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In the management of software testing, testing-recourse allocation is one of the most important problems due to the tradeoff
between development cost and reliability of released software.This paper presents the model-based approach to design the testing-
resource allocation. In particular, we employ the architecture-based software reliability model with operational profile to estimate
the quantitative software reliability in operation phase and formulate themultiobjective optimization problems with respect to cost,
testing effort, and software reliability. In numerical experiment, we investigate the difference of the presented optimization problem
from the existing testing-resource allocation model.

1. Introduction

Software testing is one of the most important phases to
develop the highly reliable software products in software
developments. In software testing, many developers, often
called testers, try to find software bugs through the execution
of test cases. As the number of test cases executed in software
testing increases, the reliability of software product also
increases by removing software bugs introduced in design
and implement phases. However, it requires much efforts
to increase the number of test cases executed in software
testing. Thus from both cost and reliability points of view,
it is important to make a plan for the allocation of testing
resources such as the number of testers before software
testing.

For this purpose, several papers have tried to solve
the testing-resource problem with the probabilistic models.
Ohtera and Yamada [1] first considered a simple software
reliability model dependent on the testing effort and formu-
lated a testing-resource allocation problem. The basic idea
comes from the classical reliability allocation problems for
component-based systems (e.g., see [2]). Zaheidi and Ashrafi
[3] usedAHP (AnalyticHierarchy Process) to solve a software
reliability allocationmodel and determined reliability goals at
the planning and design stages of the software project. Ashrafi

and Berman [4], Berman and Ashrafi [5], Yamada et al. [6],
and Nishiwaki et al. [7] extended the original works in [1, 8]
and gave nonlinear programming algorithms for more com-
plex resource allocation problemswith constraints. Leung [9–
11] discussed different optimization problems with various
objective functions such as worst case failure probability, soft-
ware development cost, and worst case utility. Hou et al. [12]
considered a different testing-resource allocation problem
based on the hypergeometric distribution software reliability
model. Jha et al. [13], Wadekar and Gokhale [14], Lyu et al.
[15], and Yang and Xie [16] also formulated various optimiza-
tion problems for the software resource allocation and the
software reliability allocation. Helander et al. [17] developed
two problems: reliability-constrained cost minimization and
budget-constrained reliabilitymaximization under a software
development scenario.Though their approach is quite similar
to the classical nonlinear programming in the earlier works,
it gives the detailed procedure with reality in applying the
software resource allocation problem to the real problem.
Ngo-The and Ruh [18] formulated a somewhat different
problem for the software release planning by allocating the
software development resources and gave an interesting case
study. Recently, Pietrantuono et al. [19] used an architecture-
based software reliability model and considered a reliability
and testing time allocation problem. They also gave an
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empirical study for a program developed in the European
space agency. In this way, considerable attentions have been
received for the software resource allocation problems.

In this study, we focus on the testing-resource allo-
cation with operational profile. The operational profile is
a quantitative representation of how the system will be
used in user environment [20]. In fact, there are several
representations for the operational profile. Ukimoto et al. [21]
considered the software testing-resource allocation where
the operational profile is time fraction of execution for
modules, and they regarded the operational environment
as the testing environment with different time scale. This
idea is based on the accelerated life testing model where
the testing environment is assumed to be accelerated from
the operational environment with only the elapsed time [21].
However, since software testing is the environment to detect
software bugs, the testing environmentmight not be the time-
accelerated environment of operational environment.Thus in
the paper, we consider another representation of operational
profile by using architecture-based software reliability model.

The architecture-based software reliability model is based
on the architecture of the targeted software. In general,
software system consists of a number ofmodules and executes
modules according to a programmed logic, namely, the
currently executed module changes with the passage of time
in operational phase, which is called the execution path. If
an execution path does not include any faulty module, the
software never fails. That is, the software failure essentially
depends on the software architecture and its execution paths.
This is the basic concept of architecture-based software
reliability model. Littlewood [22, 23] developed the earliest
architecture-based software reliability models in operational
phase. In his models, the execution path in operational phase
is generated by a continuous-time Markov chain (CTMC)
and a semi-Markov process. Laprie [24] also provided the
similar model to the Littlewood [23] in a different way.
Cheung [25] modeled the execution path by a discrete-
time Markov chain (DTMC). Ledoux and Rubino [26]
and Ledoux [27] extend the original Littlewood models to
represent failover operation. Goseva-Popstojanova et al. [28,
29] established a theoretical relationship among different
architecture-based software reliability models and compared
them through an empirical case study. Singh et al. [30]
provided an approach with UML to analyze the component
systems which consist of software modules. In this paper,
we use the architecture-based software reliability model to
estimate the software reliability in operational phase. Com-
pared to Ukimoto’s method [21], our approach provides more
accurate estimation of the software reliability in operational
phase.

The rest of this paper is organized as follows. In Sec-
tion 2, we first describe the models for testing cost and
efforts in testing environment based on software reliability
growth models (SRGM). After that, the architecture-based
software reliability model is also introduced to formulate
the quantitative software reliability measure. In particular,
we assume two different situations for the system usage. In
Section 3, we formulate the software testing-resource allo-
cation problems: reliability-constrained cost minimization

and budget-constrained reliability maximization. Section 4
is devoted to the numerical illustration of our models. In
Section 4, we compare the optimal solutions of resource
allocation by Ukimoto et al.’s model and our model and
discuss the effect of representation of operational profiles
on the testing-resource allocation. Finally, in Section 5, we
conclude this paper with some remarks.

2. Model Description

2.1. Cost Model in Testing Environment. First we describe the
testing costmodel in testing environment, which is essentially
the same as Ukimoto et al. [21]. The system consists of 𝑛
components. The software testing starts at time 𝑡 = 0, and
the system should be released at time 𝑡 = 𝑡𝑟. Let𝑁𝑖(𝑡) be the
cumulative number of detected faults of component 𝑖 before
testing time 𝑡. Consider the following model assumptions:

(i) There are a finite number of faults in each component
before testing.

(ii) The fault detection rate for a component is pro-
portional to the amount of testing efforts for the
component.

Let 𝑎𝑖 and 𝑊𝑖(𝑡) be the expected number of faults before
testing and the amount of testing efforts for component 𝑖 at
testing time 𝑡. Then the probability mass function (p.m.f.) of
the cumulative number of faults is given by𝑃 (𝑁𝑖 (𝑡) = 𝑘) = 𝐻𝑖 (𝑡)𝑘𝑘! exp (−𝐻𝑖 (𝑡)) , (1)𝐻𝑖 (𝑡) = 𝑎𝑖 (1 − exp (−𝑟𝑖𝑊𝑖 (𝑡))) , (2)

where 𝑟𝑖 is a fault detection rate per testing effort. The
above equations are essentially same as the nonhomogeneous
Poisson process (NHPP) based software reliability growth
model (SRGM). By applying the testing effort function𝑊𝑖(𝑡),
we can represent a variety of fault detection processes. For
instance, (cumulative) Rayleigh curve is typically used to a
testing effort function. For the same of simplicity, this paper
assumes the following linear testing effort function for all the
modules: 𝑊𝑖 (𝑡) = 𝜔𝑖𝑡 + 𝛽𝑖, (3)

where 𝜔𝑖 is the testing effort per unit testing time and 𝛽𝑖 is a
fixed effort for component 𝑖.

Define the cost structure in testing environment:
(i) 𝑐1: fixing cost of a software fault detected in testing

phase.
(ii) 𝑐2: testing cost per software testing effort.

Then the expected total cost for component 𝑖 in software
testing is given by𝐶𝑖 (𝑡𝑟) = 𝑐1𝐻𝑖 (𝑡𝑟) + 𝑐2𝑊𝑖 (𝑡𝑟) . (4)

Thus the total cost for software testing becomes𝐶 (𝑡𝑟) = 𝑛∑
𝑖=1

𝐶𝑖 (𝑡𝑟) . (5)
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Also the total amount of testing efforts for testing is given by𝑊(𝑡𝑟) = 𝑛∑
𝑖=1

𝑊𝑖 (𝑡𝑟) . (6)

2.2. Reliability Model in Operational Environment. Ukimoto
et al. [21] assumed the expected cumulative number of faults
at time 𝑡, that is, the time after the release:𝐻𝑖 (𝑡) = 𝐻𝑖 (𝑡𝑟 + 𝜙𝑖 (𝑡 − 𝑡𝑟)) , 𝑡 ≥ 𝑡𝑟. (7)

This equation can be rewritten by𝐻𝑖 (𝑡) = 𝐻𝑖 (𝑡𝑟) + (𝐻𝑖 (𝑡𝑟 + 𝜙𝑖 (𝑡 − 𝑡𝑟)) − 𝐻𝑖 (𝑡𝑟)) . (8)

This implies that the expected number of detected faults in
operational phase is accelerated/decelerated by a parameter𝜙 from the one in testing environment, because 𝐻𝑖(𝑡𝑟 +Δ𝑡) − 𝐻𝑖(𝑡𝑟) means the expected number of faults detected
in [𝑡𝑟, 𝑡𝑟 + Δ𝑡]. In [21], the parameter 𝜙𝑖 is given by time
fraction of execution time of component 𝑖 in operational
phase. Also, they assumed that the number of detected faults
after the releases causes maintenance costs to fix the faults.
However, in general, the operational environment is quite
different from the testing environment. Moreover, from the
user perspective, the reliability of software product is more
significant than maintenance costs. Thus in this paper, we
use the quantitative software reliability in operational phase
derived from architecture-based software reliability model.

The architecture-based software reliability model repre-
sents a sequence of component executions in operational
phase [29]. In most of architecture-based software reliability
models, the execution sequence is defined by a discrete or
continuous-timeMarkov chain. In this paper, we focus on the
continuous-time Markov chain (CTMC) based model.

TheCTMC is a stochastic processwith discrete state space
on the continuous-time domain. In general, CTMC process{𝑀(𝑡); 𝑡 ≥ 0} is characterized by its infinitesimal generator.
The infinitesimal generator is a square matrix whose dimen-
sion is same as the dimension of state space.The nondiagonal
entries of the infinitesimal generator are transition rates
between respective states, and diagonal entries represent the
exit rates from corresponding states. Let𝑄be an infinitesimal
generator of CTMC process𝑀(𝑡). The probability row vector
of 𝜋(𝑡) = [𝑃(𝑀(𝑡) = 𝑖)]𝑖 is given by𝑑𝑑𝑡𝜋 (𝑡) = 𝜋 (𝑡)𝑄. (9)

By using the matrix exponential, the probability vector is also
given by

𝜋 (𝑡) = 𝜋 (0) exp (𝑄𝑡) . (10)

In particular, we consider two cases: (i) execution of the
system has an end; i.e., the system is an application such
as command-line application; (ii) execution is continued;
i.e., the system courteously provides a service such as server
application. For convenience, the first and second cases are
discrete and continuous cases, respectively.

(i) Discrete Case. Let 𝑝𝑖,𝑗 be a transition probability to the
execution of component 𝑗 after finishing the execution of

component 𝑖. Also 𝑝𝑖,𝑆 is a probability that the execution is
finished after component 𝑖. Furthermore, we assume each
execution time of component 𝑖 following an exponential
distribution with rate 𝜆𝑖. Then the sequence of component
executions can be described by an absorbing CTMC with
infinitesimal generator

𝐷 =((
(
−𝜆1 𝑝1,2𝜆1 ⋅ ⋅ ⋅ 𝑝1,𝑛𝜆1 𝑝1,𝑆𝜆1𝑝2,1𝜆2 −𝜆2 ⋅ ⋅ ⋅ 𝑝2,𝑛𝜆2 𝑝2,𝑆𝜆2... ... d

... ...𝑝𝑛,1𝜆𝑛 𝑝𝑛,2𝜆𝑛 ⋅ ⋅ ⋅ −𝜆𝑛 𝑝𝑛,𝑆𝜆𝑛0 0 ⋅ ⋅ ⋅ 0 0
))
)= ( 𝑇 𝜉0 0 )

(11)

where∑𝑛𝑗=1 𝑝𝑖,𝑗 +𝑝𝑖,𝑆 = 1 for 𝑖 = 1, . . . , 𝑛, 𝑇 is a 𝑛-by-𝑛matrix
for transient states, and 𝜉 is an exit rate vector from transient
states to the absorbing state.

To present the failure in operational phase, we define 𝑓𝑖
as the failure probability as the execution of component 𝑖. In
this paper, we suppose that the failure probability is given by𝑓𝑖 = 1 − 𝑞E[𝑁𝑖(∞)−𝑁𝑖(𝑡𝑟)]𝑖 . (12)

In the equation, E[𝑁𝑖(∞) − 𝑁𝑖(𝑡𝑟)] means the expected
number of residual faults in component 𝑖 at the release time
which is given by

E [𝑁𝑖 (∞) − 𝑁𝑖 (𝑡𝑟)] = 𝑎𝑖 − 𝐻𝑖 (𝑡𝑟) . (13)

Also 𝑞𝑖 is the probability that a remaining fault does not cause
a failure of component 𝑖; i.e., 𝑓𝑖 means the probability that
at least one remaining fault causes a failure of component 𝑖.
Then the underlying infinitesimal generator can be rewritten
by

𝐷𝑓 = ( 𝑇𝑓 𝜉𝑓 𝑓0 0 0
0 0 0 ) , (14)

where𝑇𝑓 is thematrix generated by replacing𝜆𝑖with𝜆𝑖(1−f𝑖)
and 𝑓 is a column vector whose 𝑖-th entry is 𝜆𝑖𝑓𝑖. Note that
𝐷𝑓 has two absorbing states corresponding to success and
failure of execution, respectively.

The quantitative software reliability is defined by the
probability that an execution is successfully finished. From
the mathematical argument of CTMC, we have the software
reliability in the discrete case:𝑅𝐷 = 𝜋∫∞

0
exp (𝑇𝑓𝑡) 𝜉𝑓𝑑𝑡= 𝜋 lim

𝑢󳨀→∞
∫𝑢
0
exp (𝑇𝑓𝑡) 𝜉𝑓= 𝜋𝑇−1𝑓 ( lim𝑢󳨀→∞ exp (𝑇𝑓𝑢) − 𝐼) 𝜉𝑓= 𝜋 (−𝑇𝑓)−1 𝜉𝑓,

(15)
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where𝜋 is a probability vector to decide the initial component
of execution.

(ii) Continuous Case. In the continuous case, the sequence
of execution can be described by a CTMC with infinitesimal
generator:

𝐶 =( −𝜆1 𝑝1,2𝜆1 ⋅ ⋅ ⋅ 𝑝1,𝑛𝜆1𝑝2,1𝜆2 −𝜆2 ⋅ ⋅ ⋅ 𝑝2,𝑛𝜆2... ... d
...𝑝𝑛,1𝜆𝑛 𝑝𝑛,2𝜆𝑛 ⋅ ⋅ ⋅ −𝜆𝑛 ) (16)

Note that ∑𝑛𝑗=1 𝑝𝑖,𝑗 = 1 for 𝑖 = 1, . . . , 𝑛. Similar to the discrete
case, 𝑓𝑖 denotes the failure probability at component 𝑖. Then
we have a CTMC with one absorbing state corresponding to
the failure state.

𝐶𝑓 = (𝑇𝑓 𝑓0 0) . (17)

In this case, the software reliability is defined by the proba-
bility that the system does not fail during the mission time[𝑡𝑟, 𝑡𝑟 + 𝑡𝑚]. From the mathematical argument of CTMC, the
quantitative software reliability can be formulated by𝑅𝐶 (𝑡𝑚) = 𝜋 exp (𝑇𝑓 (𝑡𝑚 − 𝑡𝑟)) 1, (18)

where 1 is a column vector whose entries are 1.

3. Software Testing-Resource
Allocation Problems

Based on themodels described in Section 2, we formulate the
software testing-resource allocation problems. The problem
is to decide test efforts for 𝑛 modules 𝜔1, . . . , 𝜔𝑛 which
minimizes testing cost ormaximizes the software reliability in
operational phase. Let𝐶,𝑊, and 𝑅 be the upper limits of cost
and efforts and the lower limits of reliability, respectively.The
problems reliability-constrained cost minimization (RCCM)
and budget-constrained reliability maximization (BCRM)
can be formulated as follows.

(i) RCCM in Discrete Case

min
𝜔1 ,...,𝜔𝑛

𝐶 (𝑡𝑟)
s.t. 𝑊 (𝑡𝑟) ≤ 𝑊,𝑅𝐷 ≥ 𝑅 (19)

(ii) RCCM in Continuous Case

min
𝜔1 ,...,𝜔𝑛

𝐶 (𝑡𝑟)
s.t. 𝑊 (𝑡𝑟) ≤ 𝑊,𝑅𝐶 (𝑡𝑚) ≥ 𝑅 (20)

(iii) BCRM in Discrete Case

max
𝜔1 ,...,𝜔𝑛

𝑅𝐷
s.t. 𝐶 (𝑡𝑟) ≤ 𝐶,𝑊 (𝑡𝑟) ≤ 𝑊 (21)

(iv) BCRM in Continuous Case

min
𝜔1 ,...,𝜔𝑛

𝑅𝐶 (𝑡𝑚)
s.t. 𝐶 (𝑡𝑟) ≤ 𝐶,𝑊 (𝑡𝑟) ≤ 𝑊 (22)

They are nonlinear optimization problems and can
be solved by numerical approaches such as Nelder-Mead
method [31].

4. Numerical Illustration

In this section, we investigate the difference on the optimal
testing-resource allocation between Ukimoto et al.’s model
and our model. Suppose that the software consists of 10
modules and its architecture (module transition) is given in
Figure 1, which is a reference model of architecture model
introduced in [25]. The number on each arrow means the
transition probability𝑝𝑖,𝑗. As seen in the figure, the systemhas
an absorbing state as an output, and thus this is the discrete
case. However, to compare our model with Ukimoto et al.’s
model, we assume the execution restarts with INPUT just
after the execution attains OUTPUT. In such situation, the
system becomes the continuous case.

Table 1 shows the expected number of initial faults 𝑎𝑖,
the fault detection rate 𝑟𝑖, the fixed effort 𝛽𝑖, and the mean
execution time 1/𝜆𝑖 used in this example. Also, release time,
mission time, fixing cost, and testing cost are set as 𝑡𝑟 = 30.0,𝑡𝑚 = 60.0, 𝑐1 = 5.0, and 𝑐2 = 1.0, respectively. Moreover, in
our model, we set the failure probability per fault as 𝑞𝑖 = 0.99
for all 𝑖 = 1, . . . , 𝑛.

Ukimoto et al.’s model considers maintenance cost which
depends on the expected number of faults detected in
operational phase (warranty period). Concretely, when 𝑐3 is
the fixing cost per fault in operational phase, themaintenance
cost is formulated by𝐶𝑀 (𝑡𝑚, 𝑡𝑟) = 𝑛∑

𝑖=1

𝑐3 (𝐻𝑖 (𝑡𝑚) − 𝐻𝑖 (𝑡𝑟)) . (23)

Note that 𝐻𝑖(𝑡) in the above equation is defined by (7); i.e.,
it requires the time fraction in execution 𝜙𝑖. In this case, the
time fraction is obtained from a steady-state probability of
the CTMC. Define the row vector 𝜙 = (𝜙1, . . . , 𝜙𝑛). Then the
time fraction can be computed by finding the vector satisfying
𝜙 = 𝜙𝐶 and ∑𝑛𝑖=1 𝜙𝑖 = 1. The last column of Table 1 shows
the time fraction of execution. By using themaintenance cost,
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Figure 1: Module architecture.

one of the testing-resource allocation problems described in
[21] is given by

min
𝜔1 ,...,𝜔𝑛

𝐶 (𝑡𝑟) + 𝐶𝑀 (𝑡𝑚, 𝑡𝑟)
s.t. 𝑊 (𝑡𝑟) ≤ 𝑊,

𝑛∑
𝑖=1

(𝑎𝑖 − 𝐻𝑖 (𝑡𝑟)) ≤ 𝐹. (24)

Note that Ukimoto et al.’s model uses the expected number of
residual faults instead of quantitative software reliability. In
the experiment, the fixing cost per fault is set as 𝑐3 = 1000.0.

Table 2 presents the optimal testing efforts obtained from
RCCM problem in both models under 𝑊 = 5000.0, 𝐹 =10.0, and 𝑅 = 0.9. Also the column ‘Residual’ indicates
the expected number of residual faults at release time. From
the table, we find that the optimal testing efforts in our
model are much greater than those in Ukimoto et al.’s model.
Since much efforts are spent in our model, the expected
number of residual faults becomes smaller than those in
Ukimoto et al.’s model.The amount of testing efforts depends
on the number of initial faults and the detection rate of
respective components. For instance, the numbers of initial
faults in components M5 and M6 are 7.1 and 6.9 which are

Table 1: Model parameters.

Module 𝑎𝑖 𝑟𝑖 𝛽𝑖 1/𝜆𝑖 𝜙𝑖
M1 3.2 0.022 0.0 0.1 0.1297
M2 2.5 0.017 0.0 0.1 0.1177
M3 5.4 0.018 0.0 0.1 0.1181
M4 5.8 0.038 0.0 0.1 0.0543
M5 7.1 0.026 0.0 0.1 0.1751
M6 6.9 0.035 0.0 0.1 0.0326
M7 3.3 0.051 0.0 0.1 0.0798
M8 3.2 0.038 0.0 0.1 0.1133
M9 4.8 0.031 0.0 0.1 0.0497
M10 3.1 0.043 0.0 0.1 0.1297

Table 2: Optimal testing-resource allocation of RCCM.

Ukimoto Proposed
Module 𝜔𝑖 Residual 𝜔𝑖 Residual
M1 1.388 1.280 6.654 0.040
M2 0.819 1.647 6.258 0.103
M3 2.294 1.564 10.994 0.014
M4 1.800 0.745 4.520 0.034
M5 2.406 1.087 7.266 0.025
M6 2.044 0.807 10.991 0.000
M7 1.166 0.554 8.877 0.000
M8 1.281 0.743 3.738 0.045
M9 1.782 0.915 4.381 0.082
M10 1.202 0.657 4.953 0.005

relatively higher than others. Thus much effort is spent in
these components. Also M5 is the most frequently executed
among them in terms of 𝜙𝑖. Therefore, the testing effort for
M5 is greatest in Ukimoto et al.’s model. However, in our
model, the module with the greatest testing effort is M3. In
Figure 1, M3 is the module that is executed before M5. That
is, this result is affected by considering detailed transition
probabilities of operational profile.On the other hand, Table 3
indicates the minimum costs (testing cost and maintenance
cost), total amounts of testing effort (total effort), the total
number of residual faults at release time (residual), and
the quantitative software reliability in the operational phase
(reliability). From the table, inUkimoto et al.’smodel, residual
attains to the upper limit 𝐹, and reliability attains to the lower
limit 𝑅 in our case. Also, in the result on testing cost, there is
a remarkable difference between Ukimoto et al.’s model and
ourmodel.The strategy obtained fromUkimoto et al.’s model
is thatmuch cost is spent to themaintenance without thought
of quality (reliability) of software product. On the other hand,
the strategy of our model is that much cost is spent in testing
phase to guarantee the quality of software.

Next we show the example of BCRM. In BCRM, we set𝑊 = 3000.0 and 𝐶 = 3000. Note that the upper limit of
cost𝐶 is for the development cost, which does not include the
maintenance cost. Tables 4 and 5 present the optimal testing
efforts and their associated criteria. Dissimilar to RCCM,
Ukimoto et al.’s model provides the high reliability. In this
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Table 3: Cost, effort, and reliability under the optimal testing-
resource allocation of RCCM.

Ukimoto Proposed
Testing cost 661.97 2283.75
Maintenance cost 1251.83 —
Total effort 485.47 2058.98
Residual 10.00 0.35
Reliability 0.04 0.90

Table 4: Optimal testing-resource allocation of BCRM.

Ukimoto Proposed
Module 𝜔𝑖 Residual 𝜔𝑖 Residual
M1 11.456 0.0017 11.574 0.0015
M2 11.900 0.0058 13.871 0.0021
M3 12.129 0.0077 14.313 0.0024
M4 6.003 0.0062 6.492 0.0035
M5 9.459 0.0044 10.526 0.0019
M6 14.434 0.0000 8.035 0.0015
M7 4.743 0.0023 4.980 0.0016
M8 8.787 0.0001 6.483 0.0020
M9 7.961 0.0029 9.418 0.0008
M10 4.978 0.0050 6.453 0.0008

Table 5: Cost, effort, and reliability under the optimal testing-
resource allocation of BCRM.

Ukimoto Proposed
Testing cost 2981.819 2990.759
Maintenance cost 0 —
Total effort 2755.5 2764.35
Residual 0.036 0.018
Reliability 0.9882 0.9946

example, since the upper limit of cost is enough, both models
provide the high reliability. However, the effort allocation is
slightly different between them.

5. Conclusion

In this paper, we have presented testing-resource allocation
problems by considering software reliability in operational
phase. Concretely, by using architecture-based software reli-
ability model, we have formulated the quantitative software
reliability in operational phase and they are incorporated
into the optimization problems to determine the optimal
testing-resource allocation. In the numerical example, we
have compared the optimal testing-resource allocation in
Ukimoto et al.’smodel and ourmodel. As a result, the decision
derived from our model is more severe to the quality of
software product, compared to the decision from Ukimoto
et al.’s model. In other words, from the reliability point of
view, Ukimoto et al.’s model involves the risk that the released
software fails, and the reliability of released softwaremight be
lower than the reliability we expect. The safety and mission
critical systems require the high reliability. For such systems,

the strict evaluation of operational reliability based on the
software architecture is needed.

In future, we will investigate the tendency of BCRM
problem in our model by compared with existing problems.
Furthermore, by combining empirical software reliability
engineering [32–34], we will discuss how to determine the
model parameters in testing-resource allocation problems.

Data Availability

Themodel parameters in the experiment have been shown in
the paper.
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