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In this study, the optimum design dimensions and performance analyses of convective-radiative cooling fin subjected to magnetic
field are presented using finite element method. The numerical solutions are verified by the exact analytical solution for the
linearized models using Laplace transform.The optimum dimensions for the optimum performance of the convection-radiative fin
with variable thermal conductivity are investigated andpresented graphically. Also, the effects of convective, radiative, andmagnetic
parameters as well as Biot number on the thermal performance of the cooling fin are analyzed using the numerical solutions. From
the results, it is established that the optimum length of the fin and the thermogeometric parameter increases as the nonlinear thermal
conductivity term increases. Further analyses also reveal that as the Biot number, convective, radiative, and magnetic parameters,
increases, the rate of heat transfer from the fin increases and consequently improves the efficiency of the fin. Additionally, effects of
the thermal stability values for the various multiboiling heat transfer modes are established. It is established that, in order to ensure
stability and avoid numerical diffusion of the solution by the Galerkin finite elementmethod, the thermogeometric parametermust
not exceed some certain values for the different multiboiling heat transfer modes. It is hope that the present study will enhance the
understanding of thermal response of solid fin under various factors and fin design considerations.

1. Introduction

The continuous productions of high performance thermal
equipment due to the growing demands for the thermal
systems require the development of enhanced heat transfer
devices for the effective performance and thermal manage-
ment of the equipment. Moreover, the excessive heat leads
to thermal-induced failure in the thermal systems which
necessitate the use of fins for heat transfer enhancement.
The applications of extended surfaces in thermal systems,
electronic and microelectronics components, high-power
semiconductor devices, high-power lasers, light emitting
diodes (LEDs), computer cooling, sensitive devices, etc. have
attracted various research interests in past decades. The ther-
mal analysis of the extended surface involves the development
of thermal models for various operating conditions. Different
analytical (exact and approximate) and numerical methods
have been employed by various researchers to analyze the

thermal performance of the extended surfaces under different
conditions. Although, different exact analyticalmethods have
been employed [2–8], they are based on the assumptions
of constant thermal properties. Indubitably, the idealization
of a uniform or constant heat transfer coefficient is not
realistic. This is because in practice, heat transfer coefficients
have significantly greater values at the fin tip than more
than the fin base. Also, the thermal property is temperature-
dependent. Such variation of the heat transfer coefficient
as a function of temperature is often governed by a power
law. Moreover, the thermal conductivity of the fin is also
temperature-dependent. Under these circumstances, the dif-
ferential equations governing the thermal response of the
fin become strictly nonlinear. The development of exact
analytical solutions for such nonlinear models is very diffi-
cult. Consequently, some of the past studies have developed
approximate analytical solution in terms of series solutions
for the thermal analyses of fins using different approximate
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analytical methods [9–28]. Nevertheless, the series solutions
involve large number of terms. In practice, such huge expres-
sions are not convenient for use by designers and engineers.
Therefore, over the years, various numerical methods have
been applied for thermal analysis of various extended surfaces
[29–44].

It should be noted that most of the above studies are
based on steady state analysis of fin. The transient response
of fins is important in a wide range of engineering devices,
automobiles, and industrial sectors. In fact, an accurate
transient analysis provides insight into the design of fins that
would fail in steady state operations but are sufficient for
desired operating periods. Consequently, transient analysis
of the extended surfaces has been investigated [45–66].
However, they are established on the assumption of fins with
insulated tips. Although the effects of tip conditions have
been analyzed in the past studies [67–72], they are based on
steady stated heat transfer.

The determinations of the optimum dimension of fins
have been one of the central focus in the study of effective
performance and applications of the extended surfaces. Con-
sequently, some past studies have focused on determining
the optimum dimensions and performance of fins operating
under different conditions. On such optimization studies,
Hrymak [73] presented a combined analysis and optimization
of extended heat transfer surfaces while Sonn and Bar-Cohen
[74] analyzed optimum cylindrical of pin fin. Razelos and
Imre [75] carried out a study on minimum mass convective
fins with variable heat transfer coefficients. The authors [76]
also investigated the optimum dimensions of circular fins
with variable thermal parameters. Pitchumani and Shenoy
[77] submitted a unified approach to determining optimum
shapes for cooling fins of various geometries. Bhargava and
Duffin [78] applied the nonlinear method ofWilkins for cool-
ing fin optimization. Wilkins [79] determined the minimum
mass of thin fins which transfer heat only by radiation to
surroundings at absolute zero. Razelos [80] investigated the
optimumdimensions of convective pin fins with internal heat
generation.Maday [81] explored theminimumweight of one-
dimensional straight fin. Laor and Kalman [82] studied the
performance and optimum dimensions of different cooling
fins with a temperature-dependent heat transfer coefficient.
Effects of magnetic field and radiative heat transfer on
the extended surfaces under steady state conditions have
considered in literature [1, 83–86]. Ma et al. [87] adopted
spectral collocation method for transient thermal analysis of
coupled conductive, convective, and radiative heat transfer
in the moving plate with temperature-dependent properties
and heat generation. In another work, with the aid of
spectral element method,Ma et al. [88] studied the combined
conductive, convective, and radiative heat transfer in moving
irregular porous fins. Chen et al. [89] utilized least square
spectral collocation method to examine the nonlinear heat
transfer inmoving porous plate with convective and radiative
boundary conditions.

The past studies have been based on the optimumanalysis
of fin under steady state. To the best of the authors’ knowl-
edge, the transient analysis and optimum design analysis of

heat transfers in convective-radiative cooling fin with con-
vective tip under the influence of magnetic field using finite
element method have not been studied in open literature.
Therefore, in this present study, finite element method is
used to determine the optimum dimension and study the
transient thermal behaviour of convective-radiative fin with
convective tip and under the influence of magnetic field
is analyzed. The numerical solutions are used to investi-
gate of thermogeometric parameter and nonlinear thermal
conductivity on the optimum performance of the fin. Also,
effects of convective, radiative, magnetic, and convective tip
parameters on the transient thermal performance of the
cooling fin are investigated. Additionally, effects the thermal
stability values for the various multiboiling heat transfer
modes are established.

2. Problem Formulation

Consider a straight fin of length L and thickness 𝑡 which is
exposed on both faces to a convective-radiative environment
at temperature 𝑇∞ and subjected to a uniform magnetic field
as shown in Figure 1. In order to develop the mathemati-
cal model governing the thermal behaviour, the following
assumptions are made:

(i) The fin material is homogeneous and isotropic and
with constant physical properties.

(ii) The thermal properties of the surrounding medium
and the magnetic field vary with temperature accord-
ing to the power law.

(iii) The temperature of the surrounding fluid and the
temperature of the base of the fin are uniform.

(iv) The temperature variation inside the fin is one-
dimensional. This is because the fin thickness is
so small compared to its height that temperature
gradients normal to the surface may be neglected.

(v) Heat loss through the fin edges is negligible compared
to that which passes through the sides.

(vi) There is no contact resistance where the base of the fin
joins the prime surface. Also, the specific heat capacity
of the fin is constant.

(vii) There are no heat sources or internal heat generation
within the fin.

From the energy balance analysis based on the assumptions
stated above, the thermal energy balance could be expressed
as

𝑞𝑥 − (𝑞𝑥 + 𝛿𝑞𝛿𝑥𝑑𝑥) = ℎ (𝑇) 𝑃 (𝑇 − 𝑇∞) 𝑑𝑥
+ 𝜎𝜀 (𝑇) 𝑃 (𝑇4 − 𝑇4∞) 𝑑𝑥
+ J𝑐 × Jc𝜎𝑚 𝑑𝑥 + 𝜌𝐴𝑐𝑟𝑐𝑝 𝜕𝑇𝜕𝑡 𝑑𝑥

(1)

where Jc is the conduction current intensity and is given as

Jc = 𝜎𝑚 (E + V × B) (2)
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Figure 1: (a) Schematic of longitudinal fin subjected to magnetic field [1]. (b) Computational domain of the fin [1].

After expansion and simplification of the above equation,
using the fact that as 𝑑𝑥 󳨀→ 0, then (1) reduces

−𝑑𝑞𝑑𝑥 = ℎ (𝑇) 𝑃 (𝑇 − 𝑇𝑎) + 𝜎𝜀 (𝑇) 𝑃 (𝑇4 − 𝑇4𝑎)
+ Jc × Jc𝜎𝑚 + 𝜌𝐴𝑐𝑟𝑐𝑝 𝜕𝑇𝜕𝑡

(3)

According to Fourier’s law of heat conduction, the rate of heat
conduction in the fin is given by

𝑞 = −𝑘 (𝑇) 𝐴𝑐𝑟 𝑑𝑇𝑑𝑥 (4)

while the radiation heat transfer rate is given as

𝑞 = −4𝜎𝐴𝑐𝑟3𝛽𝑅 𝑑𝑇4𝑑𝑥 (5)

From (4) and (5), it could be stated that the total rate of heat
transfer is given by

𝑞 = −𝑘 (𝑇)𝐴𝑐𝑟 𝑑𝑇𝑑𝑥 − 4𝜎𝐴𝑐𝑟3𝛽𝑅 𝑑𝑇4𝑑𝑥 (6)

If one substitutes (6) into (3), one arrives at

𝑑𝑑𝑥 (𝑘 (𝑇)𝐴𝑐𝑟 𝑑𝑇𝑑𝑥 + 4𝜎𝐴𝑐𝑟3𝛽𝑅 𝑑𝑇4𝑑𝑥 )
= ℎ (𝑇) 𝑃 (𝑇 − 𝑇∞) + 𝜎 (𝑇) 𝜀𝑃 (𝑇4 − 𝑇4∞) + Jc × Jc𝜎𝑚
+ 𝜌𝐴𝑐𝑟𝑐𝑝 𝜕𝑇𝜕𝑡

(7)

A further simplification of (7) gives the governing differential
equation for the fin as𝑑𝑑𝑥 (𝑘 (𝑇) 𝑑𝑇𝑑𝑥) + 4𝜎3𝛽𝑅 𝑑𝑑𝑥 (𝑑𝑇4𝑑𝑥 )

− ℎ (𝑇) 𝑃𝐴𝑐𝑟 (𝑇 − 𝑇∞) − 𝜎𝜀 (𝑇) 𝑃𝐴𝑐𝑟 (𝑇4 − 𝑇4∞)
− Jc × Jc𝜎𝑚𝐴𝑐𝑟 = 𝜌𝑐𝑝 𝜕𝑇𝜕𝑡

(8)

The initial and boundary conditions are𝑡 = 0, 0 < 𝑥 < 𝑏, 𝑇 = 𝑇𝑏𝑡 > 0, 𝑥 = 0, 𝑇 = 𝑇𝑏
𝑡 > 0, 𝑥 = 𝑏, −𝑘𝑑𝑇𝑑𝑥 = ℎ (𝑇 − 𝑇∞)

(9)

However, if the tip of the fin is assumed insulated or a
negligible rate of heat transfer from it, we have

𝑡 > 0, 𝑥 = 𝑏, 𝑑𝑇𝑑𝑥 = 0 (10)

It should be noted that
Jc × Jc𝜎 = 𝜎𝑚𝐵2𝑜𝑢2 (11)

After substitution of (11) into (8),𝑑𝑑𝑥 (𝑘 (𝑇) 𝑑𝑇𝑑𝑥) + 4𝜎3𝛽𝑅 𝑑𝑑𝑥 (𝑑𝑇
4𝑑𝑥 )

− ℎ (𝑇) 𝑃𝐴𝑐𝑟 (𝑇 − 𝑇∞) − 𝜎𝜀 (𝑇) 𝑃𝐴𝑐𝑟 (𝑇4 − 𝑇4∞)
− 𝜎𝑚 (𝑇) 𝐵2𝑜𝑢2𝐴𝑐𝑟 (𝑇 − 𝑇∞) = 𝜌𝑐𝑝 𝜕𝑇𝜕𝑡

(12)
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If a small temperature difference exists within the finmaterial
during the heat flow, the term T4 can be expressed as a linear
function of temperature as𝑇4 = 𝑇4∞ + 4𝑇3∞ (𝑇 − 𝑇∞) + 6𝑇2∞ (𝑇 − 𝑇∞)2 + . . .≅ 4𝑇3∞𝑇 − 3𝑇4∞ (13)

Also, with the aid of Rosseland’s approximation, one can
express the nonlinear derivative term in (12) as4𝜎3𝛽𝑅𝑘 𝜕𝑇

4𝜕𝑥 ≅ 16𝜎𝑇3∞3𝛽𝑅𝑘 𝜕2𝑇𝜕𝑥2 (14)

If one substitutes (13) and (14) into (12), we arrive at𝑑𝑑𝑥 (𝑘 (𝑇) 𝑑𝑇𝑑𝑥) + 16𝜎3𝛽𝑅 𝑑
2𝑇𝑑𝑥2 − ℎ (𝑇) 𝑃𝐴𝑐𝑟 (𝑇 − 𝑇∞)

− 4𝜎𝑃𝜀 (𝑇) 𝑇3∞𝐴𝑐𝑟 (𝑇 − 𝑇∞)
− 𝜎𝑚 (𝑇) 𝐵2𝑜𝑢2𝐴𝑐𝑟 (𝑇 − 𝑇∞) = 𝜌𝑐𝑝 𝜕𝑇𝜕𝑡

(15)

where 𝑘 (𝑇) = 𝑘𝑎 (1 + 𝛽 (𝑇 − 𝑇∞)) (16)
For most industrial applications the heat transfer coefficient
may be given as the power law [3, 20], where the exponents 𝑝
and ℎ𝑜 are constants. The constant 𝑛 may vary between −6.6
and 5. However, in most practical applications it lies between−3 and 3 [20]. So, the power temperature-dependent thermal
properties of the surrounding fluid and the magnetic field are
defined as

ℎ (𝑇) = ℎ𝑜 ( 𝑇 − 𝑇∞𝑇𝑏 − 𝑇∞)
𝑝

(17)

Extending the same power temperature-dependent relation-
ship to the fin emissivity and the magnetic field, we have

𝜀 (𝑇) = 𝜀𝑜 ( 𝑇 − 𝑇∞𝑇𝑏 − 𝑇∞)
𝑞

(18)

𝜎𝑚 (𝑇) = (𝜎𝑚)𝑜 ( 𝑇 − 𝑇∞𝑇𝑏 − 𝑇∞)
𝑟

(19)

The exponent 𝑝 on the heat transfer coefficient represents
laminar film boiling or condensation when p = −1/4, laminar
natural convectionwhen p= 1/4, turbulent natural convection
when p = 1/3, nucleate boiling when p = 2, and radiation when
p = 3. p = 0 implies a constant heat transfer coefficient.

Substitution of (17)-(19) gives𝑑𝑑𝑥 (𝑘 (𝑇) 𝑑𝑇𝑑𝑥) + 16𝜎3𝛽𝑅 𝑑
2𝑇𝑑𝑥2 − ℎ𝑜𝑃 (𝑇 − 𝑇∞)𝑝+1𝐴𝑐𝑟 (𝑇𝑏 − 𝑇∞)𝑝

− 4𝜎𝜀𝑜𝑃𝑇3∞ (𝑇 − 𝑇∞)𝑞+1𝐴𝑐𝑟 (𝑇𝑏 − 𝑇∞)𝑞
− 𝜎𝑚,𝑜𝐵2𝑜𝑢2 (𝑇 − 𝑇∞)𝑟+1𝐴𝑐𝑟 (𝑇𝑏 − 𝑇∞)𝑟 = 𝜌𝑐𝑝 𝜕𝑇𝜕𝑡

(20)

3. Finite Element Method for the
Transient Analysis

It is very difficult to develop exact analytical solution to
the nonlinear equation in (15) or (20). Therefore, Galerkin
finite element method is used in this work to solve the
nonlinear equation. Using the shape/interpolating function
on the governing equation and Integrating over the domain
V of the control volume according to Galerkin finite element
method, we have

∫
𝑉
𝑊( 𝑑𝑑𝑥 (𝑘 (𝑇) 𝑑𝑇𝑑𝑥) + (16𝜎3𝛽𝑅 𝑑

2𝑇𝑑𝑥2 )
− ((ℎ𝑃 (𝑇) + 4𝜎𝑃 (𝑇) 𝜀𝑜𝑇3∞ + 𝜎𝑚 (𝑇) 𝐵2𝑜𝑢2)𝐴𝑐𝑟 )
⋅ (𝑇 − 𝑇∞) − 𝜌𝑐𝑝 𝜕𝑇𝜕𝑡 = 0)𝑑𝑉 = 0

(21)

For the one-dimensional problem of which the dependent
variable varies only along x-axis and the boundary integrals
turn to be a point value on boundaries, one can replace dV by
Acrdx in (21). Here,𝐴𝑐𝑟 is the uniform cross-sectional area of
the fin andP is the perimeter of the fin fromwhich convection
takes place.

∫
𝐿
𝑊( 𝑑𝑑𝑥 (𝑘 (𝑇) 𝑑𝑇𝑑𝑥) + (16𝜎3𝛽𝑅 𝑑

2𝑇𝑑𝑥2 )
− ((ℎ𝑃 (𝑇) + 4𝜎𝑃 (𝑇) 𝜀𝑜𝑇3∞ + 𝜎𝑚 (𝑇) 𝐵2𝑜𝑢2)𝐴𝑐𝑟 )
⋅ (𝑇 − 𝑇∞) − 𝜌𝑐𝑝 𝜕𝑇𝜕𝑡 = 0)𝐴𝑐𝑟𝑑𝑥 = 0

(22)

∫𝐿
0
𝜌𝑐𝑝𝐴𝑐𝑟𝑊𝜕𝑇𝜕𝑡 𝑑𝑥 + ∫𝐿0 𝐴𝑐𝑟 𝜕𝑊𝜕𝑥 𝑘 (𝑇) 𝜕𝑇𝜕𝑥
+ ∫𝐿
0
(16𝜎3𝛽𝑅)𝐴𝑐𝑟 𝜕𝑊𝜕𝑥 𝜕𝑇𝜕𝑥𝑑𝑥 + ∫𝐿0 (ℎ (𝑇) + 4𝜎 (𝑇)

⋅ 𝜀𝑜𝑇3∞) 𝑃𝑊𝑇𝑑𝑥 + ∫𝐿
0
𝜎𝑚 (𝑇) 𝐵2𝑜𝑢2𝑊𝑇𝑑𝑥

= ∫𝐿
0
(ℎ (𝑇) + 4𝜎 (𝑇) 𝜀𝑜𝑇3∞) 𝑃𝑇∞𝑊𝑑𝑥

+ ∫𝐿
0
𝜎𝑚 (𝑇) 𝐵2𝑜𝑢2𝑊𝑇∞𝑑𝑥 + 𝐴𝑐𝑟 (16𝜎3𝛽𝑅) 𝜕𝑇𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐿0𝑊

+𝐴𝑐𝑟 𝑘 (𝑇) 𝜕𝑇𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐿0𝑊

(23)

Equation (23) is a weak formulation of the nonlinear govern-
ing differential equation.
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Following the usual finite element procedures, the analy-
sis of (23) gives

∫𝐿𝑒
0
𝜌𝑐𝑝𝐴𝑐𝑟 [W]𝑇 [W] {𝜕T𝜕𝑡 } 𝑑𝑥
+ ∫𝐿𝑒
0
𝑘 (𝑇)𝐴𝑐𝑟 [B]𝑇 [B] [T] 𝑑𝑥

+ ∫𝐿𝑒
0
(16𝜎3𝛽𝑅)𝐴𝑐𝑟 [B]𝑇 [B] [T] 𝑑𝑥

+ ∫𝐿𝑒
0
(ℎ (𝑇) + 4𝜎 (𝑇) 𝜀𝑜𝑇3∞) 𝑃 [W]𝑇 [W] [T] 𝑑𝑥

+ ∫𝐿𝑒
0
𝜎𝑚 (𝑇) 𝐵2𝑜𝑢2 [W]𝑇 [W] [T] 𝑑𝑥

= ∫𝐿𝑒
0
(ℎ (𝑇) + 4𝜎 (𝑇) 𝜀𝑜𝑇3∞) 𝑃 [W]𝑇 𝑇∞𝑑𝑥

+ (𝐴𝑐𝑟 (16𝜎3𝛽𝑅) 𝜕𝑇𝜕𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐿
𝑒

0

[W]𝑇
+ (𝐴𝑐𝑟𝑘 (𝑇) 𝜕𝑇𝜕𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐿
𝑒

0

[W]𝑇

(24)

Equation (24) can be written form as

[C] {𝜕T𝜕𝑡 } + [K (𝑇)] {T} = [f (𝑇)] (25)

where

[C] = ∫𝐿𝑒
0
𝜌𝑐𝑝𝐴 [W]𝑇 [W] 𝑑𝑥 (26)

[K (𝑇)]
= +∫𝐿𝑒
0
𝑘 (𝑇)𝐴𝑐𝑟 [B]𝑇 [B] [T] 𝑑𝑥

+ ∫𝐿𝑒
0
(16𝜎3𝛽𝑅)𝐴𝑐𝑟 [B]𝑇 [B] [T] 𝑑𝑥

+ ∫𝐿𝑒
0
(ℎ (𝑇) + 4𝜎 (𝑇) 𝜀𝑜𝑇3∞) 𝑃 [W]𝑇 [W] 𝑑𝑥

+ ∫𝐿𝑒
0
𝜎𝑚 (𝑇) 𝐵2𝑜𝑢2 [W]𝑇 [W] 𝑑𝑥

(27)

[f (𝑇)]
= ∫𝐿𝑒
0
(ℎ (𝑇) + 4𝜎 (𝑇) 𝜀𝑜𝑇3∞) 𝑃𝑇∞ [W]𝑇 𝑇∞𝑑𝑥

+ ∫𝐿𝑒
0
𝜎𝑚 (𝑇) 𝐵2𝑜𝑢2𝑇∞ [W]𝑇 𝑇∞𝑑𝑥

+ (𝐴𝑐𝑟 (16𝜎3𝛽𝑅) 𝜕𝑇𝜕𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐿
𝑒

0

[W]𝑇
+ (𝐴𝑐𝑟𝑘 (𝑇) 𝜕𝑇𝜕𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐿
𝑒

0

[W]𝑇

(28)

and

[W] = [𝑊𝑖 𝑊𝑗] (29)

is the shape function matrix and

{T} = [𝑇𝑖𝑇𝑗] (30)

is the vector of unknown temperatures

[B] = [𝜕𝑊𝑖𝜕𝑥 𝜕𝑊𝑗𝜕𝑥 ] (31)

Using a 3-node element as shown in Figure 2, one arrives at

[𝐶𝑖𝑗] = 𝜌𝑐𝑝𝐴𝑐𝑟𝐿𝑒6 [[[
8 4 −24 32 4−2 4 8

]]] (32)

[𝐾𝑖𝑗 (𝑇)] = [[[
(𝑘 (𝑇) + 16𝜎/3𝛽𝑅) 𝐴𝑐𝑟3𝐿𝑒 [[[

7 −8 1−8 16 −81 −8 7
]]]

+ (ℎ (𝑇) 𝑃 + 4𝜎 (𝑇) 𝜀𝑜𝑇3∞𝑃 + 𝜎𝑚 (𝑇) 𝐵2𝑜𝑢2) 𝐿𝑒60
⋅ [[[

8 4 −24 32 4−2 4 8
]]]
]]]

(33)

[𝑓𝑖 (𝑇)] = (ℎ (𝑇) 𝑃 + 4𝜎 (𝑇) 𝜀𝑜𝑇3∞𝑃 + 𝜎𝑚 (𝑇) 𝐵2𝑜𝑢2)
⋅ 𝑇∞𝐿𝑒6 [[[

141
]]] + (𝑘 (T) + 16𝜎3𝛽𝑅)𝐴𝑐𝑟

[[[[[[[

−𝜕𝑇 (0)𝜕𝑥𝜕𝑇 (𝑀)𝜕𝑥𝜕𝑇 (𝐿)𝜕𝑥
]]]]]]]

(34)
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Figure 2: A 3-node element.

After the substitution of (32)-(34), we arrived at

𝜌𝑐𝑝𝐴𝑐𝑟𝐿𝑒6 [[[
8 4 −24 32 4−2 4 8

]]]
{{{{{{{{{{{{{

𝜕𝑇𝑖𝜕𝑡𝜕𝑇𝑗𝜕𝑡𝜕𝑇𝑘𝜕𝑡

}}}}}}}}}}}}}
+ [[[

(𝑘 (𝑇) + 16𝜎/3𝛽𝑅) 𝐴𝑐𝑟3𝐿𝑒 [[[
7 −8 1−8 16 −81 −8 7

]]]
+ (ℎ (𝑇) 𝑃 + 4𝜎 (𝑇) 𝜀𝑜𝑇3∞𝑃 + 𝜎𝑚 (𝑇) 𝐵2𝑜𝑢2) 𝐿𝑒60
⋅ [[[

8 4 −24 32 4−2 4 8
]]]
]]]
{{{{{
𝑇𝑖𝑇𝑗𝑇𝑘
}}}}} = (ℎ (𝑇) 𝑃 + 4𝜎 (𝑇)

⋅ 𝜀𝑜𝑇3∞𝑃 + 𝜎𝑚 (𝑇) 𝐵2𝑜𝑢2) 𝑇∞𝐿𝑒6 [[[
141
]]] + (𝑘 (𝑇)

+ 16𝜎3𝛽𝑅)𝐴𝑐𝑟
[[[[[[[

−𝜕𝑇 (0)𝜕𝑥𝜕𝑇 (𝑀)𝜕𝑥𝜕𝑇 (𝐿)𝜕𝑥
]]]]]]]

(35)

3.1. Time Discretization Using the Finite Element Method.
The above equation is a general representation of a one-
dimensional problem with one linear element. All the terms
are included irrespective of the boundary condition. Equa-
tion (25) is semidiscrete as it is discretized only in space. The
differential operator still contains the time-dependent term
and it has to be discretized. We now require a method of
discretizing the transient terms of the equation.The following
subsections give the details of how the transient terms will be
discretized. In (25), the temperature is now discretized in the
time domain as in Figure 2.

Using Figure 3,

𝑇 (𝑡) = 𝑁𝑖 (𝑡) 𝑇𝑖 (𝑡) + 𝑁𝑗 (𝑡) 𝑇𝑗 (𝑡)
= [𝑁𝑖 (𝑡) 𝑁𝑗 (𝑡)] {𝑇𝑖 (𝑡)𝑇𝑗 (𝑡)} .

(36)

i j

Ti(t)

Ni (t)

Δt

Nj(t)

Tj(t)

Figure 3: Time discretization between nth (i) and n + 1th (j) time
levels.

Following the similar procedure as done previously, we can
derive the linear shape functions as

𝑁𝑖 (𝑡) = 1 − 𝑡Δ𝑡 ,
𝑁𝑗 (𝑡) = 𝑡Δ𝑡 .

(37)

Therefore, the time derivative of the temperature is thus
written as

𝜕𝑇 (𝑡)𝜕𝑡 = 𝜕𝑁𝑖 (𝑡)𝜕𝑡 𝑇𝑖 (𝑡) + 𝜕𝑁𝑗 (𝑡)𝜕𝑡 𝑇𝑗 (𝑡)
= (− 1Δ𝑡)𝑇𝑖 (𝑡) + ( 1Δ𝑡)𝑇𝑗 (𝑡)
= 1Δ𝑡 (𝑇𝑗 (𝑡) − 𝑇𝑖 (𝑡)) 󳨐⇒𝜕𝑇 (𝑡)𝜕𝑡 = [− 1Δ𝑡 1Δ𝑡]{𝑇𝑖 (𝑡)𝑇𝑗 (𝑡)}

(38)

Substituting (36) and (37) into (25) and applying theweighted
residual principle (Galerkin method), we obtain for a time
interval of Δ𝑡,

∫
Δ𝑡
[[𝑁𝑖 (𝑡)𝑁𝑗 (𝑡)] [[C] [− 1Δ𝑡 1Δ𝑡]{𝑇𝑖 (𝑡)𝑇𝑗 (𝑡)}
+ [K (𝑇)] [𝑁𝑖 (𝑡) 𝑁𝑗 (𝑡)] {𝑇𝑖 (𝑡)𝑇𝑗 (𝑡)}
− [f (𝑇)]]]𝑑𝑡

(39)
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After expansion

∫
Δ𝑡
[[[C] [𝑁𝑖 (𝑡)𝑁𝑗 (𝑡)] [− 1Δ𝑡 1Δ𝑡]{𝑇𝑖 (𝑡)𝑇𝑗 (𝑡)}
+ [K (𝑇)] [𝑁𝑖 (𝑡)𝑁𝑗 (𝑡)] [𝑁𝑖 (𝑡) 𝑁𝑗 (𝑡)] {𝑇𝑖 (𝑡)𝑇𝑗 (𝑡)}
− [𝑁𝑖 (𝑡)𝑁𝑗 (𝑡)] [f (𝑇)]]] 𝑑𝑡

(40)

Substituting (37) into (40)

∫
Δ𝑡

[[[
[[[[C]

[[[
1 − 𝑡Δ𝑡𝑡Δ𝑡

]]][−
1Δ𝑡 1Δ𝑡]{𝑇𝑖 (𝑡)𝑇𝑗 (𝑡)}

+ [K (𝑇)] [[[
1 − 𝑡Δ𝑡𝑡Δ𝑡

]]][1 −
𝑡Δ𝑡 𝑡Δ𝑡]{𝑇𝑖 (𝑡)𝑇𝑗 (𝑡)}

− [[[
1 − 𝑡Δ𝑡𝑡Δ𝑡

]]] [f (𝑇)]
]]]
]]]𝑑𝑡

(41)

Again, after expansion of (41), one arrives at

∫
Δ𝑡

[[[[
[[[[
[C]

⋅ [[[
−(1 − 𝑡Δ𝑡) ( 1Δ𝑡) (1 − 𝑡Δ𝑡) ( 1Δ𝑡)− ( 𝑡Δ𝑡) ( 1Δ𝑡) ( 𝑡Δ𝑡) ( 1Δ𝑡)

]]]{
𝑇𝑖 (𝑡)𝑇𝑗 (𝑡)}

+ [K (𝑇)]
⋅ [[[[

(1 − 𝑡Δ𝑡)2 (1 − 𝑡Δ𝑡) ( 𝑡Δ𝑡)(1 − 𝑡Δ𝑡) ( 𝑡Δ𝑡) ( 𝑡Δ𝑡)2
]]]]
{𝑇𝑖 (𝑡)𝑇𝑗 (𝑡)}

− [[[
1 − 𝑡Δ𝑡𝑡Δ𝑡

]]] [f (𝑇)]
]]]]
]]]]
𝑑𝑡

(42)

After the evaluation of (40), we obtained the characteristic
equation over the time interval Δt as

12Δ𝑡 [[C] [−1 1−1 1]{𝑇𝑖 (𝑡)𝑇𝑗 (𝑡)}
+ 13 [K (𝑇)] [2 11 2]{𝑇𝑖 (𝑡)𝑇𝑗 (𝑡)} = 12 [11]{𝑓1𝑓2}]

(43)

The above equation involves the temperature values at the
nth and (n + 1)th level. The boundary conditions and the
temperature-dependent parameters are incorporated in the
computer program used to solve the system of differential
equations. Although a dimensionless form of the governing
equation can be derived for the computer program, the
handling of physical quantities is simplified. It should be
noted that the thermal properties are evaluated directly in
each time step from the nodal temperatures. This eliminates
any iteration within each time step for the evaluations of the
temperature-dependent parameters.

The element equation/matrix has been derived as shown
in the previous equations. It should be noted that the whole
domain was divided into a set of 50 line elements. Assembling
all the elements equation/matrices, a global matrix or a sys-
tem of equations was obtained. After applying the boundary
conditions, the resulting systems of equations are solved
numerically. The convergence criterion of the numerical
solution along with error estimation has been set to

𝑁∑
𝑖

󵄨󵄨󵄨󵄨󵄨𝜙𝑖𝑖 − 𝜙𝑖−1󵄨󵄨󵄨󵄨󵄨 ≤ 10−4 (44)

where 𝜑 is the general dependent variable 𝑇 and 𝑖 is the
number of iteration.

It should be noted that a steady state is attained when𝜕𝑇/𝜕𝑡 = 0 or 𝑡 󳨀→ ∞.

4. Optimization of the Longitudinal Fin

The fin weight and material costs are the primary design
considerations in most applications of fin. Therefore, it is
highly desirable to obtain the optimum design information
of fins.

The optimization of the fin could be achieved either
by minimizing the volume (weight) for any required heat
dissipation or by maximizing the heat dissipation for any
given fin volume [73–76]. The later approach is adopted in
this work.

The constant fin volume is defined as V=Acw. We can
therefore write the heat dissipation per unit volume as

𝑞𝑓𝑉 = ∫𝐿
0
𝑃ℎ (𝑇 − 𝑇∞) 𝑑𝑥𝐴𝑐𝑤 (45)

The dimensionless form of (45) is given as

𝑄𝑓 = 𝑞𝑓𝑘 (T𝑏 − T∞) (𝐴𝑝𝑉 )
= 𝐴𝑝𝑘 (T𝑏 − T∞) ∫

𝐿

0
𝑃ℎ (𝑇 − 𝑇∞) 𝑑𝑥𝐴𝑐𝑤

(46)

Equation (46) could be written as

𝑄𝑓 = 𝜉𝑀2/3(𝑇𝑏 − 𝑇∞) ∫
1

0
(𝑇 − 𝑇∞) 𝑑𝑥 (47)
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where

𝑀 = ( ℎ𝑃𝑘𝐴𝑐)
0.5 ,

𝜉 = (2ℎ√𝐴𝑝𝑘 )
2/3

,
𝐴𝑝 = 𝛿𝑤

(48)

The maximum heat dissipation value occurs at the condition
when the optimum fin characteristics have been achieved.
The fin dimensions in this situation represent the optimum
fin configuration per unit volume. With the volume constant,
the optimization procedure is also carried out to fix the
profile area Ap by first expressing 𝑄𝑓/𝜉 as a function of
the thermogeometric parameter, M (or fin length, b) and
then searching for the optimum value of M [73–76] where𝑑(𝑄𝑓/𝜉)/𝑑𝑀 = 0.

5. Development of an Exact
Analytical Solution for the Verification
of the Numerical Solution

For constant thermal properties of the surrounding fluid and
the magnetic field, we have a linear equation of the form

𝑑2𝑇𝑑𝑥2 + 16𝜎3𝛽𝑅 𝑑
2𝑇𝑑𝑥2 − ℎ𝑃 (𝑇 − 𝑇∞)𝑘𝐴𝑐𝑟

− 4𝜎𝜀𝑃𝑇3∞ (𝑇 − 𝑇∞)𝑘𝐴𝑐𝑟 − 𝜎𝑚𝐵2𝑜𝑢2 (𝑇 − 𝑇∞)𝑘𝐴𝑐𝑟
= 𝜌𝑐𝑝𝑘 𝜕𝑇𝜕𝑡

(49)

It should be noted that (49) can be solved analytically. Using
Laplace transform, it can easily be shown that the exact
analytical solution of the equation based on the initial and
the boundary conditions in (9) is given as

𝑇 = 𝑇∞ + (𝑇𝑏 − 𝑇∞)
⋅ {{{{{

((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) cosh ((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) /𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) (𝐿 − 𝑥) + (ℎ𝐿/𝑘) sinh ((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) /𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) (𝐿 − 𝑥)((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) cosh ((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) + (ℎ𝐿/𝑘) sinh (((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)))
− 2∞∑
𝑛=1

{{{{{
𝜆3𝑛 sin (𝜆𝑛𝑥/𝐿) {exp − [(𝜆2𝑛 + ((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅))2) ((𝑘 + 16𝜎/3𝛽𝑅) 𝑡/𝜌𝑐𝑝𝐿2)]}(𝜆2𝑛 + ((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅))2) ((ℎ𝐿/𝑘)2 + ((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅))2 + ℎ𝐿/𝑘) sin2𝜆𝑛

}}}}}
}}}}} .

(50)

For the insulated tip, we have

𝑇 = 𝑇∞ + (𝑇𝑏 − 𝑇∞)
⋅ {{{{{

((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) cosh ((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) /𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) (𝐿 − 𝑥)((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) cosh ((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅))
− 2∞∑
𝑛=1

{{{{{
𝜆3𝑛 sin (𝜆𝑛𝑥/𝐿) {exp− [(𝜆2𝑛 + ((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅))2) ((𝑘 + 16𝜎/3𝛽𝑅) 𝑡/𝜌𝑐𝑝𝐿2)]}(𝜆2𝑛 + ((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅))2) (((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅))2) sin2𝜆𝑛

}}}}}
}}}}} .

(51)

where 𝜆𝑛 are the positive roots of the characteristics equation
𝜆𝑛 cos 𝜆𝑛 + (ℎ𝐿𝑘 ) sin 𝜆𝑛 = 0. (52)

It should be noted that a steady state is attained when 𝑡 󳨀→∞.
And the steady state solution for the fin with convective

tip can be written as

𝑇 = 𝑇∞ + (𝑇𝑏 − 𝑇∞)
⋅ {((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) cosh ((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) /𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) (𝐿 − 𝑥) + (ℎ𝐿/𝑘) sinh ((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) /𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) (𝐿 − 𝑥)((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) cosh ((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) + (ℎ𝐿/𝑘) sinh (((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅))) } . (53)
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Table 1: Thermogeometric parameters used for the simulation.

S/N Parameter Value of Parameter
1 Fin thickness (𝛿) 0.005 m
2 Fin length (L) 0.10 m
3 Specific heat (C) 0.048 kJ/kg∘C
4 Density of the fin material (𝜌) 7800 kg/m3

5 Thermal conductivity (k) 12W/m∘C
6 Heat transfer coefficient (ho) 20 W/m2∘C
7 Electrical conductivity (𝜎m) 5x107 S/m
8 Magnetic field intensity (BO) 5𝜇T
9 Axial velocity (u) 2.5 m/s
10 power-index, p = q = r 0.175
11 Fin base temperature (Tb) 200∘C
12 Initial temperature (To) 200∘C
13 Ambient temperature (T∞) 30∘C
14 Time step (Δ𝑡) 10 sec

While, for the fin with insulated tip,

𝑇 = 𝑇∞ + (𝑇𝑏 − 𝑇∞)
⋅ {((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) cosh ((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) /𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) (𝐿 − 𝑥)((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) cosh ((ℎ𝑃 + 4𝜎𝜀𝑇3∞𝑃 + 𝜎𝑚𝐵2𝑜𝑢2) 𝐿/𝐴𝑐𝑟 (𝑘 + 16𝜎/3𝛽𝑅)) } . (54)

For the sake of convenience in subsequent analysis, it should
be noted that “b” has been replaced with “L” in the above
analytical solution.

Table 1 shows the thermogeometric parameters used for
the simulation.

6. Results and Discussion

For the computational domain, numerical solutions are com-
puted and the necessary convergence of the results is achieved
with the desired degree of accuracy. Using the numerical
solutions, parametric studies are carried out. Also, in order
to define the validity of the results of thermal analysis of fin
with assumed insulated tip and that of convective tip, effects
of the fin tip conditions on the transient thermal response
are investigated. The results with the discussion are illustrated
through the Figures 4–16 and Table 2 to substantiate the
applicability of the present analysis.

In order to verify the accuracy of the present numerical
method, the numerical results are compared with results
obtained by exact analytical method for the linearized equa-
tion (Table 2). It is inferred from the figure that there
are excellent agreements between the FEM results and the
analytical results, which testifies to the validity of the FEM
code. This validation boosts the confidence in the numerical
outcome of the present study. Moreover, it is observed that,
in the same domain by increasing the polynomial degree of

approximation or the number of nodes in an element, one
can achieve the desired accuracy with less DOF.

Table 2 shows the comparison of the results obtained by
exact analytical and finite element methods for a conductive-
convective fin with constant thermal and physical properties
of fin having negligible radiation and magnetic field effects.
Very good agreements are found between the exact analytical
and finite element solutions. The average percentage error of
the numerical solution is 0.133%.

Figure 4 shows the nondimensional heat transfer Q/𝜁 (for
a unit fin volume) varying with M from 1 and 2 for specified
values of nonlinear thermal conductivity terms, 𝛽, under a
given profile area, Ap; the heat transfer first rises and then
falls as the fin length increases. From the figure, it shows that
the optimum fin length (at which Q/𝜁 reaches a maximum
value) increases as the nonlinear thermal conductivity term,𝛽, increases. It also shows that the optimum value ofM can be
obtained based upon the value of nonlinear term. Therefore,
from the analysis the optimum dimensions of the convection
fin with variable thermal conductivity are established and the
relative values of optimum M and 𝛽 are shown in Figure 5.

Figure 6 depicts the effects of multiboiling parameter on
the optimum heat transfer rate. For the case of carrying out
the optimization of the fin by minimizing the volume of the
for the required heat dissipation, Figure 7 shows the effects
of multiboiling parameter on the optimum fin dimensions. It
is illustrated from the figures that the optimum heat transfer
rate and fin length increase with increasing multiboiling
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Table 2: Comparison of results.

x(m) Exact analytical method (∘C) Finite Element Method (∘C) Error % Error
0.000 200.000 200.000 0.000 0.000
0.020 148.133 148.184 0.051 0.034
0.040 113.895 114.031 0.136 0.119
0.060 92.169 92.339 0.170 0.184
0.080 79.725 79.912 0.187 0.235
0.100 74.710 74.880 0.170 0.228
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Figure 4: Effects of nonlinear thermal conductivity and thermoge-
ometric parameters on the dimensionless heat transfer, Qf/𝜁.

heat transfer mode parameter while the optimum fin width
decreases with the multiboiling heat transfer mode parame-
ter.

Figure 8 shows the comparison of result of analytical
solution and finite element method. Figures 9 and 10 depict
temperature-time history at different four points (0.025m,
0.050m, 0.075m, and 0.100m) of the convective-radiative
fin with convective and insulated tips, respectively. Figure 11
shows the temperature profile of different heat transfermodes
while Figures 12 and 13 show the temperature profiles of
the fin at difference times. The temperature histories at the
four points decrease at a faster rate initially, slow down
thereafter, and finally tend to reach a constant value showing
to be near to steady state. Also, a marginal or slightly higher
temperature differences are notice between the convective
and insulated tip. However, this temperature differences
become appreciable as the length of the fin increases and
heat is transferred within a short period of time. It could be
inferred from the figures and the preceding discussion that,
for a short fin that undergo heat transfer for a prolonged
period of time, adiabatic/insulted condition at the tip can be
assumed without any significant loss in accuracy.

It has been established that the criterion and errors due
to one-dimensional heat transfer analysis is that fin base
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Figure 5: Effects of nonlinear thermal conductivity parameter on
the optimum thermogeometric parameter.
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Figure 6: Effects of multiboiling parameter on the optimum heat
transfer rate.

thickness Biot number should be much smaller than unity
(precisely, Bi < 0.1). To this end, a one-dimensional analysis
has been carried out and simulated within 0 < Bi <0.1. In
this case the error made in the determination of the rate
of heat transfer from the fin to the fluid surrounding it is
less than 1% [68, 69]. However, when the Biot number is
greater than 0.1 (Bi > 0.1), two-dimensional analysis of the
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Figure 7: Effects of multiboiling parameter on the optimum fin
dimensions.
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Figure 8: Comparison of results.

fin is recommended as one-dimensional analysis predicts
unreliable results for such limit.

Figures 14 and 15 show the effects of Biot number
(conduction-convection parameter) on the temperature dis-
tribution in the fin with convective and insulated tips,
respectively. From the figures, it is shown that, as the Biot
number increases, the rate of heat transfer through the fin
increases as the temperature in the fin drops faster (becomes
steeper reflecting high base heat flow rates) as depicted in the
figures.

Effects of heat transfer coefficient on the temperature dis-
tribution in the fin are shown in Figure 16. It is shown that the
temperature profiles for the various heat transfer coefficient
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Figure 9: Fin temperature profile at different location (convective
tip).
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Figure 10: Fin temperature profile at different location (insulated
tip).

coincide initially but part away as we move towards the tip of
the fin. This is due to the fact that coefficient of heat transfer
coefficient is a factor/multiplier of the temperature difference
between the fin surface and surrounding medium (T-T∞). It
should be noted that the temperature difference between the
fin surface and the surrounding decreases as we move away
from the fin base to the fin tip despite the increase in the heat
transfer coefficient.

It should be noted that, for the fin with heat transfer
coefficient which varies according to power law, the hypo-
thetical boundary condition (that is, insulation) at the tip of
the fin is taken into account. If the tip is not assumed to be
insulated, then the problem becomes overdetermined [69].
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Figure 11: Effects of multiboiling parameter on the fin temperature distribution.
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Figure 12: Fin temperature profile at different time (convective tip).

This boundary condition is realized for sufficiently long fins.
Also, it should be stated that the assumption that the heat
transfer coefficient is constant yields incorrect.

Figure 17 presents the impact of emissivity on the tem-
perature distribution. The temperature of the fin decreases
with increase of emissivity value. This is because of increase
of emissive heat by radiation from the fin surface especially
when the distance from the base increases. Therefore, heat
transfer rate increases as the emissivity increases. The radia-
tive eat transfer can be neglected if the base temperature
of the fin is low and the emissivity of the fin surface is
near zero. The important things in fins surface must be
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Figure 13: Fin temperature profile at different time (insulated tip).

emissive because high emissivity gives a great amount of
heat radiation transfer from the fin [39]. Figure 18 shows
effects of magnetic parameter and Hartman number on the
temperature distribution in the porous fin. The figure depicts
that the induced magnetic field in the fin can improve heat
transfer through the fin. It is shown that increase in magnetic
field on the fin increases the rate of heat transfer from the fin
and consequently improves the efficiency of the fin. Figure 19
shows the effect of thermal conductivity of the fin materials
on the thermal response of the fin. It could be inferred from
the figure that more heat is transferred from fin made of
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Figure 14: Effects of Biot number on the fin temperature profile
(convective tip).
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Figure 15: Effects of Biot number on the fin temperature profile
(insulated tip).

copper material than the fins made of stainless steel and
aluminum materials.

Effects of the thermal and geometric parameters on
the temperature profile of the fin are shown in Figure 20
while Figure 21 shows the influence of thermogeometric
parameter (M=(hP/kA)0.5) on the thermal stability of the fin.
It was established that the value of M produces physically
unsound behaviour for larger values of the thermogeo-
metric parameter. It is shown that for growing values of
the thermogeometric parameter the temperature tends to
negative values at the tip of the fin which shows thermal
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Figure 16: Effects of heat transfer coefficient on the fin temperature
profile.
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Figure 17: Effects of emissivity on the fin temperature profile.

instability, contradicting the assumption of (9). Following the
assumptions made regarding the numerical solution of the
problem, it was realized that these solutions are not only
physically unsound but also point towards thermal instability.
Therefore, in order for the solution to be physically sound
the fin thermogeometric parameter𝑀max must not exceed a
specific value. By extension in order to ensure stability and
avoid numerical diffusion of the solution by the Galerkin
finite element method, the thermogeometric parameter must
not exceed some certain values for the different multiboiling
heat transfer modes.
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Figure 18: Effects of magnetic parameter on the fin temperature profile.
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Figure 19: Effects of thermal conductivity on the fin temperature profile.

7. Conclusion

Thedetermination of optimum dimensions and performance
of convective-radiative cooling fins subjected to magnetic
field has been carried out in this study using finite element
method. The numerical solutions were verified by the exact
solution for the linearized models using Laplace transform.
The optimum dimensions of the convection-radiative fin
with variable thermal conductivity were investigated and

presented graphically. Also, the effects of other operating
parameters on the thermal performance of the fin were
investigated using the numerical solutions. The study estab-
lished that increase in Biot number, convective, radiative, and
magnetic parameters, increases the rate of heat transfer from
the fin and consequently improves the efficiency of the fin. It
is hope that the present study will enhance the understanding
of thermal response of solid fin under various factors and fin
design considerations.
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Figure 20: Effects of thermos-geometric parameter on fin temperature profile.
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Figure 21: Effects of multiboiling parameter on thermal stability of the fin.

Nomenclature

Ac: Cross-sectional area of the fins, m
2

As: Surface area of the fins, m
2

b: Length of the fin𝐵o: Magnetic field intensity (T)
cp: Specific heat (J kg−1 K−1)ℎ: Heat transfer coefficient (Jm−2 K−1)
hb: Heat transfer coefficient at the base of the

fin (Wm−2k−1)𝐽: Total current intensity (A)𝐽c: Conduction current intensity (A)
k: Thermal conductivity of the fin material

(Wm−1k−1)

kb: Thermal conductivity of the fin material at
the base (Wm−1k−1)

K: Permeability (m−1)
L: Length of the fin (m)
M: Dimensionless thermogeometric

parameter
P: Perimeter of the fin (m)𝑞: Heat transfer rate, W
Qf: Dimensionless optimum fin parameter𝛿: Thickness of the fin (m)
t: Time
T: Fin temperature (K)
T∞: Ambient temperature, K
Tb: Temperature at the base of the fin, K
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u: Fluid velocity (m/s)
V: Volume of the fin (m3)
w: Width of the fin (m)
x: Axial length measured from fin base (m).

Greek Symbols

𝜀: Emissivity𝜎𝑚: Electric conductivity (A/m)𝜎st: Stefan–Boltzmann constant (Wm2 K4)𝜌: Density of the fluid (kgm−3)𝛽: Thermal conductivity parameter𝛿: Thickness of the fin, m𝜌: Density of the fin material (kg/m3).
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