone
by reward and punishment.

(1) The velocity in the x direction of the object is useful
for performing the catch action at the appropriate
timing.

(2) The velocity in the x direction of the object can be
detected by the inputs that respond to the existence
of the object around a specific x coordinate.

(3) The way in which the detected velocity information
can be related to the catch timing: especially, the
detected velocity value is transformed to the delay of
the signal.

(4) The information can be conveyed through a relay of
hidden neurons.

Actually, more information than that discussed is con-
sidered in the recurrent network, but due to the parallelism
of the processing system, it is difficult to understand its exact
mechanism. Thus, it might also be difficult to understand the
exact mechanism of the human brain.

5. Conclusion

In this paper, the authors proposed that the prediction
function can emerge through reinforcement learning alone,
using a recurrent neural network. This prediction function
includes not only the way of predicting the target infor-
mation but also the extraction of prediction target among
many pieces of information available and the prediction of
an appropriate timing. It was shown that through learning,
the prediction function emerged—an agent could achieve
a task in which prediction was necessary. Furthermore, the
recurrent neural network extracts the necessary information
for prediction from many input signals, relays the predicted
information among some hidden neurons, and finally,
enables the catching of the object at an appropriate timing.
However, since the processing system is parallel, one neuron
does not represent one piece of information explicitly, thus
making it difficult to understand the processing of the
network.
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