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A robot designed to mimic a human becomes kinematically redundant and its total degrees of freedom becomes larger than
the number of physical variables required for describing a given task. Kinematic redundancy may contribute to enhancement of
dexterity and versatility but it incurs a problem of ill-posedness of inverse kinematics from the task space to the joint space. This
ill-posedness was originally found by Bernstein, who tried to unveil the secret of the central nervous system and how nicely it
coordinates a skeletomotor system with many DOFs interacting in complex ways. In the history of robotics research, such ill-
posedness has not yet been resolved directly but circumvented by introducing an artificial performance index and determining
uniquely an inverse kinematics solution by minimization. This paper tackles such Bernstein’s problem and proposes a new method
for resolving the ill-posedness in a natural way without invoking any artificial index. First, given a curve on a horizontal plane for
a redundant robot arm whose endpoint is imposed to trace the curve, the existence of a unique ideal joint trajectory is proved.
Second, such a uniquely determined motion can be acquired eventually as a joint control signal through iterative learning without
reinforcement or reward.

1. Introduction

Almost a quarter century ago, “robotics” was defined by
Professor Brady at the first International Conference of
Robotics Research [1] as “the intelligent connection of
perception to action.” After a great deal of researches on
developments of industrial robots and their applications, a
variety of research projects on “humanoid” have attracted
many roboticists during the past decade and nowadays
robots that can walk with a bipedal mode are not peculiar.
Nevertheless, the present state of the art of humanoid still
lacks dexterity in fulfillment of ordinary tasks that human
encounter in their everyday life. More than a half century
ago preceding the birth of “humanoid,” Bernstein [2, 3]
noted that dexterity of human body movements resides in
involvement of surplus degrees of freedom of limb joints but
this incurs the ill-posedness of inverse kinematics. This was

introduced to the robotics community through the famous
textbook [4] in page 303 in such a statement as

“The study of human biological motor control mechanisms
led the Russian psychologist Bernstein to question how the brain
could control a system with so many different degrees of freedom
interacting in such a complex fashion. Many of these same
complexities are also present in robotic systems and limit our
ability to use multifingered hands and other robotic systems to
their full advantage.”

Actually, this was originally quoted from Hinton’s article
[5] in which he summarized what Bernstein challenged in the
following way.

(a) What can we infer about the code that the brain uses
to communicate with the periphery, and what does that tell
us about how the computation is organized?, (b) If the brain
knew just what movements it wanted the body to make,
could it figure out what to tell the muscles in order to make
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Figure 1: The set of all possible postures of a planar robot arm
with three joints can be regarded as a Riemannian manifold with
Riemannian metric gi j(q) that constitutes the inertia matrix.

it happen? (c) How is it possible to coordinate a system with
so many degrees of freedom that interact in such complex
ways? (d) How does the brain make sensible choices among
the myriad possibilities for movement that the body offers?

This paper discusses what are the fundamentals of
biomimetic control by focusing Bernstein’s DOF problem
and shows one way for solving such difficult problems from
the standpoint of Riemannian geometry. It is shown in the
case of multijoint reaching with DOF redundancy that, given
a starting posture in the robot configuration space (or a
Riemannian manifold as a set of all postures) and a target
endpoint in the task space, there exists a unique orbit of joint
motion, provided that the gravity term is compensated in
a feedforward manner. Then, it is shown that such an ideal
joint motion can be acquired through the iterative learning
control without introducing any kind of performance index
or reinforcement. In the second illustrative example, a
handwriting motion with DOF redundancy is analyzed from
the viewpoint of Riemannian geometry under the situation
that writing with a ball pencil is imposed to trace an arbitrary
smooth curve of C∞-class on an arbitrary smooth surface
in the three-dimensional Euclidean space. Even in this case
there exists a unique joint motion in the base Riemannian
manifold with DOF redundancy and it can be acquired
through repeated exercises of handwriting motion, that is, an
ILC scheme without introducing any artificial performance
index. In conclusion, an ideal multijoint motion can be
acquired through repeated exercises of motion even under
the existence of redundancy in DOF, irrelevantly to any kind
of reinforcement with the aid of some sort of reward [6, 7].

2. Riemannian Manifold and Euler’s Equation

It is widely known among roboticists that kinematics and
planning of multijoint robots are treataed in the configu-
ration space regarded as an n-dimensional numerical space
Rn [8, 9]. On the other hand, Arnold [10] pointed out
the importance of Riemannian geometry in the analysis of
mechanical systems and shown that the dynamics of motion

of a double pendulum can be described by an orbit on a two-
dimensional torus T2 that is regarded as T2 = S1 × S1, where
S1 denotes a unit circle. In line with this notion, an n-DOF
robot arm can be treated on an n-dimensional Rimeannian
manifold like an n-dimensional torus Tn, and the stability
problems of PD feedback with damping shaping [11] were
retreated in a Riemannian-geometric manner [12, 13]. More
recently, the author and his group showed that, given a
robot arm, the set of all possible postures can be regarded
as a Riemannian manifold with the Riemannian metric
that constitutes the inertia matrix [14, 15] (see Figure 1).
Thus, an orbit of motion as a geodesic solution to the
Euler equation can be regarded as an inertia-induced motion
without affection of damping and gravity forces [16].

It is well known as in a text book that motion of a robot
manipulator as a serially connected rigid-body system is
governed by an Euler-Lagrange equation shown in the form
(see [17])

G
(
q
)
q̈ +

{
1
2
Ġ
(
q
)

+ S
(
q, q̇

)}
q̇ + g

(
q
) = u, (1)

where q = (q1, . . . , qn)T denotes the vector of joint angles,
G(q) = (gi j) does the n× n inertia matrix, u a control toque
vector, g(q) = ∂P(q)/∂q with a scalar function P(q) called
the potential, and S(q, q̇) a skew-symmetric matrix S = (Si j)
defined as

Si j = 1
2

⎧⎨
⎩ ∂

∂qj
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q̇kgik
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If we consider a control torque that can exactly compensate
the gravity term, that is,

u = g
(
q
)
, (3)

then substitution of (3) into (1) yields

G
(
q
)
q̈ +

{
1
2
Ġ
(
q
)

+ S
(
q, q̇

)}
q̇ = 0, (4)

which is considered to be an ideal equation of motion
without affection of gravity and joint damping forces like a
robot arm on an artificial satellite in space. It is pointed out
in the recent papers [14, 16] that (4) is equivalently written
in the form

gik
(
q
)
q̈i + Γik j

(
q
)
q̇ j q̇i = 0, k = 1, . . . ,n, (5)

where Γik j denotes the Christoffel’s symbol of the second
kind and the symbol of summation with respect to i and j
in (5) is omitted by obeying the Einstein’s rule in differential
geometry [18, 19]. Equation (5) is also expressed equivalently
in the form

q̈k + Γki j q̇iq̇ j = 0, k = 1, . . . ,n, (6)
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Figure 2: “Reaching” by means of a surplus DOF system of hand-
arm dynamics.

which is called the Euler equation. In (5) and (6), Γik j and
Γki j (i.e., called the Christoffel’s symbol of the first kind) are
defined as follows:

Γik j = 1
2

(
∂gjk
∂qi

+
∂gik
∂qj

− ∂gi j
∂qk

)
,

Γki j =
1
2

n∑
l=1

glk
(
∂gjl
∂qi

+
∂gil
∂qj

− ∂gi j
∂ql

)
= 1

2

n∑
l=1

glkΓil j ,

(7)

where (glk) denotes the inverse of G(= (gi j)). The equiva-
lence relation of (5) to (4) is shown in the previous paper
[15].

3. Multijoint Movements with
DOF Redundancy

Let us now consider motion of a redundant planar robot arm
whose endpoint is free to move in the horizontal plane as
shown in Figure 2. The Lagrange equation of motion of the
whole arm-hand system depicted in Figure 2 is expressed as

G
(
q
)
q̈ +

{
1
2
Ġ
(
q
)

+ S
(
q, q̇

)}
q̇ = u, (8)

where q = (q1, . . . , q4)T and each rotational axis of the four
joints (shoulder, elbow, wrist, and index finger MP (metacar-
pophalangeal) joint) is in the direction perpendicular to the
xy-plane. Given a robot arm posture q in the configuration
space R4 or in the 4-dim. base manifold {M, gi j}, the
endpoint position x can be determined by the forward
kinematics. A vector-valued function x(q) = (x(q), y(q))
of C∞-class. However, given an endpoint position xd in
R4, there arises an infinite number of inverses that realize
x(qd) = xd and thereby the problem for obtaining inverse
kinematics from the 2-dimensional Euclidean space E2 to the
4-dimansional configuration space R4 becomes ill-posed.

A variety of ideas for solving such ill-posedness of inverse
kinematics for redundant robotic systems with excess DOFs
has been proposed in the area of robotics, based upon the use
of the form

q̇d(t) = J+(q(t)
)

ẋd +
(
I − J+(q)J(q))v, (9)

where v should be computed so as to optimize a certain
performance index related to joint position variables (for
example, manipulability index [20], obstacle avoidance [21],
etc.). In equation (9), J(q) stands for the Jacobian matrix of
x in q, that is, J(q) = ∂x/∂qT, and J+(q) denotes the pseudo-
inverse of J(q). The original idea of use of the pseudo-inverse
J+(q) is due to Whitney [22]. Once a desired joint velocity
q̇d(t) is planned, it is claimed that the computed torque
method can be applied for determining the control input
that must generate the whole joint motion of the robot.
This is called “inverse kinematics approach”. Another idea of
direct generation of a control signal called “inverse dynamics
approach” is based upon a form of control input

u = G
(
q
)
J+(q){ẍd − J̇

(
q
)
q̇
}

+ g
(
q, q̇

)
+
(
I − J+(q)J(q))v,

(10)

where v is computed so as to optimize a certain performance
index related to velocity variables (e.g., kinetic energy [23],
torque [24], energy dissipation [25], etc.). In (10), g(q, q̇)
means compensation for the remaining nonlinear function
including centrifugal and Coriolis forces and the gravity
effect. In the physiological literature, main concerns are
focussed on the question why human skilled multijoint
reaching movements exhibit typical characteristics that (1)
endpoint trajectory becomes a quasistraight line and less
variable throughout repetitions, (2) velocity profiles of the
endpoint velocity becomes bell-shaped, though (3) joint
trajectories are rather variable trials-by-trials [26]. Then, a
variety of cost functions for derivation of such properties
of point-to-point reaching movements has been proposed,
among which a quadratic function of endpoint jerk (rate
of acceleration) was the first [27] and successively a cost
function based on joint torques was introduced [28] for
planning not only an endpoint trajectory but also joint
trajectories. However, in the physiological literature, there
is a dearth of papers that attempted to directly deal with
reaching movements with redundant joints, though the
importance of Bernstein’s DOF problem [2] has been widely
known among physiologists.

Differently from the traditional approaches, a simpler
control method for multijoint reaching movements was
proposed very recently in our previous papers [29–31] and
shown to be effective in both cases of human and robotic
arms with redundant DOFs. In those papers, only planar
motions confined to a horizontal plane are treated and
therefore the control signal is free from gravity with a simple
form (see Figure 3)

u = −Cq̇ − JT(q)kΔx, (11)

where C denotes a diagonal positive definite matrix as
follows:

C = diag(c1, . . . , cn). (12)

Notwithstanding this simpler form than (10), once damping
factors C and single stiffness parameter k are chosen
carefully, it is shown that it generates smooth reaching
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movements by realizing a quasistraight endpoint trajectory,
bell-shaped velocity profiles, and double-peaked acceleration
profiles typically seen in case of human skilled multijoint
movements [26, 32]. Therefore, the method can get rid of
undesirable fluctuations of the endpoint trajectory tracking
as pointed out in a recent elaborate work [33]. Such fluctu-
ations in task space tracking caused by using the computed
torque under uncertainty in link parameters become more
noticeable in cases of robots with redundant DOFs. In
contrast, in the use of control defined in (11), there is no
need of planning any desired endpoint trajectory. However,
all these treatments are restricted to planar motions as well
as in most of the previous papers on multijoint reaching
movements. In addition, another disadvantage is that choice
of damping factors recommended in [29] is not fit to the scale
of coefficients of viscosity of human muscles [34, 35].

To reduce damping factors in general, another control
method based upon “Virtual Spring-Damper Hypothesis”
was suggested in [31], which in the case of planar motions
without affection of the gravity is expressed by the form

u = −C0q̇ − JT(q)(ζ√kẋ + kΔx
)

= −C0q̇ − ζ
√
kJT(q)J(q)q̇ − JT(q)kΔx,

(13)

where C0 is chosen as follows:

C0 = ζ0 diag(c1, . . . , cn), (14)

together with positive constant 0 < ζ0 < 1.0. The effectiveness
of this control signal particularly in the case of middle-range
reaching was demonstrated through computer simulation
and its performance was compared with that of the control
of (11). Theoretical verification of the effectiveness of this
spring-damper hypothesis was also presented, on the basis
of an energy conservation law like a Lyapunov-like relation
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Figure 4: A set of all postures that have the same endpoint position
xd constitutes a two-dimensional Riemannian submanifold.

obtained by substituting (13) into (8) and taking the inner
product of this resulted closed-loop dynamics and q̇ as
follows:

G
(
q
)
q̈ +

{
1
2
Ġ + S + C0

}
q̇ + JT(q){ζ√kẋ + kΔx

}
= 0,

d
dt

{
1
2
q̇TG

(
q
)
q̇ +

k

2
‖Δx‖2

}
= −q̇TC0q̇ − ζ

√
k‖ẋ‖2.

(15)

These results suggest that skilled multijoint movements can
be generated even in the case of robot arms with redundant
DOFs without construction of any inverse dynamics through
“error-feedback learning” as claimed in a physiological
journal [36] for modifying Equilibrium-Point hypothesis
[35], End-Point hypothesis [37], and Virtual Trajectory
hypothesis [37].

4. Existence of Desired Joint-Motion

More recently in the paper [16], an interesting result is found
that the endpoint trajectory of a solution to the closed-loop
dynamics for a given starting posture resembles considerably
the endpoint trajectory of a geodesic solution to the Euler
equation of (5) or (6) starting from the same given posture
to a certain different posture with the prescribed endpoint xd.
The existence of such a geodesic solution to (6) is ascertained
by considering a two-dimensional Riemannian submanifold
that is defined by the set of all postures q satisfying x(q) = xd,
that is (see Figure 4),

NP′ =
{
q | x

(
q
) = P′(= xd)

}
. (16)

Similarly, define another submanifold

NP =
{
q | x

(
q
) = P (= x(0))

}
. (17)

For a given endpoint position xd in E2, NP′ constitutes a two-
dimensional submanifold of the base manifold {M, gi j}, that
is called the equilibrium-point manifold or simply the EP-
manifold in this paper. Denote by q(t) any smooth orbit of
motion of the robot starting at t = a from the same posture
q(t = a) = q0 and reaching the submanifold NP′ at t = b so
that it satisfies x(q(b)) = xd. Then, consider the infimum

d
(
q0,NP′

) = inf
q(t)

∫ b

a

√∑
i, j

gi j
(
q
)
q̇i(t)q̇ j(t)dt (18)
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over the set of all such possible orbits of robot motion
connecting q0 and NP′ . If xd is not so distant from x(0) (=
x(q0)), it is reasonable from the text books of Riemannian
geometry [18, 19] that there exists a unique optimal orbit
q∗(t), t ∈ [a, b], that minimizes the right-hand side of
(18). Then, the quantity d(q0,NP′) is entitled to be called
the Riemannian distance from q0 to the submanifold NP′ in
the base manifold {M, gi j}. It is well known that the optimal
orbit q∗(t) must satisfy the Euler equation (6) for t ∈ [a, b]
and, moreover, it must satisfy the following equation:{

I4 − J+(q∗(t)
)
J
(
q∗(t)

)}
q̇∗(t) = 0, (19)

where J(q) = ∂x(q)/∂qT, the Jacobian matrix of x(q) with
respect to q. In other words, q̇∗(t) must belong to the image
space of JT(q∗(t)) at any instant t in [a, b]. That is, q̇∗(t) does
not have any component in the kernel space of JT.

Consider now an endpoint trajectory tracking problem
for a redundant multijoint arm of Figure 2 in the case that
a desired endpoint motion is given as a curve xd(t) : I =
[0,T] → E2. The control task is to maneuver the robot to let
its endpoint trace the given trajectory xd(t) in E2 through a
task space control signal

u = JT(q)v (20)

provided that the robot dynamics is governed by the
Lagrange equation

G
(
q
)
q̈ +

{
1
2
G
(
q
)
q̇ + S

(
q, q̇

)}
q̇ + C0q̇ = JT(q)v, (21)

where C0 is a 4 × 4 positive definite damping coefficient
matrix. We assume that the initial posture of the robot at
t = 0 is given by q(0) = q0 and motion of the robot starts
from the still state, that is, q̇(0) = 0. The first problem
is to find an adequate control signal v(t), t ∈ [0,T], so
that the solution to the Lagrange equation of (21) starting
from q(0) = q0 and q̇(0) = 0 satisfies x(q(t)) = xd(t) for
t ∈ [0,T]. In order to find a solution to this problem, we
decompose any solution trajectory of joint velocity q̇(t) in
such a way that

q̇ = (P,W)

⎛
⎝ẋ

η̇

⎞
⎠, (22)

where x = x(q), ẋ = J(q)q̇, η̇ is a 2 × 1 vector and P is the
4× 2-matrix defined by

P = JT(q)(J(q)JT(q))−1 = J+(q) (23)

and W is a 4×2-matrix whose column vectors w1 and w2 are
orthogonal to JT(q) (wi belongs to the kernel space of JT(q))
and satisfy ‖w1‖ = ‖w2‖ = 1 and wT

1w2 = 0. Then, if we
define

Q = (P,W), Q−1 =
⎛
⎝ PT

WT

⎞
⎠ = QT,

G1 = QTGQ, C1 = QTC0Q,

S1 = QTSQ − 1
2
Q̇TGQ +

1
2
QTGQ̇,

(24)

then, by substituting (22) into (21) and multiplying the
resultant equation by the transpose of Q from the left, we
have

G1

⎛
⎝ẍ

η̈

⎞
⎠ +

1
2

{
Ġ1 + S1 + C1

}⎛⎝ẋ

η̇

⎞
⎠ =

⎛
⎝v

0

⎞
⎠. (25)

Note that S1 is again skew-symmetric. For convenience let us
define

B1 = 1
2
Ġ1 + S1 + C1 (26)

and decompose G1 and B1 in such a way that

G1 =
⎛
⎝G11 G12

GT
12 G22

⎞
⎠, B1 =

⎛
⎝B11 B12

B21 B22

⎞
⎠, (27)

where allGij and Bij are of 2×2-matrix. Then, it follows from
(25) that

G22η̈ + B22η̇ = −GT
12ẍ − B21ẋ. (28)

This equation means that if ẋ(t) is set as ẋ(t) = ẋd(t) and
qd(t) is also given then η̇(t) can be determined uniquely from
solving the differential equation of (28) as an initial-value
problem by setting η̇(0) = 0. It should be remarked at this
stage that the given curve xd(t) is of C∞-class described in
terms of time parameter t in E2, that is, it is an E2-valued
function of t with the initial value xd(0) = x(q0), and it has
the continuous time derivative ẋd(t) with the initial value
ẋd(0) = 0. Now, multiplying (28) by G−1

22 and accompanying
this with (22) by setting ẋ = ẋd and ẍ = ẍd, we have

q̇d = P
(
qd
)

ẋd +W
(
qd
)
η̇, (29)

η̈ = −G−1
22

(
qd
){
B22

(
qd, q̇d

)
η̇ +G12

(
qd
)

ẍd
}

+G−1
22

(
qd
)
B21

(
qd, q̇d

)
ẋd.

(30)

This couple implies a set of six simultaneous differential
equations of 1st order concerning six variables {qd, η̇}
though the right hand side of (30) contains q̇d and hence it
is an implicit function expression. Fortunately, it is possible
to obtain an explicit expression of the six simultaneous
differential equation by putting

B22 = B22
(
qd,Pẋd +Wη̇

)
,

B21 = B21
(
qd,Pẋd +Wη̇

)
.

(31)

Hence, the right hand sides of (29) and (30) are nonlinear
in qd and η̇, but they are Lipschitz continuous in qd and η̇
locally. Therefore, for given ẋd and ẍd there exists a unique
solution {qd(t), η̇(t)} for an interval t ∈ [0, a] with some a >
0 satisfying qd(0) = q0 and η̇(0) = 0, where q0 signifies an
initial posture satisfying x(q0) = xd(0). This fact was already
discussed in our previous paper [38]. In this paper, we now
prove the unique existence of the solution to the pair of 1st-
order differential equations of (29) and (30) over the time
interval [0,T], provided that C0 is not so small in comprison
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with the scale of G(q) and both the quantities of ẋd and ẍd
are within an adequate physical scale.

First, we analyze (30) or (28) by rewriting them in a more
detailed manner as follows:

G22η̈ +
{

1
2
Ġ22 + S22

}
η̇ + C22η̇ = −GT

12ẍd − B21ẋd − C21ẋd,

(32)

where

G22 =WTGW , C22 =WTC1W , GT
12 =WTGP,

B21 = 1
2
Ġ21 + S21, C21 =WTC1P

(33)

and S22 denote the submatrix (si j) of S1 for i, j = 3 or
4, and B21 plus C21 constitutes B21. Note that B21 is linear
and homogeneous in η̇ but G12 are irrelevant to η̇. In this
paper, we restrict our consideration to the case that overall
movements of the robot is confined to a single chart of
the base manifold in which at any posture in the chart the
Jacobian matrix is nondegenerate and therefore there exists
a positive constant σ0 such that J(q)JT(q) ≥ σ0I2 inside the
chart. Under this condition, we analyze the following relation
obtained by taking the inner product of (32) and η̈:

d
dt

(
1
2
η̇TG22η̇

)
= −η̇TC22η̇ − η̇TB21ẋd

− η̇T
{
GT

12ẍd + C21ẋd
}
.

(34)

The second term of the right hand side is quadratic in η̇ and
therefore there exists a constant β0 such that∥∥∥η̇TB21ẋd

∥∥∥ ≤ β0
∥∥η̇∥∥2 (35)

and β0 depend on the maximum magnitude of ẋd and 1/σ0.
The third term of the right hand side is bounded from the
above in the following way
∥∥∥−η̇T

{
GT

12ẍd + C21ẋd
}∥∥∥ ≤ η̇TWTGWη̇ +

1
2

ẍdPTGPẍd

+
1
2

ẋT
dP

TC0G
−1C0Pẋd.

(36)

As discussed previously in [39], the damping matrix C1 can
be chosen to be of the order ofG1/2 and further so as to satisfy

C0 > 2β0I4, C0 > 2G. (37)

Then, (34) is reduced to the inequality relation

d
dt
ηd(t) ≤ −γ0ηd(t) + ξd(t), (38)

where we put with some positive constant γ0

ηd(t) = 1
2
η̇T(t)G22(t)η̇T(t),

ξd(t) = 1
2

ẍT
d (t)PTGPẍd(t)

+
1
2

ẋT
d (t)PTC0G

−1C0Pẋd(t).

(39)

Clearly, since ηd(0) = 0, (38) implies

ηd(t) ≤
∫ t

0
e−γ0(t−τ)ξd(τ)dτ (40)

which concludes that η̇(t) is uniformly bounded in t ∈
[0,T].

Once q̇d(t) and η(t) are obtained for the given ẋd(t) and
ẍd(t), the desired input signal vd(t) in the image space of
J(qd) is obtained by setting q(t) = qd(t), ẋ(t) = ẋd(t),
ẍ(t) = ẍd(t) in (25).

5. Iterative Learning Control in the Task Space

Given a desired trajectory of the endpoint in the task space E2

for a redundant robot arm, there exists a unique trajectory of
robot motion in the joint space for a specified initial posture.
In particular, it is shown in the previous section that there is
uniquely a control signal in the task space that maneuvers the
robot through the transpose of the Jacobian matrix to realize
the endpoint tracking. However, such a control signal can not
be obtained in any analytical form. Nevertheless, it is possible
for us to acquire such a desired control signal by using a
simple iterative learning control scheme, provided that the
endpoint trajectory in the task space can be measured by
visual sensing.

At the kth trial of iterative learning, the control signal for
the dynamics of (21) is designed in the form

vk = −JT(qk){κΔxk(t) + ζ1
√
κΔẋk(t)

}
+ vk−1 −ΦΔẋk−1(t),

(41)

where J(qk) means ∂x/∂q at x = x(qk), and

Δxk(t) = x
(
qk(t)

)− xd(t),

Δẋk(t) = ẋ
(
qk(t)

)− ẋd(t).
(42)

The first term of the right hand side of (41) signifies the inner
task-space PD feedback, vk−1 denotes the previous control
signal at the (k − 1)th trial, and Φ is an adequate positive
definite constant matrix. At the first trial, usually we set
v0(t) = 0 for t ∈ [0,T]. At the second trial v1(t) must contain
erroneous terms. Fortunately, without knowing the desired
ideal control vd(t), it is possible to expect that Δxi(t) → 0
and Δẋk → 0 for t ∈ [0,T] as k → ∞. We give an illustrative
example of numerical simulation conducted for the 4-DOF
robot arm shown in Figure 2 with physical parameters given
in Table 1. The values for length, mass, and inertia moment
of the first link correspond to those of an upper arm of
average human adult (male), and the values for the second
link do to those of a lower arm. The third link corresponds
to a human palm and the fourth an index finger. The desired
task is to write a handwritten character “α” on the xy-
plane. More explicitly, the endpoint trajectory is given by the
equation

xd(t) =
⎡
⎣0.00

0.30

⎤
⎦ +

⎡
⎣ 0.075 cosω(t)

0.100 cos 1.5ω(t)

⎤
⎦, (43)
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Table 1: Physical parameters of the 4-DOF robot arm.

Link number i 1 2 3 4

Length [m] li 0.2800 0.2800 0.09500 0.09000

Center of mass [m] lgi 0.1400 0.1400 0.04750 0.04500

Cylinder radius [m] ri 0.04000 0.03500 N/A 0.009500

Cuboid height [m] hi N/A N/A 0.08500 N/A

Cuboid depth [m] di N/A N/A 0.03000 N/A

Mass [kg] mi 1.407 1.078 0.2423 0.02552

Inertia moment [kg m2] Igiz 9.758× 10−3 7.370× 10−3 2.004× 10−4 1.780× 10−5
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Figure 5: Endpoint trajectories and the initial and final postures of the arm.
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Table 2: Initial values and gain settings in the case of the 4-DOF
planar robot arm.

(a)

Terminal time T 2.0 [s]

Initial posture

q1(0) 21.02 [deg]

q2(0) 75.47 [deg]

q3(0) 44.20 [deg]

q4(0) 64.87 [deg]

(b)

Gains

k 10 [N/m]

ζ0 0.5 [−]

ζ1 2.5 [−]

Φ 10.0 [−]

c1 0.862 [Nms]

c2 0.569 [Nms]

c3 0.129 [Nms]

c4 0.0356 [Nms]

where T = 2.0 [s] and

ω(t) = 2.0π

{
−15

(
t

T

)4

+ 6
(
t

T

)5

+ 10
(
t

T

)3
}
. (44)

The initial posture of the arm is given in Table 2. Based on
these data, the system of differential equations

G
(
qk
)
q̈k +

{
1
2
Ġ
(
qk
)

+ S
(
qk, q̇k

)
+ C0

}
q̇k

+ JT(qk){κΔxk + ζ1
√
κΔẋk

} = JT(qk)vk

(45)

is numerically solved by using the Runge-Kutta method.
In Figure 5 we show endpoint trajectories at 1st, 3rd, 5th,
and 10th trials and their corresponding postures at t = 0
and t = T . On the other side, we are able to obtain the
desired control signal numerically by numerically solving a
couple of 1st-order differential equations of (29) and (30).
Based upon knowing physical data given in Table 1, the
initial posture of q(0) given in Table 2, and the specified
endpoint trajectory of (43), we obtain the desired ideal
control signal shown in Figure 6. It is quite interesting to
know that, through simulations of the iterative learning,
calculated control signals vk(t), t ∈ [0,T], approach the
desired one as the trial number k increases as shown in
Figure 6. When k = 10, the trajectory of control signal v10(t)
almost coincides with the ideal one vd(t), that uniquely exists
just in the image space of the Jacobian matrix J(qd) with
x(qd) = xd for all t ∈ [0,T].

It should be remarked that the desired endpoint trajec-
tory x(t) in the case of multijoint reaching for the robot
arm of Figure 2 is obtained by solving the Euler equation of
(4) or (5) as a two-point boundary-value problem when the
initial posture q(0) = q0 at t = 0 is given and the terminal
condition at t = T is partially specified so as to move the
endpoint of the arm to meet x(q) = xd at t = T and pass
it away. This is the problem to find a curved orbit of the

endpoint connecting two given points x(q(0)) = x0 and
x(q(T)) = xd by selecting an adequate initial joint velocity
q̇(0) that is nonzero. However, the orbit x(t) of the endpoint
can be represented by a curve c(s) on E2 with the aid of length
parameters. In the case of middle-range reaching, the profile
of this endpoint geodesic curve c(s) quite resembles those of
human-like multijoint reaching characterized typically by a
quasistraight line movement of the endpoint starting from a
fixed still state.

6. Extension to the Case of Existence of
Effect of Gravity

Most of the previous results in Sections 4 and 5 can be
extended to the case that robot dynamics is subject to the
effect of gravity. In such a robot with redundancy in DOF,
robot dynamics is expressed by the Lagrange equation:

G
(
q
)
q̈ +

{
1
2
Ġ
(
q
)

+ S
(
q, q̇

)
+ C0

}
q̇ + g

(
q
) = JT(q)u, (46)

where g(q) stands for the gravity term that can be regarded as
a gradient vector of a potential function U(q) with respect to
q, that is, g(q) = ∂U(q)/∂q. Let us denote again the endpoint
position by x(q) in the m-dimensional Euclidean space Em.
Then, we split g(q) into

g
(
q
) = J+(q)J(q)g(q) +

(
In − J+(q)J(q))g(q)

= g1
(
q
)

+ g2
(
q
)
.

(47)

That is, g1(q) is a component of g(q) in the image space of
J(q) and g2(q) is that of g(q) in the kernel space of J(q), that is
orthogonally complement to the image space. In accordance
with the split of the term g(q), let us choose an n× (n−m)-
matrix W(q) = (w1, . . . ,wn−m) with n-dimensional unit
column vectors wi (i = 1, . . . ,n − m) that are mutually
orthogonal and satisfy W(q)JT(q) = 0 (i.e., W(q)J+(q) = 0).
Then, in a similar way to (22), we define

Q
(
q
) = (

J+(q),W(
q
))

(48)

which leads to

Q−1(q) =
⎛
⎝ J

(
q
)

WT
(
q
)
⎞
⎠. (49)

On the other hand, for a given desired endpoint trajectory
xd(t) for t ∈ [0,T], we consider the control signal with the
task space PD feedback

u = −{κΔx + ζ1
√
κΔẋ

}
+ v, (50)
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Figure 7: Transient responses of the ILC term vk = (vk1, vk2)T.

where Δx = x − xd. Substituting (50) into (46) yields the
closed-loop dynamics

G
(
q
)
q̈ +

{
1
2
Ġ
(
q
)

+ S
(
q, q̇

)
+ C0

}
q̇ + g1

(
q
)

+ g2
(
q
)

+ JT(q){κΔx + ζ1
√
κΔẋ

} = JT(q)v,

(51)

where v expresses a feedforward task space control signal.
Then, consider the transform of q̇ to (ẋT, η̇T)T with an (n −
m)-dimensional vector in such a form that

q̇ = (
J+(q),W(

q
))⎛⎝ẋ

η̇

⎞
⎠ = Q

(
q
)⎛⎝ẋ

η̇

⎞
⎠. (52)
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In order that the equation of (51) with a desired control
signal vd(t) has a unique solution qd(t) and q̇d(t) so that its
endpoint trajectory x(t) is coincident with xd(t), and ẋ(t) =
ẋd(t), the following equations must be satisfied:

Gd

⎛
⎝ẍd

η̈

⎞
⎠ +

{
1
2
Ġd + Sd + Cd

}⎛⎝ẋd

η̇

⎞
⎠

+

⎛
⎝
(
J+
(
qd
))T

gd

WT
(
qd
)
gd

⎞
⎠ =

⎛
⎝vd

0

⎞
⎠,

(53)

where gd = g(qd) and

Gd = QT
dG

(
qd
)
Qd, Cd = QT

dC0Qd,

Sd = QT
d SQd − 1

2
Q̇T
dG

(
qd
)
Qd +

1
2
QT
dG

(
qd
)
Q̇d

(54)

withQd = Q(qd). The latter (n−m)-dimensional component
of (51) can be expressed by

G22η̈d +
{

1
2
Ġ22 + S22 + C22

}
η̇

+GT
12ẍd + B21ẋd +WT

d gd = 0,

(55)

where Gd and Bd = (1/2)Ġd + Sd + Cd are decomposed into

Gd =
⎛
⎝G11 G12

GT
12 G22

⎞
⎠, Bd =

⎛
⎝B11 B12

B21 B22

⎞
⎠, (56)

and G22 and B22 are of (n − m) × (n − m)-matrix, and G11

and B11 are of m ×m-matrix. The simultaneous differential
equations (53) of 1st order together with

q̇d = J+(qd)ẋd +W
(
qd
)
η̇ (57)

determine a unique solution qd(t) and η̇(t) for given xd(t),
ẋd(t), and ẍd(t) with the initial conditions qd(0) = q0,
x(q0) = xd(0), and η̇(0) = 0.

7. ILC for Handwriting

All the considerations in the previous sections can be
extended to the case of a handwriting robot whose last link
is a ball-point pen constrained on a hypersurface ϕ(x) = 0,
where x = (x, y, z)T in E3 and ϕ(x) is a scalar function of C∞-
class (see Figure 8). First, we consider a pure mathematical
problem of finding a geodesic curve by ignoring the effect of
gravity and any joint damping. In this case, let us consider
an open connected area S on the hypersurface as shown in
Figure 8, on which any point P(= x) satisfies the equality
ϕ(x) = 0. Then, we denote by F a local coordinate chart
defined by F = {q ∈ (M, gi j) | x(q) ∈ S} and assume that F
is connected and at any q ∈ F the Jacobian matrix J(x(q)) =
∂x(q)/∂qT is nondegenerate. Then, given a point P on S with
the cartesian coordinates xP , the set of all q such that x(q) =
xP and q ∈ F constitutes a single-dimensional submanifold
NP (see Figure 9). Hence, for another given point P′ on

q1

J1

O(J0)

x
x′

y

q1

q2

x′

z

q3J2

J3 q4

P

S

ϕ(x) = 0

Figure 8: A handwriting robot with four DOFs whose endpoint
P(= (x, y, z)) is constrained on a hypersurface ϕ(x) = 0, where ϕ(x)
is a scalar function of C∞-class.

S, it is possible to consider an orbit in the submanifold F
(equivalently, φ(F) in the configuration space) starting from
q0, lying on N(S), and reaching some point lying on NP′

that is another single-dimensional submanifold defined by
the set of all q satisfying x(q) = xP′ and q ∈ F. Thus, it is
reasonable to suppose that there exists an optimal orbit q∗(t)
that gives minimization of the Riemannian distance from q0

to NP′ such that

d
(
q0,NP′

) = inf
q(t)

∫ 1

0

√
gi j
(
q(t)

)
q̇i(t)q̇ j(t)dt

=
∫ 1

0

√
gi j(c(t))ċi(t)ċ j(t)dt,

(58)

where the infimum is taken over all the orbits lying on N(S)
(see Figure 9), starting from q0 and reachingNP′ , where q∗(t)
is rewritten by c(t). It is reasonable to conclude that the
optimal orbit c(t) in (58) is a solution to the Euler equation
under the constraint ϕ(x(c)) = 0:

G(c(t))+
{

1
2
Ġ(c)+S(c, ċ)

}
ċ(t)=−λJT

c (x(c(t)))
∂ϕ

∂xT
, (59)

where λ denotes a Lagrange multiplier. In other words, the
path of c(t) from q0 to some point on NP′ can be called
the geodesic on the Riemannian submanifold N(S) induced
naturally from the constraint ϕ(x(q)) = 0.

Next, consider the full dynamics of the handwriting robot
with 4 DOFs shown in Figure 8 by taking into account the
effect of gravity forces and damping torques at joints (see
[38]). The dynamics is described by

G
(
q
)
q̈ +

{
1
2
Ġ
(
q
)

+ S
(
q, q̇

)}
q̇ + C0q̇ + g

(
q
)

= −λJT(q)∂ϕ(x)
∂xT

+ u,

(60)

where g(q) = ∂U(q)/∂q, U(q) denotes the gravity potential,
C0 a positive definite damping matrix, and J(q) = ∂x(q)/∂qT.
It should be remarked that ∂ϕ/∂x stands for a vector that
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q∗(t)q(t)

Oq(0)

= q0

NP
q1

q4

S = {q | ϕ(x(q)) = 0}

N(S) = S
⋂
φ(F)

q2 (or q3)

NP′

Figure 9: A geodesic curve starting from q0 lying on NP and
reaching some point on NP′ . Here, φ is a homomorphism mapping
F in M to φ(F) in R4.

originates at the position x(q) in E3 and is normal to the
surface ϕ(x) = 0 which the ball pen contacts with. Now we
introduce a length parameter s in E3 by the quantity

s(t) =
∫ t

0
‖ẋ(τ)‖dτ

=
∫ t

0

∥∥∥q̇T(τ)J
(
q(τ)

)
JT(q(τ)

)
q̇(τ)

∥∥∥dτ

(61)

and define the unit normal at the contact point as follows:

n(s) = ∂ϕ

∂x

∥∥∥∥∥∂ϕ∂x

∥∥∥∥∥
−1

. (62)

Then, by rewriting f = λ‖∂ϕ/∂x‖, (60) can be rewritten into

G
(
q
)
q̈ +

{
1
2
Ġ
(
q
)

+ S
(
q, q̇

)}
q̇ + C0q̇ + g

(
q
)

= − f JT(q)n(s) + u.

(63)

Note that the inner product of q̇ and the right-hand side of
(63) vanish. In other words, ẋ(= J(q)q̇) is orthogonal to n(s)
at the contact point in E3. Under the assumption that both
the endpoint position x(t) and the velocity ẋ(t) are measured
in real time by visual sensing and the Jacobian matrix J(q(t))
is calculated from the measurement data of x(t) and q(t) in
real time, suppose that the control signal must be constructed
through the Jacobian transpose in the form

u = JT(q)v. (64)

For a given desired endpoint trajectory xd(t), t ∈ [0,T],
together with ẋd(t) and ẍd(t) and a given desired pressing
force fd(t), we are concerned with the problem to find
a desired control signal vd(t) of (64) that maneuvers the
robot to make the endpoint of the last link (ball pen) trace
x(q(t)) = xd(t) on the hypersurface with the pressing
force fd in the direction normal to the surface. To show the

existence of a control signal in the image space of J(q), we
express it in a decomposed form such that

u = JT(q){vnn(s) + vbb(s) + vee(s)}, (65)

where b(s) signifies the unit vector tangent to the surface
in the direction of −ẋ(t) and e(s) = n(s) × b(s). Note that
substituting (65) into (63) yields

G
(
q
)
q̈ +

{
1
2
Ġ + S

}
q̇ + C0q̇ + (I4 − J+J)g

(
q
)

= −JTΠ(s)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎝
vn − f

vb

vn

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
gn

gb

ge

⎞
⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭,

(66)

where

Π(s) = (n(s), b(s), e(s)),

⎛
⎜⎜⎝
gn

gb

ge

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝
gT
(
q
)
J+n(s)

gT
(
q
)
J+b(s)

gT
(
q
)
J+e(s)

⎞
⎟⎟⎟⎠ = ΠT(s)(J+)Tg

(
q
)
.

(67)

Note that Π(s) is an orthogonal matrix belonging to SO(3),
g = (gn, gb, ge)

T is a vector in E3, and a component of g(q) to

q̇ = Q
(
q
)
⎛
⎜⎜⎜⎝
ξ̇

η̇

γ̇

⎞
⎟⎟⎟⎠, (68)

Q
(
g
) = (

J+(q)n(s),W
(
q
)
, J+(q)(b(s), e(s))

)
, (69)

where W(q) is the 4× 1 unit vector satisfying J(q)W(q) = 0,
ξ̇ and η̇ are a scalar and express a 2 × 1 velocity vector such
that (b(s), e(s))γ̇(s) = ẋ(t) at the contact point between the
tip of the ball pen and the surface. Since ξ̇ = 0 that implies
that the velocity of the tip of the pen in the direction n(s)
normal to the surface is zero, substituting (68) into (66) and
multiplying (66) by QT(q) yield

α
(
η̇, η̈, γ̇, γ̈

) = −(vn − f + gn
)
, (70)

G11η̈ +
{

1
2
Ġ11 + S11

}
η̇ +WTC0Wη̇ +WTg

(
q
)

+G12γ̈ + B12γ̇ = 0,

(71)

G22γ̈ +
{

1
2
Ġ22 + S22

}
γ̇ + C22γ̇

+GT
12η̈ + B21η̇ = −v −

⎛
⎝gb
ge

⎞
⎠,

(72)
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Figure 10: Handwriting on a hypersurface ϕ(x) = 0.

where G11 is of 1× 1, G22 is of 2× 2, and

G = PTGP, P = (W , J+(b, e)),

G =
⎛
⎝G11 G12

GT
12 G22

⎞
⎠, B =

⎛
⎝B11 B12

B21 B22

⎞
⎠,

B = 1
2
Ġ + S + PTC0P,

S = PTSP − 1
2
ṖTGP +

1
2
PTGṖ.

(73)

In (70), α is a function of C∞-class with respect to, η̇, η̈, γ̇, γ̈,
and q. Thus, for a given desired trajectory of the tip of the
ball pen, γ̇(t) = ẋd(t) and γ̈(t) = ẍd(t), it is possible to prove
the existence of qd and η̇(= η̇d) that satisfies

q̇d = P
(
qd
)⎛⎝η̇d

ẋd

⎞
⎠,

G11η̈d +
{

1
2
Ġ11 + S11

}
η̇d + C11η̇d

+WTg
(
qd
)

+G12ẍd + B12ẋd = 0,

(74)

where C11 = WTC0W . The two equations (74) are the set
of five simultaneous differential equations of the 1st order
in five variables of η̇d and qd. Once the desired trajectory
of joint motion qd(t) with its first and second derivatives is
determined together with the motion η̇d(t) of excess-DOF,
the desired control signal vd is given by (72) by putting
γ̇ = ẋd, q = qd, and η̇ = η̇d. Moreover, if a desired pressing
force fd is specified, the desired control signal in the direction
normal to the surface can be constructed through (70) such
that

vn = fd − gn
(
qd
)− α(η̇d, η̈d, ẋd, ẍd

)
. (75)

8. What Should the Central Processing
Unit Learn?

Given a smooth curve γ(s(t)) on a hypersurface ϕ(x) = 0
over time interval t ∈ [0,T], it is shown in the previous

vk

b(s)

n(s)

σk
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JT (q) q, q̇ x, ẋ

E3M
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−
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Δẋ

Φ
−

−

∑

Memory

Memory

Figure 11: Iterative learning control scheme for robotic handwrit-
ing.

section that there exists uniquely a control signal v(t) lying
in the image space that makes the endpoint of the robot
trace the curve γ(s(t)) on the hypersurface. Irrespective of
the redundancy of DOF, once a starting posture of the robot
is specified in the Euclidean space E3 with its endpoint
position P = x(0) on the hypersurface ϕ(x) = 0 as shown
in Figure 10, the orbit qd(t) that realizes x(qd(t)) = xd(t)
itself is determined uniquely correspondingly to the uniquely
existing control signal vd(t) (see Figure 10). Then, there
arises a problem whether it is possible to acquire such a
desired control signal without knowing the details of the
robot dynamics. In order to discuss the problem, let us
consider a learning control scheme that is expressed by the
following form of the control signal (see Figure 11):

uk = −JT(q){κ(x− xd) + ζ
√
κ(ẋ − ẋd)

}
− JT(q){vk + σkn(s)},

(76)

where κ > 0 stands for a constant expressing the stiffness
parameter of position feedback and ζ > 0 a constant lying
in interval [0.5, 2.0] of R1. The first term of the right-hand
side expresses the task space (E3) PD feedback for a given set
of position and velocity (xd, ẋd) and the second term stands
for the learning control signal at the kth operation that is
constructed as follows:

vk+1 = vk −ΦΔẋk,

σk+1 = σk + ψΔ fk,
(77)

where ψ is an appropriate constant such that 0 < ψ < 1
and Φ is a positive-definite 3 × 3 constant matrix. In the
case of ordinary handwriting when the constraint surface is
a horizontal plane, it is shown in the previous paper in [38]
that the learning update law for the control signal based on
(76) makes the motion of the endpoint trace the given curve
xd(t) on the plane and at the same time the joint motions
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qk(t) and q̇k(t) converge to the ideal trajectories qd(t) and
q̇d(t) as k → ∞. The proof of convergence of the control
signals vk to the desired one vd as k → ∞ is also given in
[39] on the basis of the “passivity” of the input v and the
output ẋ of the system dynamics of (63) provided that u is
given through (64) and the gravity effect g(q) is carefully
compensated. Some numerical simulation results are also
presented in [39].

Returning to Bernstein’s problem discussed in the intro-
ductory section, we are fortunately able to quote Latash’s
commentary [40] to the book originally written by Bernstein
in Russian cited as [2]. Latash says,

Bernstein’s definition of degrees of freedom relied heavily on
the analysis of kinematic degrees of freedom of various systems.
In particular, when analyzing the human upper limb, Bernstein
considered all possible orthogonal axes of rotation in a joint as
independent degrees of freedom, which were later summed over
the joints. The apparent redundancy of the joints of the human
arm in comparison to the three-dimensional space where we
happen to live and where movements take place led Bernstein
to his famous formulation that the essence of motor control
is the elimination of the redundant degrees of freedom. The
beauty and brevity of this formulation is stunning. A skeptic
may want to decide whether control can always be reduced
to the elimination of redundant degrees of freedom. In other
words, I am suggesting that Bernstein’s famous definition may
not always be correct (blasphemy!!!)

Even in the case of simple humanlike multijoint point-
to-point reaching, Riemannian geometry suggests a good
reason to think that the central nervous system is functioning
according to a natural law of Newton’s mechanics, that is, the
law of inertia for multijoint mechanisms. Once a geodesic
curve q∗(t) connecting the given initial posture q0 and
the equilibrium submanifold NP′ (see (18)) is determined
with some initial velocity q̇∗(0), then the three-dimensional
orbit x(q∗(t)) for t ∈ [0,T] is obtained. This orbit can be
rewritten into a three-dimensional curve γ(s) with the aid of
length parameter s for a corresponding interval s ∈ [a, b].

Then this curve can be spelled out by a desired trajectory
given as a movement of the tip of the arm in E3 in the
form of xd(t) = γ(s(t)) for t ∈ [0,T] with the aid of a
scale change of “time” through a monotonously increasing
function s(t). Once a desired orbit xd(t) of motion of a tip
of the arm is given in E3 and at the same time an initial
posture of the arm is chosen, the trajectory of motion in
the joint space is uniquely determined without eliminating
any excess of the system’s DOF. However, it is important to
note that, even if there arises a small change of the initial
posture, say q0 + δq, it is possible to obtain the same desired
orbit xd(t) in E3 but the trajectory qd(t) of joints differes
slightly from that obtained when the initial posture is set as
q(0) = q0 and also the desired control signal vd(t) may differ.
Another noteworthy characteristic of humanlike multijoint
movements is called “variability”, which was first pointed
out by Bernstein [2]. Latash [32] observed that in the case
of human skilled motion the grade of variability of each
endpoint trajectory is quite low relative to variable profiles
of joint responses at each trial of reaching. The mathematical
arguments in the previous section suggest that the main part
of variability in joint space is caused by small fluctuations of
choice of an initial posture trial by trial and the others may
be noise.

We do not discuss the importance of redundancy of the
muscles involved in a specific motion of multijoint reaching.
The central nervous system surely uses its own means of
communication with the muscles, which is not analogous to
the language of joint kinematics that specifies the trajectories
in individual joint. Instead of overcoming the problem of
redundancy of the muscles, we implicitly assume in this
paper that a desired torque of individual joint is finally
generated by a total of forces of all the muscles involved in
movement of the joint. This premise may not be justified by
any reason, but it is important to quote Jackson’s observation
as a neurophysiologist [41] (see Figure 12):

“To speak figuratively, the central nervous system knows
nothing of muscles, it only knows movements.”

“The highest centres represent all parts of the body, literally
all parts supplied by nerves.”

9. Conclusions

This paper discusses difficult problems of control for human-
like robots with redundant DOFs from the standpoint of
Riemannian geometry. Irrespective of joint redundancy,
we have shown that there is no necessity to resolve the
inverse kinematics problem by introducing any artificial
performance index and optimizing it in both the cases of
(1) multijoint reaching movement with excess joints, and
(2) handwriting through iterative learning control. The most
important conclusion is that Riemannian geometry does not
care about the redundancy of joints through which rigid
links are connected in series but it is powerful in establishing
a correspondence between working-point trajectories in
the external three-dimensional space (E3) and movement
trajectories in a space of joint angles (a configuration space
Rn or a Riemannian manifold {M, gi j} as a set of whole
possible postures).
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