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The main aim of this paper is to present a new hybridization approach for combining two powerful metaheuristics, one inspired
by physics and the other one based on bioinspired phenomena. The first metaheuristic is based on physics laws and imitates the
explosion of the fireworks and is called Fireworks Algorithm; the second metaheuristic is based on the behavior of the grey wolf
and belongs to swarm intelligencemethods, and this method is called the GreyWolf Optimizer algorithm. For this work we studied
and analyzed the advantages of the two methods and we propose to enhance the weakness of both methods, respectively, with the
goal of obtaining a new hybridization between the Fireworks Algorithm (FWA) and the Grey Wolf Optimizer (GWO), which is
denoted as FWA-GWO, and that is presented in more detail in this work. In addition, we are presenting simulation results on a set
of problems that were tested in this paper with three different metaheuristics (FWA, GWO, and FWA-GWO) and these problems
form a set of 22 benchmark functions in total. Finally, a statistical study with the goal of comparing the three different algorithms
through a hypothesis test (𝑍-test) is presented for supporting the conclusions of this work.

1. Introduction

In recent years, the global world of computer science is creat-
ing an interesting environment [1] for research, especially, with
algorithms that aim at solving different optimization prob-
lems [2], whichmeansmaximizing orminimizing depending
on the goal and the requirements of the particular problem
[3].

At present time, a family of recent algorithms having great
impact is the so-called bioinspired algorithms [4]; the reason
is because they offer an interestingway of simulating the com-
bination among the natural phenomena, mathematics, and
computation. Combination is a key word among these algo-
rithms; for example, in genetic algorithms [5], a combination
is performedwith two operators, such as crossover andmuta-
tion.

Keeping on with the combination concept, another re-
lated concept is hybridization [6], and we can understand, for
hybridization, processes in which discrete structures, which
can exist separately, are combined to generate new structures,
objects, and methods.

In recent works, it has been demonstrated that the hy-
bridization of bioinspired algorithms has yielded very good

results, and in this regard the main contribution in this work
is the proposed hybridization between the Fireworks Algo-
rithm (FWA) [7] and the Grey Wolf Optimizer (GWO) [8]
taking advantage of their best features and combining them
for obtaining a better overall performance for solving prob-
lems, in a newhybrid algorithm.The above-mentioned hybri-
dization is described and explained in more detail in the fol-
lowing sections of this paper.

The remainder of the paper is organized as follows: we
start with basic concepts in Section 2, which is organized in
two parts, FWA in the first part and GWO in the second part.
In Section 3, we present the proposed FWA-GWO method,
then the simulation results are presented in Section 4, and
finally, we conclude the paper, by mentioning possible future
work in Section 5.

2. Basic Concepts

In this section, the basic concepts about FWA and GWO
are presented to provide the reader with a background for
understanding the proposed hybrid approach (FWA-GWO).
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2.1. Fireworks Algorithm (FWA). The FWA is a metaheuristic
method based on the explosion of fireworks behavior [9].
Every firework performs an explosion process generating a
number of sparks, which are placed on a local space around
the corresponding firework to represent possible solutions in
a search space [10, 11].

2.1.1. Number of Sparks. Equations (1) are used to calculate
the number of sparks [12, 13].

Minimize f (xi) ∈ R, xi min ≤ xi ≤ xi max

si = m
ymax − f (xi) + 𝜀∑n

i=1 (ymax − f (xi)) + 𝜀
Ŝi =

{{{{{{{{{
round (a ⋅m) if Si < am

round (b ⋅m) if Si > bm, a < b < 1,
round (Si) otherwise.

(1)

2.1.2. Explosion Amplitude. The explosion amplitude [14] is
calculated for each firework by the following equation:

𝐴 𝑖 = 𝐴 ⋅ 𝑓 (𝑥𝑖) − 𝑦min + 𝜖∑𝑛𝑖=1 (𝑓 (𝑥𝑖) − 𝑦min) + 𝜖 . (2)

2.1.3. Generating Sparks. Random dimensions are calculated
with the following equation knowing that when a firework
explodes, its sparks will take different random directions.

z = round (d ⋅ rand (0, 1)) . (3)

2.1.4. Selection of Locations. After the explosion of the fire-
works, to maintain the diversity of the sparks, 𝑛−1 places are
selectedwith respect to the location of the others. To calculate
the distance among xi and the other places, the following
equations are used:

R (xi) = ∑
j∈K

d (xi, xj) = ∑
j∈K

󵄩󵄩󵄩󵄩󵄩xi − xj󵄩󵄩󵄩󵄩󵄩 . (4)

p (xi) = R (xi)∑j∈K R (xj) (5)

Figure 1 shows the general flowchart of the FWA, where
the original author of themethod [7] described each equation
that was presented above and that we can find in more detail
in the original paper [11] and other variants presented in [15–
17].

2.2. Grey Wolf Optimizer. The Grey Wolf Optimizer (GWO)
algorithm [18] is a metaheuristic created by Seyedali Mirjalili
in 2014. In this algorithm the author takes advantage of the
main features that the grey wolf has in nature based on the
research of Muro et al. [19] about hunting strategies of the
Canis lupus or grey wolf. When the original author designed
the algorithm, the following features were highlighted: the
hierarchy into the pack [20] and the hunting mechanism.

Obtain the locations of sparks

Evaluate the quality of locations

Optimal
location
found

No

Yes

End

Select n initials locations

Select n initials locations

Set off n fireworks at n locations

Figure 1: General flowchart of the FWA.

Basically, the optimization process is guided by the three
best solutions in the pack or in all the population, so in order
to recognize these better solutions, we assume that the best
solution is called the alpha (𝛼)wolf, then the second and third
best solutions in the optimization are called beta (𝛽) and delta(𝛿) wolves, respectively, and finally the rest of the candidate
solutions are called omega (𝜔) wolves.

In addition it is important to mention that the hunting
mechanism behavior of the grey wolf and its main phases
are described as follows: first, pursue and approach the prey,
after that encircle and harass the prey until it stops moving,
and finally attack the prey. In the algorithm this behavior is
simulated by 󳨀→𝐷 = 󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝐶 ⋅ 󳨀󳨀→𝑋𝑝 (𝑡) − 󳨀→𝑋 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨 . (6)

󳨀→𝑋 (𝑡 + 1) = 󳨀󳨀→𝑋𝑝 (𝑡) –󳨀→𝐴󳨀→𝐷 (7)

In this case, (6) represents a distance between the best
solution (󳨀󳨀→𝑋𝑝(𝑡)) and a randommotion (󳨀→C) that is represented
in (9) and is a random value in a range [0, 2] minus the
solution that we have evaluated (󳨀→𝑋(𝑡)).

The next position of the current solution is presented in
(7) that is a subtraction of the best solution and the distance
that we have obtained in (6)multiplied by aweight (𝐴), which
is assigned to this distance and this is described in󳨀→𝐴 = 2󳨀→𝑎 ⋅ 󳨀→𝑟1 − 󳨀→𝑎 . (8)

󳨀→𝐶 = 2 ⋅ 󳨀→𝑟2 (9)

𝐴 and 𝐶 coefficients represent the ways for the exploration
and exploitation in the algorithm to occur [21], both in direct
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and in indirect ways, and we can find extensive information
of these coefficients in the original paper, where the method
was originally proposed [22].

Equations (10) and (11) are the same as (6) and (7), respec-
tively, but in this case the best solution is represented by the
leaders of the pack and in this case alpha, beta, and delta, as
we mentioned above. 󳨀→𝐷𝛼 = 󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝐶1 ⋅ 󳨀→𝑋𝛼 − 󳨀→𝑋󵄨󵄨󵄨󵄨󵄨󵄨 ,󳨀→𝐷𝛽 = 󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝐶2 ⋅ 󳨀→𝑋𝛽 − 󳨀→𝑋󵄨󵄨󵄨󵄨󵄨󵄨 ,󳨀→𝐷𝛿 = 󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝐶3 ⋅ 󳨀→𝑋𝛿 − 󳨀→𝑋󵄨󵄨󵄨󵄨󵄨󵄨 ,

(10)

󳨀→𝑋1 = 󳨀→𝑋𝛼 − 󳨀→𝐴1 ⋅ (󳨀→𝐷𝛼) ,
󳨀→𝑋2 = 󳨀→𝑋𝛽 − 󳨀→𝐴2 ⋅ (󳨀→𝐷𝛽) ,
󳨀→𝑋3 = 󳨀→𝑋𝛿 − 󳨀→𝐴3 ⋅ (󳨀→𝐷𝛿) ,

(11)

󳨀→𝑋 (𝑡 + 1) = 󳨀→𝑋1 + 󳨀→𝑋2 + 󳨀→𝑋33 . (12)

Finally, in (12) we can find the next position of the solution
that we are evaluating, which is basically an average based on
the three best wolves in the pack, so in these equations that
we described above we can find the main inspiration for the
GWO algorithm, which is the hierarchical pyramid of leader-
ship and the hunting mechanism. In Figure 2 we can find the
flow chart of the algorithm.

3. Proposed FWA-GWO

Themain goal of the hybridization between bothmethods [6]
is to take advantage of their main features and in this paper
we present the following features of each method that we are
using for achieving hybridization:

FWA:

(i) Initialization
(ii) Explosion amplitude
(iii) Locations

GWO:

(i) Hierarchical pyramid
(ii) Interaction among the population
(iii) Next location of population

Figure 3 shows a general flow chart of the proposed hybridi-
zation between the FWA and GWO algorithms and the red
blocks represent the considered features of the FWA and the
blue blocks the GWO features that are used in the proposed
hybrid approach.

In order to explain the performance of the FWA-GWO,
we are presenting below the details of each block in the flow-
chart that we illustrated in Figure 3.

Start

Initialize the population, a, A and C

Update a, A and C

Calculate the fitness of  all search agents

Stopping
criteria
meets?

End

No

Yes

Calculate the fitness of each search
agent to define

Update the positions for each search
agent based by X , X and X

Update X , X and X

X , X and X

Figure 2: General flowchart of the GWO.

3.1. Select 𝑛 Initial Packs and 𝑚 Wolves. We start to select a
number 𝑛 of locations as in the FWA, but in this case we are
representing the number of the packs in the population. In
additionwe need to select the number of wolves for each pack
represented by𝑚. It is important to mention that the conven-
tional FWAworks with a number of function evaluations and
the GWO works with the iterations as stopping criteria, so
in (13) we show the relation between both types of stopping
criteria.

𝑇 = 𝑂𝑛 ∗ 𝑚, (13)

where 𝑇 is the total number of iterations; 𝑂 is the number of
function evaluations; 𝑛 is the number of packs; and 𝑚 is the
number of wolves for each pack.

For example if we have 4 packs and 6wolves for each pack,
we have 24 possible solutions for each iteration in the algo-
rithm; therefore, for 15,000 function evaluations the FWA-
GWO algorithm will execute 625 iterations [23].

3.2. Set 𝑛 Initial Packs with𝑚Wolves for the Search Space. We
add a way to select 𝑛 initial locations in this algorithm, which
means that, depending on the number of packs, the corre-
sponding number of partitions is found. For example, if we
have a search space with a lower bound and upper bound
defined in a range [−100, 100],

TS = ub − lb, (14)
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Stopping
criteria
meets?

No

Yes
End

Update the positions for each search
agent based on its packs

Calculate the fitness of all search agents

Set n initial packs with m wolves at
search space

Select n initial packs and
m wolves

Figure 3: General flowchart of the FWA-GWO.

where TS is a total search space and ub and lb represent the
upper and lower bounds, respectively.

We need subspaces where each pack performs the initial-
ization of its subpopulation and this behavior is represented
in

SS = TS𝑛 . (15)

SS is the distance that should exist between each range for
each pack. These ranges for each pack are calculated with a
general linear function, as shown as follows:

𝑓 (𝑛) = 𝑎𝑛 + 𝑏, (16)

where 𝑎 = SS, 𝑛 is the number of packs, and 𝑏 is a calculated
constant value. In this case,𝑓(1) = lb of the search space, such
that the search ranges for each pack are [𝑓(1), 𝑓(2)], [𝑓(2),𝑓(3)]⋅ ⋅ ⋅ [𝑓(𝑛), 𝑓(𝑛 + 1)]. We can represent this as follows:𝑓(𝑛 + 1) = ub.

In Figure 4, we can find an example of this initialization
methodwith 4 packs and a search space in a range of of [−100,
100] with 2 dimensions.

An advantage of this algorithm is the initialization of
the population in subspaces of the search space; FWA-GWO
partitions the search space for the function to be evaluated
based on the number of packs, with the aim of covering most
of the search space and assuring achieving the exploration.
Figure 5 shows the initialization of the population based on
the leader.

3.3. Update the Positions for Each Agent Based on Its Packs.
As we mentioned above, this part simulates the update of the
wolves based on the leaders of each pack, and to understand
better its performance, we illustrate in a graphical way a
representation of this behavior.
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Figure 4: Example of initialization for each pack in FWA-GWO.
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Figure 5: Initialization of the population in FWA-GWO.

Figure 6 shows an example of how to update the positions
in FWA-GWO; is a bidimensional plot with a function in a
range of [−100, 100] and with an optimum equal to zero. Also
in Figure 6, we can find in a graphical way the convergence
of the all search agents in the algorithm. In addition, we can
mention that blue, red, aqua, and green points represent the
members of the 4 packs for this example, and the magenta
points represent the initialization of each pack.

On the other hand, to keep the equilibrium of this
algorithm (FWA-GWO), we decided to partition the search
process in 3 phases; 100 percent of the total number of
iterations was divided into 3 parts.We consider the first phase
in an interval of 0% to 33.3% of the iterations and we con-
sider this as the exploration phase, the second phase takes an
interval from 33.3% to 66.6%, in this phase sometimes the
FWA-GWO algorithm is exploring and other times exploit-
ing, and finally, we consider the third phase as the exploita-
tion and take the remaining part of the percentage (66.6% to
99.9%) of the total number of iterations.
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Figure 6: Convergence of search agents in FWA-GWO.

Table 1: Relationship between phases and number of packs in the
FWA-GWO.

Phase Number of packs
1 2 3 4 5 6 7 8
2 1 1 2 2 3 3 4
3 1 1 1 1 1 1 1

It is worth mentioning that the number of packs is not
constant, while the FWA-GWO is working. In other words,
the objective of having three phases in this algorithm is to
reduce the number of packs according to the particular phase
in this algorithm. In addition, in the first phase (exploration)
the algorithmwill work with the number of packs and wolves
that we selected at the beginning; in the second phase, the
numbers of packs is reduced at half with the help of (17)
and finally the FWA-GWO algorithm always finishes the
optimization with only one big pack.

𝑛 = 𝑛2 . (17)

Table 1 shows examples of the relationship between the phases
and number of packs, respectively, based on the number of
packs that were initialized.

In addition, we are presenting this information (Table 1)
in a graphical way to explain the relationship in more detail.
Figure 7 represents phase 1 where 𝑛 = 4 and𝑚 = 6.

In Figure 8 we present the second phase, so the new value
of 𝑛 = 2 is based on (17) and the new value for𝑚 is 12, because
we divided the population into the number of packs (𝑛). In
addition we canmention that the total population is the same
as that was originally initialized.

Finally, in Figure 9 we can find only one big pack as we
mentioned above. In addition we can mention that this is an
example of how the population is distributed into the 3 phases
that the algorithm has and finally we assume that each pack
has their corresponding leaders (alpha, beta, and delta).

3.4. Mathematical Model of FWA-GWO. For the hybridiza-
tion between FWA and GWO, we modified the equations in
GWO to calculate the distance for updating the next position
of the current solution, and we introduced the amplitude
explosion of the FWA into the distance for updating the next
position in GWO (coefficient 𝐶 in (6)). Equation (18) shows
the changes that we mentioned above.

An =
{{{{{{{{{{{{{

n = 1, A1 = 0.5
n = 2, A1 = 1, A2 = 2

n ≥ 3, An = Â ⋅ f (xn) − ymin + 𝜖∑n
i=1 (f (xn) − ymin) + 𝜖 ,

(18)

where An represents the amplitude explosions of each pack
and n is the number of packs. When the number packs is 1
then the amplitude is 0.5, when the number of packs is 2 then
the amplitude of the packs is 1 and 2, respectively [8]. When
the number of packs is equal or greater than 3, we can then
use the formula of the amplitude explosion of FWA.

The reason why the parameters are 0.5, 1, and 2 when the
number of packs is one or two is because we are trying to
maintain the parameter values in a range of [0, 2], as the
parameter 𝐶 in (6) in GWO is the one that controls the ex-
ploration and exploitation in the algorithm.

Equation (19) shows howwe can normalize the parameter
of the explosion amplitude between 0 and 2when the number
of packs is greater than 2.

𝐴𝑛 = 2 ∗ 𝐴𝑛
max (𝐴𝑛) , (19)

where 𝐴𝑛 represents the explosion amplitude normalized for
each pack and max(𝐴𝑛) is the maximum value of all ampli-
tudes.

The distance between the best wolf with a randommotion
and the current wolf of each pack is calculated in the follow-
ing way:

󳨀→𝐷𝑛 = 󵄨󵄨󵄨󵄨󵄨󵄨𝐴𝑛 ⋅ 󳨀󳨀→𝑋𝑝𝑛 (𝑡) − 󳨀→𝑋𝑛 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨 , (20)

where 󳨀→𝐷𝑛 is the obtained distance of each pack, 󳨀󳨀→𝑋𝑝𝑛(t) is the
leader of the pack, and 󳨀→𝑋𝑛(t) is the current wolf of each pack.

The weight for each distance of the omega wolves and
the leaders of the pack that we described above is defined as
follows: 󳨀→𝐸𝑛 = 2𝑎 ⋅ 󳨀→𝑟1𝑛. (21)

In (21), 󳨀→𝐸𝑛 represents the weight for (22), 𝑎 is a value that de-
creases during iterations in a range of [2, 0], and 󳨀→𝑟1𝑛 is a ran-
dom value between 0 and 1 for each pack.

Equation (22) allows updating the next position of the
current wolf and the mathematical model is defined as
follows: 󳨀→𝑋𝑛 (𝑡 + 1) = 󳨀󳨀→𝑋𝑝𝑛 (𝑡) –󳨀→𝐸𝑛󳨀→𝐷𝑛, (22)
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Figure 7: Example of phase 1 in FWA-GWO.

Figure 8: Example of phase 2 in FWA-GWO.

where󳨀→𝑋𝑛(𝑡+1) represents the next position,󳨀󳨀→𝑋𝑝𝑛(t) is the best
wolf of each pack, and 󳨀→𝐷𝑛 and 󳨀→𝐸𝑛 are described in (20) and
(21), respectively.

To apply randomness in the method, (23) is used with the
aim that each leader obtains different moves for each omega
wolf.

󳨀→𝐶𝑛 = 𝐴𝑛 ⋅ 󳨀→𝑟2𝑛. (23)

Equations (24) and (25) are the same as (10) and (11) in GWO,
but the difference is that now the leaders are represented for
each pack.

󳨀󳨀→𝐷𝛼𝑛 = 󵄩󵄩󵄩󵄩󵄩󵄩󳨀󳨀→𝐶1𝑛 ⋅ 󳨀󳨀→𝑋𝛼𝑛 − 󳨀→𝑋𝑛󵄩󵄩󵄩󵄩󵄩󵄩 ,󳨀→𝐷𝛽 = 󵄩󵄩󵄩󵄩󵄩󵄩󳨀󳨀→𝐶2𝑛 ⋅ 󳨀󳨀→𝑋𝛽𝑛 − 󳨀→𝑋𝑛󵄩󵄩󵄩󵄩󵄩󵄩 ,󳨀→𝐷𝛿 = 󵄩󵄩󵄩󵄩󵄩󵄩󳨀󳨀→𝐶3𝑛 ⋅ 󳨀󳨀→𝑋𝛿𝑛 − 󳨀→𝑋𝑛󵄩󵄩󵄩󵄩󵄩󵄩 ,
(24)

󳨀󳨀→𝑋1𝑛 = 󳨀󳨀→𝑋𝛼𝑛 − 󳨀󳨀→𝐸1𝑛 ⋅ (󳨀󳨀→𝐷𝛼𝑛) ,
󳨀󳨀→𝑋2𝑛 = 󳨀󳨀→𝑋𝛽𝑛 − 󳨀󳨀→𝐸2𝑛 ⋅ (󳨀󳨀→𝐷𝛽𝑛) ,
󳨀󳨀→𝑋3𝑛 = 󳨀󳨀→𝑋𝛿𝑛 − 󳨀󳨀→𝐸3𝑛 ⋅ (󳨀󳨀→𝐷𝛿𝑛) ,

(25)
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Figure 9: Example of phase 3 in FWA-GWO.

Initialize 𝑛 and𝑚
Initialize the grey wolf population𝑋𝑛𝑖 (𝑖 = 1, 2, . . . , 𝑛)
Initialize a, 𝐸𝑛 and 𝐴𝑛
Calculate the fitness of each search agent𝑋𝑛𝛼 = the best search agent of 𝑛 pack𝑋𝑛𝛽 = the second best agent of 𝑛 pack𝑋𝑛𝛿 = the third best search agent of 𝑛 pack
while (𝑡 <Max number of iterations)

for each search agent
Update the position of the current search
agent by Equation (5)

end for
Update 𝑎, 𝐴𝑛 and 𝐸𝑛
Update 𝑛 and𝑚
Calculate the fitness of all search agents
Update𝑋𝑛𝛼,𝑋𝑛𝛽 and𝑋𝑛𝛿𝑡 = 𝑡 + 1

end while
return best (𝑋1𝛼,𝑋2𝛼, . . . , 𝑋𝑛𝛼)

Algorithm 1: Pseudocode for the FWA-GWO.

󳨀→𝑋𝑛 (𝑡 + 1) = 󳨀󳨀→𝑋1𝑛 + 󳨀󳨀→𝑋2𝑛 + 󳨀󳨀→𝑋3𝑛3 . (26)

In (26) we can find the next position of the solution that we
are evaluating as the GWO works and is an average of the
three best wolves, but in this case this is represented for each
pack. Finally, Algorithm 1 presents the pseudocode for the
FWA-GWO.

4. Simulation Results and Discussion

In this section we are presenting the benchmark functions
that are used in this work.

Table 2 shows the equations of the first 13 benchmark
functions [24–26] used for the tests with the algorithms
(FWA, FWO, and FWA-GWO) that can be classified as
unimodal and multimodal, respectively. Figure 10 shows the
graphical representations of these benchmark functions in
their 3D versions.

Also in this paper we used another set of 9 benchmark
functions that are called fixed-dimensionmultimodal and we
can find their corresponding equations in Table 3 with the
number of dimensions that were considered, the range of the
search space and the optimal value for each function, respec-
tively. Finally, in Figure 11 we show the graphical representa-
tions of these benchmark functions in their 3D versions.

For the experiments that were performed in this paper,
we are presenting three different configurations for the FWA-
GWOalgorithm andwe can find their descriptions as follows:

(1) Version 1

(i) 4 packs
(ii) 6 wolves for each pack
(iii) 625 iterations
(iv) 15,000 function evaluations

(2) Version 2

(i) 5 packs
(ii) 6 wolves for each pack
(iii) 500 iterations
(iv) 15,000 function evaluations

(3) Version 3

(i) 8 packs
(ii) 5 wolves for each pack
(iii) 375 iterations
(iv) 15,000 function evaluations

For comparing the performance of all the algorithms, we
performed hypothesis tests (𝑍-test) [22, 27, 28] with the
following parameters:

(i) 𝜇1 = New Method (FWA-GWO)
(ii) 𝜇2 = FWA or GWO
(iii) The mean of the FWA-GWO is lower than the mean

of the original method (claim)
(iv) H0 : 𝜇1 ≥ 𝜇2
(v) Ha : 𝜇1 < 𝜇2 (Claim)
(vi) 𝛼 = 0.05
(vii) 𝑍0 = −1.645

We show the hypothesis tests results in the following tables,
where we are comparing FWA-GWO with FWA and FWA-
GWO with GWO, respectively.
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Table 2: Unimodal and multimodal Benchmark functions.

Function Range 𝑓min

𝑓1 (𝑥) = 𝑛∑
𝑖=1

𝑥𝑖2 [−100, 100] 0

𝑓2 (𝑥) = 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨 + 𝑛∏
𝑖=1

󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨 [−100, 100] 0

𝑓3 (𝑥) = 𝑛∑
𝑖=1

( 𝑖∑
𝑗−1

𝑥𝑗)2 [−100, 100] 0

𝑓4 (𝑥) = max
𝑖
{󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨 , 1 ≤ 𝑖 ≤ 𝑛} [−100, 100] 0

𝑓5 (𝑥) = 𝑛−1∑
𝑖=1

[100 (𝑥𝑖+1 − 𝑥𝑖2)2 + (𝑥1 − 1)2] [−100, 100] 0

𝑓6 (𝑥) = 𝑛∑
𝑖=1

([𝑥1 + 0.5])2 [−100, 100] 0

𝑓7 (𝑥) = 12
𝑑∑
𝑖=1

(𝑥4𝑖 − 16𝑥2𝑖 + 5𝑥𝑖) [−100, 100] −39.17
𝑓8 (𝑥) = 𝑑/4∑

𝑖=1

[(𝑥4𝑖−3 + 10𝑥4𝑖−2)2 + 5 (𝑥4𝑖−1 − 𝑥4𝑖)2 + (𝑥4𝑖−2 − 2𝑥4𝑖−1)4 + 10 (𝑥4𝑖−3 − 𝑥4𝑖)4] [−100, 100] 0

𝑓9 (𝑥) = 𝑑∑
𝑖=1

𝑥2𝑖 + ( 𝑑∑
𝑖=1

0.5𝑖𝑥𝑖)
2 + ( 𝑑∑

𝑖=1

0.5𝑖𝑥𝑖)
4

[−100, 100] 0

𝑓10 (𝑥) = 𝑛∑
𝑖=1

[𝑥𝑖2 − 10 cos (2𝜋𝑥𝑖) + 10] [−100, 100] 0

𝑓11 (𝑥) = 20 exp(−0.2√ 1𝑛
𝑛∑
𝑖=1

𝑥𝑖2) − exp(1𝑛
𝑛∑
𝑖=1

cos (2𝜋𝑥𝑖)) + 20 + 𝑒 [−100, 100] 0

𝑓12 (𝑥) = 𝜋𝑛 {10 sin (𝜋𝑦1) +
𝑛−1∑
𝑖=1

(𝑦𝑖 − 1)2 [1 + 10 sin2(𝜋𝑦𝑦+1)] + (𝑦𝑛 − 1)2} + 𝑛∑
𝑖=1

𝑢 (𝑥𝑖, 10, 100, 4)
𝑦1 = 1 + 𝑥𝑖 + 14
𝑢 (𝑥1, 𝑎, 𝑘, 𝑚) =

{{{{{{{{{{{

𝑘 (𝑥𝑖 − 𝑎)𝑚 , 𝑥𝑖 > 𝑎,
0, −𝑎 < 𝑥𝑖 < 𝑎
𝑘 (−𝑥𝑖 − 𝑎)𝑚 , 𝑥𝑖 < −𝑎

[−100, 100] 0

𝑓13 (𝑥) = 14000
𝑛∑
𝑖=1

𝑥12 − 𝑛∏
𝑖=1

cos( 𝑥𝑖√𝑖) + 1 [−100, 100] 0

4.1. Comparison between GWO and FWA-GWO. In Tables
4–11, we are presenting a comparison and hypothesis tests
between the GWO and the hybrid method for 30, 60, and 90
dimensions and the three different versions, respectively.

From Table 4 we can conclude based on the hypothesis
test that, for the case of 30 dimensions, the FWA-GWO in ver-
sion 1 is better in 7 of the 13 benchmark functions that are
analyzed in this paper.

In Table 5 we show the results of a hypothesis test for the
original GWO and the FWA-GWO in version 2 and in this
case the proposed method is better in 6 of the 13 analyzed
functions.

Finally, Table 6 shows the results of the hypothesis tests
when we are using version 3 of the FWA-GWO, in other
words when the algorithm has 8 packs and 5 wolves for each
pack, thenwe can conclude that theproposed hybrid approach
(FWA-GWO) is better in 7 of the 13 functions that were tested
in this paper.

In the following figures we are illustrating in a graphical
way the results of the hypothesis tests, more specifically the𝑧-values. The comparison is between the conventional algo-
rithms and the proposed FWA-GWO with the different
versions.

In this case the blue bar represents the 𝑧 value of the
hypothesis test with 60 dimensions, the green bar represents
the 𝑧 values of the hypothesis with 90 dimensions, and finally
the red bar represents the critical value according of the
hypothesis test that was described above, which in this case is−1.645. Therefore, while the blue and green bars are less than−1.645, the hybrid method is better.

For 60 dimensions in the analyzed problems, the FWA-
GWO in version 1 is better in 6 of the 13 analyzed benchmark
functions according to Figure 12 and also we can find the 𝑧-
values for 90 dimensions between the GWO and version 1 of
the FWA-GWO. In this case the proposedmethod is better in
4 benchmark functions.
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Figure 10: Examples of the unimodal and multimodal benchmark functions in their 3D versions.

In Figure 13 we can conclude that for 60 dimensions, the
FWA-GWO in version 2 is better only in 3 of the 13 analyzed
functions, respectively, and for 90 dimensions. In this case,
the version 2 of the proposed method (FWA-GWO) has not
a good performance because it is better than the original
method only in 2 of the analyzed benchmark functions.

Finally, we are presenting in Figure 14 the 𝑧-values when
the problem has 60 and 90 dimensions, respectively. Accord-
ing to the hypothesis tests betweenGWOand the FWA-GWO
in version 3 we can conclude that the FWA-GWO is better
only in 3 of the 13 analyzed functions, respectively, with 60
dimensions and for 90 dimensions we can find that version 3
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Figure 11: Examples of the fixed-dimension multimodal benchmark functions in their 3D versions.

Table 3: Fixed-dimension multimodal benchmark functions.

Function Dim Range 𝑓min

𝑓14 (𝑥) = ( 1500 +
25∑
𝑗=1

1
𝑗 + ∑2𝑖=2 (𝑥𝑖 − 𝑎𝑖𝑗)6)

−1

2 [−65, 65] 1

𝑓15 (𝑥) = 11∑
𝑖=1

[𝑎𝑖 − 𝑥1 (𝑏21 + 𝑏𝑖𝑥2)𝑏21 + 𝑏𝑖𝑥3 + 𝑥4 ]
2

4 [−5, 5] 0.00030

𝑓16 (𝑥) = 4𝑥21 − 2.1𝑥41 + 13𝑥61 + 𝑥1𝑥2 − 4𝑥22 + 4𝑥42 2 [−5, 5] −1.0316
𝑓17 (𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2 (19 − 14𝑥1 + 3𝑥21 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥22)] ×[30 + (2𝑥1 − 3𝑥2)2 × (18 − 32𝑥1 + 12𝑥21 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥22)] 2 [−2, 2] 3

𝑓18 (𝑥) = − 4∑
𝑖=1

𝑐1 exp(− 3∑
𝑗=1

𝑎𝑖𝑗 (𝑥𝑗 − 𝑝𝑖𝑗)2) 3 [1, 3] −3.86
𝑓19 (𝑥) = − 4∑

𝑖=1

𝑐1 exp(− 6∑
𝑗=1

𝑎𝑖𝑗 (𝑥𝑗 − 𝑝𝑖𝑗)2) 6 [0, 1] −3.32
𝑓20 (𝑥) = − 5∑

𝑖=1

[(𝑋 − 𝑎𝑖) (𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖]−1 4 [0, 10] −10.1532
𝑓21 (𝑥) = − 7∑

𝑖=1

[(𝑋 − 𝑎𝑖) (𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖]−1 4 [0, 10] −10.4028
𝑓22 (𝑥) = − 10∑

𝑖=1

[(𝑋 − 𝑎𝑖) (𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖]−1 4 [0, 10] −10.5363

is better in 4 of the 13 analyzed functions based on the results
of the hypothesis test.

4.2. Comparison between FWA and FWA-GWO. In addition
we are presenting the hypothesis testing between the FWA
and the FWA-GWO; Table 7 shows the results of the averages,

standard deviations, and𝑍-values for 30 dimensions with the
FWA-GWO in version 1.

We can conclude fromTable 7 that the FWA-GWO is bet-
ter in 5 of the 13 benchmark functions that are analyzed in this
paper.

Table 8 shows the results when we used the FWA-GWO
in version 2 and in this case we can find that it has a better
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Table 4: Comparison between GWO and the FWA-GWO in version 1 with 30 dimensions.

30 dimensions
Function GWO STD Hybrid V1 STD 𝑍-value
F1 1.45𝐸 − 27 2.39𝐸 − 27 6.43E − 28 1.17E − 27 −2.1364
F2 1.28𝐸 − 15 1.01𝐸 − 15 1.70E − 16 1.63E − 16 −7.6564
F3 1.96E − 05 4.19E − 05 8.47𝐸 − 04 0.0025 2.3188
F4 8.40E − 07 8.83E − 07 0.0383 0.0584 4.6322
F5 28.3085 8.5466 27.6283 0.5878 −0.5614
F6 0.7575 0.3307 0.8856 0.4284 1.6727
F7 −843.5616 64.6298 −775.8908 98.3576 −4.0658
F8 13.2227 47.144 1.7697 6.7631 −1.7004
F9 154.0219 272.2662 9641.7985 11406.7060 5.8798
F10 4.6208 4.4183 1.7310 2.2942 −4.1045
F11 20.8930 0.0927 5.8606 9.4934 −11.1962
F12 0.0617 0.0779 0.0693 0.0297 0.6441
F13 0.0053 0.0103 0.00 0.00 −3.6561

Table 5: Comparison between GWO and the FWA-GWO in version 2 with 30 dimensions.

30 dimensions
Function GWO STD Hybrid V2 STD 𝑍-value
F1 1.45E − 27 2.39E − 27 1.84𝐸 − 22 7.49𝐸 − 22 1.7398
F2 1.28E − 15 1.01E − 15 1.17𝐸 − 13 1.20𝐸 − 13 6.8015
F3 1.96E − 05 4.19E − 05 0.0044 0.0166 1.8497
F4 8.40E − 07 8.83E − 07 0.0409 0.0440 6.5681
F5 28.3085 8.5466 27.5222 0.5276 −0.6493
F6 0.7575 0.3307 0.5746 0.3179 −2.8192
F7 −843.5616 64.6298 −811.8833 98.7647 −1.8978
F8 13.2227 47.144 7.55E − 05 1.91E − 04 −1.9832
F9 154.0219 272.2662 15241.4387 16021.8731 6.6577
F10 4.6208 4.4183 1.3627 2.0485 −4.7306
F11 20.8930 0.0927 1.71E − 11 4.23E − 11 −1594.3538
F12 0.0617 0.0779 0.0705 0.0316 0.7432
F13 0.0053 0.0103 0 0 −3.6561

Table 6: Comparison between GWO and the FWA-GWO in version 3 with 30 dimensions.

30 dimensions
Function GWO STD Hybrid V3 STD 𝑍-value
F1 1.45E − 27 2.39E − 27 1.78𝐸 − 18 2.70𝐸 − 18 4.6680
F2 1.28E − 15 1.01E − 15 4.19𝐸 − 11 3.52𝐸 − 11 8.4273
F3 1.96E − 05 4.19E − 05 0.0095 0.0241 2.7765
F4 8.40E − 07 8.83E − 07 0.0248 0.0207 8.4815
F5 28.3085 8.5466 27.7054 0.5847 −0.4979
F6 0.7575 0.3307 0.59297 0.35281 −2.4065
F7 −843.5616 64.6298 −753.7345 291.2693 −2.1289
F8 13.2227 47.144 0.1544 0.6904 −1.9599
F9 154.0219 272.2662 6439.18 23019.40 1.9305
F10 4.6208 4.4183 3.1066 3.9244 −1.8118
F11 20.8930 0.0927 1.33E − 09 1.34E − 09 −1594.3538
F12 0.0617 0.0779 0.0416 0.0249 −1.7389
F13 0.0053 0.0103 9.33E − 17 2.21E − 16 −3.6561
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Table 7: Comparison between FWA and the FWA-GWO in version 1 with 30 dimensions.

30 dimensions
Function FWA STD Hybrid V1 STD 𝑍-value
F1 0.0237 0.0148 6.43E − 28 1.17E − 27 −11.3515
F2 0.5501 0.2083 1.70E − 16 1.63E − 16 −18.6715
F3 2.19E − 04 0.0005 8.47𝐸 − 04 0.0025 1.7326
F4 0.0407 0.0078 0.0383 0.0584 −0.2951
F5 29.8533 1.6787 27.6283 0.5878 −8.8458
F6 1.0293 0.7131 0.8856 0.4284 −1.2221
F7 −851.1396 80.7011 −775.8908 98.3576 −4.1822
F8 0.3258 0.3166 1.7697 6.7631 1.5079
F9 9.0217 17.8576 9641.7985 11406.7060 5.9714
F10 1.6570 0.8116 1.7310 2.2942 0.2150
F11 0.0449 0.0081 5.8606 9.4934 4.3318
F12 0.0532 0.0318 0.0693 0.0297 2.6125
F13 7.04𝐸 − 04 5.16𝐸 − 04 0.00 0.00 −9.6465

Table 8: Comparison between FWA and the FWA-GWO in version 2 with 30 dimensions.

30 dimensions
Function FWA STD Hybrid V2 STD 𝑍-value
F1 0.0237 0.0148 1.84E − 22 7.49E − 22 −11.3515
F2 0.5501 0.2083 1.17E − 13 1.20E − 13 −18.6715
F3 2.19E − 04 0.0005 0.0044 0.0166 1.7642
F4 0.0407 0.0078 0.0409 0.0440 0.0250
F5 29.8533 1.6787 27.5222 0.5276 −9.3676
F6 1.0293 0.7131 0.5746 0.3179 −4.1179
F7 −851.1396 80.7011 −811.8833 98.7647 −2.1764
F8 0.3258 0.3166 7.55E − 05 1.91E − 04 −7.2752
F9 9.0217 17.8576 15241.4387 16021.8731 6.7226
F10 1.6570 0.8116 1.3627 2.0485 −0.9446
F11 0.0449 0.0081 1.71E − 11 4.23E − 11 −39.3428
F12 0.0532 0.0318 0.0705 0.0316 2.7297
F13 7.04𝐸 − 04 5.16𝐸 − 04 0 0 −9.6465

Table 9: Comparison between FWA and the FWA-GWO in version 3 with 30 dimensions.

30 dimensions
Function FWA STD Hybrid V3 STD 𝑍-value
F1 0.0237 0.0148 1.78E − 18 2.70E − 18 −11.3515
F2 0.5501 0.2083 4.19E − 11 3.52E − 11 −18.6715
F3 2.19E − 04 0.0005 0.0095 0.0241 2.7175
F4 0.0407 0.0078 0.0248 0.0207 −5.0876
F5 29.8533 1.6787 27.7054 0.5847 −8.5443
F6 1.0293 0.7131 0.59297 0.35281 −3.8782
F7 −851.1396 80.7011 −753.7345 291.2693 −2.2788
F8 0.3258 0.3166 0.1544 0.6904 −1.5961
F9 9.0217 17.8576 6439.18 23019.40 1.9752
F10 1.6570 0.8116 3.1066 3.9244 2.5577
F11 0.0449 0.0081 1.33E − 09 1.34E − 09 −39.3428
F12 0.0532 0.0318 0.0416 0.0249 −2.0307
F13 7.04𝐸 − 04 5.16𝐸 − 04 9.33E − 17 2.21E − 16 −9.6465
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Table 10: Comparison of the best results among the three methods with 60 dimensions.

60 dimensions
Function GWO FWA Hybrid V1 Hybrid V2 Hybrid V3
F1 1.03𝐸 − 18 8.76𝐸 − 03 1.45E − 20 5.24𝐸 − 16 1.49𝐸 − 12
F2 2.04𝐸 − 10 1.88𝐸 − 01 2.69E − 12 2.81𝐸 − 10 2.32𝐸 − 08
F3 0.0246 9.54E − 08 0.0062 0.2206 0.0579
F4 3.29E − 04 1.72𝐸 − 02 1.0835 0.4721 0.2902
F5 56.0643 6.5639 56.5365 56.7458 56.8672
F6 2.4988 4.70E − 01 2.9397 1.9858 1.5036
F7 −1103.01 −1123.702 −1022.80 −1114.42 −963.5091
F8 9.13𝐸 − 05 1.27𝐸 − 01 0.0016 6.75E − 06 0.0062
F9 8429.33 2.6085 21956.43 6268.08 853.71
F10 2.22𝐸 − 11 1.0527 2.27E − 13 6.90𝐸 − 11 5.10𝐸 − 08
F11 20.9788 2.97𝐸 − 02 1.75E − 10 2.21𝐸 − 09 1.63𝐸 − 07
F12 0.0595 5.27𝐸 − 03 0.0067 0.0782 8.48E − 04
F13 0.00 1.46𝐸 − 04 0.00 0.00 3.99𝐸 − 14

Table 11: Comparison of the best results among the three methods with 90 dimensions.

90 dimensions
Function GWO FWA Hybrid V1 Hybrid V2 Hybrid V3
F1 1.81𝐸 − 14 2.91𝐸 − 02 1.70E − 15 1.27𝐸 − 12 7.25𝐸 − 09
F2 5.12𝐸 − 08 1.59𝐸 − 01 3.95E − 10 3.34𝐸 − 08 1.75𝐸 − 06
F3 9.3068 1.23E − 07 1.1431 3.5748 0.7638
F4 0.0198 2.40E − 02 5.2841 1.2142 1.6948
F5 85.9349 89.8066 87.2861 87.5498 87.1859
F6 5.9709 1.7693 5.5327 5.1995 3.1307
F7 −1495.39 −1551.06 −2678.99 −1968.90 −1507.83
F8 2.33𝐸 − 04 0.3271 0.0369 2.22E − 04 0.1971
F9 57096.74 5.7946 42806.79 19650.57 10246.35
F10 2.5244 2.0417 5.19E − 10 1.1558 9.9620
F11 21.1015 0.0235 2.85E − 07 7.28𝐸 − 07 1.32𝐸 − 05
F12 0.1476 0.0167 0.0078 0.3672 0.0338
F13 2.66𝐸 − 15 0.0004 7.77E − 16 1.12𝐸 − 14 1.02𝐸 − 10

2 3 4 5 6 7 8 9 10 11 12 131
Number of functions

−20

−15

−10

−5

0

5

10

15

20

Z
-v

al
ue

Figure 12: Comparison between GWO and the FWA-GWO in
version 1 with 60 and 90 dimensions.
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Figure 13: Comparison between GWO and the FWA-GWO in ver-
sion 2 with 60 and 90 dimensions.
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Figure 14: Comparison between GWO and FWA-GWO in version
3 with 60 and 90 dimensions.
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Figure 15: Comparison between FWA and FWA-GWO in version 1
with 60 and 90 dimensions.

a performance because it is better than the conventional FWA
in 8 of the 13 total functions.

Finally, for 30 dimensions in Table 9we are presenting the
last version of the FWA-GWO algorithm that was analyzed in
this paper and we can conclude that, for 30 dimensions, this
version has the best configuration of the parameters because,
according of the hypothesis testing, the FWA-GWO is better
than FWA in 9 of the 13 benchmarks functions that were
analyzed.

Based on Figure 15 we can mention that for 60 dimen-
sions the FWA-GWOversion 1 is better than the conventional
FWA in 5 of the 13 benchmark functions that were analyzed
in this paper and when the problems have 90 dimensions we
can find that, for this number of dimensions, version number
1 is better in 4 benchmark functions that were analyzed.

In Figure 16 we can find in a graphical way the 𝑧 values
of the hypothesis test between FWA and the FWA-GWO in
version 2 and for 60 dimensions we canmention that we have
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Figure 16: Comparison between FWA and FWA-GWO in version 2
with 60 and 90 dimensions.

a similar performance with respect to version 1 because both
methods are better than the conventional FWA in 5 of the
13 analyzed benchmark functions. Finally, for 90 dimensions
we can conclude that the FWA-GWO is better in 5 of the 13
benchmark functions that are analyzed.

Finally, in Figure 17 we are presenting the results of the
hypothesis test between FWA and version 3 of the FWA-
GWO and we can mention that for 60 dimensions we can
conclude that in this version of FWA-GWO it only has better
performance in 4 benchmark functions and for 90 dimen-
sions FWA-GWO is better in 5 of the 13 benchmark functions
that are analyzed in this paper.

4.3. Comparison of the Best Solutions among the Three Meth-
ods. In Figures 12, 13, and 14 we can notice that when the
problem has 60 and 90 dimensions, respectively, we can find
an interesting behavior and that, for these benchmark func-
tions, the conventional GWO has better performance than
the FWA-GWO according to the analyzed hypothesis test.

Also we can mention that, for the comparison between
the FWA and the FWA-GWO, for 60 and 90 dimensions,
respectively, the FWA-GWO has better performance around
half of total analyzed benchmark functions and it is important
to say that we are presenting only three different configura-
tions of the FWA-GWOand for this comparison the perform-
ance can be significantly improved if we change these config-
urations.

In addition we consider that it is very important to
summarize in the following tables a brief comparison only of
the best results obtained in the 50 independent executions of
each method for 60 and 90 dimensions, respectively, with the
main goal of showing that although in a hypothesis test we
cannot prove a best performance in some of the benchmark
functions that are analyzed, the FWA-GWO still found a
better result than the conventional algorithm.

Table 10 shows the best values of each method with 60
dimensions andwe can conclude that in general the proposed
FWA-GWO algorithm has better performance in 8 of the 13
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Figure 17: Comparison between FWA and FWA-GWO in version 3 with 60 and 90 dimensions.

analyzed functions, the FWAhas better performance than the
others in 4 of the 13 functions, and finally theGWOalgorithm
has better performance in 2 of the 13 benchmark functions
that are analyzed in this paper. The best version of the FWA-
GWO is with version 1 with 5 functions, and finally with
versions 2 and 3, both methods are better in 2 benchmark
functions, respectively.

Table 11 shows the general results for the best experiments
of 50 runs that were executed with 90 dimensions and we can
find that the FWA-GWOhas better performance in 7 of the 13
analyzed benchmark functions. The FWA metaheuristic has
better performance in 4 of the 13 functions and finally the
GWO algorithm has better performance in 2 of 13 analyzed
benchmark functions with 90 dimensions.

Based on Tables 10 and 11 we can find an interesting
conclusion because we can note that the FWA-GWO has a
better performance than the GWO and FWA, respectively,
based on the best results that we obtained in the respective
sample.This is very important because, for example, when we
want to design fuzzy controllers, the design, the architecture,
or the best plant is based on the best result that we obtained
in the total experiments or executions and we can conclude
that for these optimization problems the FWA-GWO has
better performance than the conventional methods (GWO
and FWA). Finally we can mention that for improving the
results of the FWA-GWO in the hypothesis testing with 60
and 90 dimensions, respectively, we need to test other types of
configurations of the FWA-GWO, because the configurations
that we presented in this paper were chosen randomly.

Finally, we present the results of the rest of the total
benchmark functions [F14, F22] that are analyzed in this
paper, and these benchmark functions are called “fixed-di-
mension multimodal” and averages and standard deviation
are presented in the following tables.

Tables 12 and 13 illustrate a brief comparison onlywith the
averages ofGWO, FWA, and the FWA-GWO in versions 1 and
2, respectively, and we can conclude that the three methods
have a good performance with these benchmark functions.

In addition, Table 14 shows the comparison of the last
version presented in this paper; the main goal of evaluating
these benchmark functions is to prove that themethods work
correctly and have a good performance with these types of
problems and we only present a brief comparison in average
without hypothesis test because the results are very similar.

4.4. Convergence of the FWA-GWO. In the following figures
we are presenting convergence plots between the GWO
and the FWA-GWO with two different problems and the
difference is that in one problem the FWA-GWO (hybrid) has
better performance and in others has not, according to the
hypothesis test.

Figure 18 shows the convergence curve of the GWO
and FWA-GWO algorithms, respectively, for the benchmark
function number 4.

In Figure 19 we can notice the performance of the GWO
and the FWA-GWOwhen we are using the benchmark func-
tion number 10. The red line represents the convergence
curve of the GWO algorithm and the blue line represents the
convergence of the FWA-GWO (hybrid).

It is important to mention that in conclusion we can
say that, with the help of Figures 18 and 19, the FWA-GWO
always finds other solutions throughout the iterations and
this behavior is good because the algorithm always converges
and avoids the local optima and this process occurs through
the advantages of the hybridization between the GWO and
FWA algorithms. On the other hand we can note in Figure 18
that, for example, in this problem (F10), the GWO algorithm
falls into a local minimum and cannot avoid this problem. In
addition, we can test with other configurations in the FWA-
GWO toolbox, which is presented in [29].

5. Conclusions

In this paper we have presented the hybridization among two
metaheuristics that were described above and the new hybrid
method is called FWA-GWO. Is important to mention that
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Table 12: Comparison among GWA, FWA, and FWA-GWO in version 1 in fixed-dimensions multimodal benchmark functions.

Fixed-dimensions multimodal benchmark functions
Function GWO STD FWA STD Hybrid V1 STD
F14 4.0425 4.2528 0.9981 2.21𝐸 − 04 2.7499 2.8626
F15 3.37𝐸 − 04 6.25𝐸 − 04 6.03𝐸 − 04 2.76𝐸 − 04 7.42𝐸 − 04 2.70𝐸 − 04
F16 −1.0316 1.0316 −1.0316 4.96𝐸 − 05 −1.0315 5.60𝐸 − 04
F17 3.0000 3.0000 3.0011 0.0018 3.0007 8.20𝐸 − 04
F18 −3.8626 3.8628 −0.2979 6.20𝐸 − 06 −3.8612 0.0024
F19 −3.2865 3.2506 −3.2655 0.0599 −3.3124 0.0449
F20 −10.1514 9.14015 −10.1466 0.0054 −5.3093 0.6601
F21 −10.4015 8.5844 −10.3929 0.0144 −5.2378 0.5854
F22 −10.5343 8.55899 −10.5113 0.0481 −5.3646 0.4713

Table 13: Comparison among GWA, FWA, and FWA-GWO in version 2 in fixed-dimensions multimodal benchmark functions.

Fixed-dimensions multimodal benchmark functions
Function GWO STD FWA STD Hybrid V2 STD
F14 4.0425 4.2528 0.9981 2.21𝐸 − 04 4.1664 3.7214
F15 3.37𝐸 − 04 6.25𝐸 − 04 6.03𝐸 − 04 2.76𝐸 − 04 7.00𝐸 − 04 3.18𝐸 − 04
F16 −1.0316 1.0316 −1.0316 4.96𝐸 − 05 −1.0316 2.61𝐸 − 05
F17 3.0000 3.0000 3.0011 0.0018 3.0009 9.83𝐸 − 04
F18 −3.8626 3.8628 −0.2979 6.20𝐸 − 06 −3.8612 0.0022
F19 −3.2865 3.2506 −3.2655 0.0599 −3.3093 0.0484
F20 −10.1514 9.14015 −10.1466 0.0054 −5.5335 0.9876
F21 −10.4015 8.5844 −10.3929 0.0144 −5.3205 0.6697
F22 −10.5343 8.55899 −10.5113 0.0481 −5.5058 0.7676

Table 14: Comparison among GWA, FWA, and FWA-GWO in version 3 in fixed-dimensions multimodal benchmark functions.

Fixed-dimensions multimodal benchmark functions
Function GWO STD FWA STD Hybrid V3 STD
F14 4.0425 4.2528 0.9981 2.21𝐸 − 04 4.1338 3.5058
F15 3.37𝐸 − 04 6.25𝐸 − 04 6.03𝐸 − 04 2.76𝐸 − 04 9.05𝐸 − 04 6.44𝐸 − 04
F16 −1.0316 1.0316 −1.0316 4.96𝐸 − 05 −1.0316 4.86𝐸 − 06
F17 3.0000 3.0000 3.0011 0.0018 3.0016 0.0019
F18 −3.8626 3.8628 −0.2979 6.20𝐸 − 06 −3.8617 0.0017
F19 −3.2865 3.2506 −3.2655 0.0599 −3.3220 2.13𝐸 − 05
F20 −10.1514 9.14015 −10.1466 0.0054 −5.1421 0.4826
F21 −10.4015 8.5844 −10.3929 0.0144 −5.3531 0.8978
F22 −10.5343 8.55899 −10.5113 0.0481 −5.3103 0.6953

an advantage of this new hybrid method is the capacity of
choosing between the exploitation and exploration phases in
the algorithm that are twomain features of metaheuristics, so
it is very important to choose this abilities according to the
problem that we want to solve.

According to the results presented in this paper we can
conclude that for 30 dimensions the different versions of the
hybrid method are better than the GWO and FWA, respec-
tively, according to the hypothesis test presented. On the
other hand, we can note that for 60 and 90 dimensions in the
hypothesis tests the performance of FWA-GWO is poor, but
we can note an interesting behavior, and that if we analyzed

the best result of the total executions, we found the best per-
formance in the different FWA-GWO versions. It is impor-
tant to mention that the configuration of the hybrid method
for these types of problems can be significantly improved
and users can test other configurations of FWA-GWO on the
Toolbox.

Taking into account the fact that the proposed FWA-
GWO method obtained the best result in 60 and 90 dimen-
sions, we can conclude that the FWA-GWO can perform in
a better way in problems of control and design of structures
in computational intelligence than the FWA or GWO algo-
rithms [30–32], respectively.
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Figure 18: Convergence curve of GWO and FWA-GWO Algorithm with F4.
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Figure 19: Convergence curve of GWO and FWA-GWO with F10.

Alsowe can conclude that the FWA-GWO is an algorithm
that has diversity in the method for searching for the optimal
value, because in the total population the algorithmhas a set 𝑛
of possible best solutions, so this feature is important because
it helps avoid the local optima or false best values, searching
always for possible different solutions. Finally, the proposed
hybridmethod (FWA-GWO) could be easily adapted to solve
multiobjective problems.

As future work, we could test the FWA-GWO algorithm
in problems with control of plants, as a first choice or as a sec-
ond option, and dynamically adjust the parameters into the

FWA-GWO algorithm with type 1 and interval type 2 fuzzy
logic, respectively.
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