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The efficient planning and operation of power distribution systems are becoming increasingly significant with the integration of
renewable energy options into power distribution networks. Keeping voltage magnitudes within permissible ranges is vital; hence,
control devices, such as tap changers, voltage regulators, and capacitors, are used in power distribution systems.This study presents
an optimization model that is based on three heuristic approaches, namely, particle swarm optimization, imperialist competitive
algorithm, and moth flame optimization, for solving the voltage deviation problem. Two different load profiles are used to test the
three modified algorithms on IEEE 123- and IEEE 13-bus test systems.The proposed optimization model uses three different cases:
Case 1, changing the tap positions of the regulators; Case 2, changing the capacitor sizes; and Case 3, integrating Cases 1 and 2 and
changing the locations of the capacitors. The numerical results of the optimization model using the three heuristic algorithms are
given for the two specified load profiles.

1. Introduction

Power systems have been evolving in the last two decades,
exhibiting such changes as deregulation and the integration
of renewables into the philosophical and operational men-
talities. From the operational point of view, control means
that involving the coordinated operation of tap changing
transformers, such as capacitors, is required because loads
are not constant over time and the outputs of renewable
energy sources are intermittent. Voltage optimization (VO)
is an effective technology that has been saving the industry
millions of dollars in wasted electrical energy since the
beginning of the new millennium [1]. High demand used
to be managed by voltage reduction [2]. Another way of
helping system operation is using capacitors to improve the
power factor and the voltage profile and reduce power losses
[3]. Furthermore, tap operations of voltage regulators are
helpful in enhancing voltage profiles. Capacitors and voltage
regulators are integrated, and improved voltage profiles are
obtained. However, the life span of these devices is shortened
by frequent operation because they are based on mechanical

switch operations. New technological developments have
made electronics-based voltage regulators and capacitors
available [4], thereby bringing additional flexibility into the
operation of smart grids.

On the planning side, optimal capacitor locations are
sought [4]. For instance, in an algorithm that depends on
dynamic programming, fuzzy logic and genetic algorithm
(GA) approaches are used for capacitor distribution in
distribution feeders. Gravitational search algorithmwas used
for optimal capacitor placement in [5], whereas a teaching-
learning-based optimizationwas used for the same aim in [6].
Capacitors can also be used to reduce the effects of harmonics
in distribution systems; the harmony search algorithm was
applied for this goal in [7]. Capacitor location and sizing
problem have been solved by other heuristics, such as clonal
selection algorithm [8], ant colony optimization algorithm
[8], and PSO [9].

Producing the best possible result with the available
resources is always an objective in engineering problems.
Optimization problems are generally solved using two
approaches. The first is based on mathematical analysis, and
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the second is based on numerical calculations. Numerical
optimization methods can be divided into derivative-based
and non-derivative-based methods. If the derivatives of the
encountered model are not easy to find or a mathematical
function related to the model does not exist, then non-
derivative-based methods are applied. These methods are
generally inspired by nature. The most popular model is
GA, which reflects the evolution process in nature [10].
Subsequently, methods inspired by the behaviors of birds and
fish (particle swarm optimization [PSO]) [11], improvisation
process of musicians (harmony search) [12], and the naviga-
tion approach of moths in nature, which is named transverse
orientation (moth flame optimization [MFO]) [13], were
developed.

This work models the voltage optimization problem
using three different heuristic algorithms, namely, imperialist
competitive algorithm (ICA), particle swarm optimization
(PSO), and moth flame optimization (MFO). Cases 1 and
2 are applicable to operation, and Case 3 is applicable to
planning in distribution systems.

(i) The first model changes and uses the tap positions of
the voltage regulators and obtains the optimal voltage
value for given load conditions of the distribution
system.

(ii) The second model uses only the capacitors and
optimizes the sizes of these devices for given load
conditions.

(iii) The third model uses the voltage regulators and the
capacitors and finds the optimal tap positions, capac-
itor sizes, and locations.

MATLAB and a free power distribution system simula-
tion tool OpenDSS [14, 15] are used in the simulations.

The rest of the paper is organized as follows. Section 2
proposes the voltage optimization models. Section 3 briefly
explains ICA, PSO, MFO, and modified algorithm-based
voltage deviation. Section 4 presents the experiments and the
simulation results. Section 5 presents the conclusions.

2. Model

Wemodel three different cases.

Case 1. This case considers tap changers for the voltage
regulators to minimize voltage deviations. The optimization
model is as follows:

Minimize (𝑥) =
𝑁

∑
𝑖=1

󵄩󵄩󵄩󵄩𝑉𝑖 − 1󵄩󵄩󵄩󵄩2 , 𝑉𝑖 = 𝑓 (Tap𝑖) (1)

Subject to: 0.95 ≤ 𝑉𝑖 ≤ 1.05 (2)

Tapmin ≤ Tap𝑖 ≤ Tapmax, (3)

where 𝑥 denotes the fitness values (cost), 𝑁 is the number
of buses, 𝑉𝑖 is the voltage magnitude of bus 𝑖, Tap𝑖 is the tap
position of the regulator, and Tapmin and Tapmax represent the
minimum and maximum positions that a tap in a regulator

can take, respectively. These values are in the range of
[−16, 16].
Case 2. This case considers changing the size of the capaci-
tors, and the model is as follows:

Minimize (𝑥) =
𝑁

∑
𝑖=1

󵄩󵄩󵄩󵄩𝑉𝑖 − 1󵄩󵄩󵄩󵄩2 , 𝑉𝑖 = 𝑓 (Cap𝑖) (4)

Subject to: 0.95 ≤ 𝑉𝑖 ≤ 1.05
0 ≤ Cap𝑖 ≤ Capmax,

(5)

where 𝑥 represents the fitness values (cost),𝑁 is the number
of buses, 𝑉𝑖 is the voltage magnitude of bus 𝑖, Cap𝑖 is the size
of the bank capacitor, and Capmax is the maximum size of the
bank capacitor.

Case 3. This case integrates Cases 1 and 2 and changes the
locations of the capacitors. The mathematical model is as
follows:

Minimize (𝑥) =
𝑁

∑
𝑖=1

󵄩󵄩󵄩󵄩𝑉𝑖 − 1󵄩󵄩󵄩󵄩2 ,

𝑉𝑖 = 𝑓 (Tap𝑖,Cap𝑖, 𝑙𝑖)
(6)

Subject to: 0.95 ≤ 𝑉𝑖 ≤ 1.05
Tapmin ≤ Tap𝑖 ≤ Tapmax

0 ≤ Cap𝑖 ≤ Capmax

2 ≤ 𝑙𝑖 ≤ 𝐿max,

(7)

where 𝑥 represents the fitness values (cost),𝑁 is the number
of buses, 𝑉𝑖 is the voltage magnitude of bus 𝑖, Tap𝑖 is the tap
position of the regulator, Tapmin and Tapmax represent the
minimum and maximum positions that a tap in a regulator
can take, respectively (these values are in the range of
[−16, 16]), Cap𝑖 is the size of the bank capacitor, Capmax is
the maximum size of the bank capacitor, 𝑙𝑖 represents the
location of the capacitors, and 𝐿max represents the maximum
bus location.

3. Heuristic Algorithms

3.1. Imperialist Competitive Algorithm (ICA)

3.1.1. General Approach. ICA was recently developed in 2007
by Esmaeil Gargari and Caro Lucas for continuous optimiza-
tion problems [16]. The working philosophy corresponds to
other evolutionary algorithms and initially creates random
solution candidates called countries. The cost function of
each solution candidate shows the power of each country.
Hence, populations are composed of either colonized or
imperialist countries. According to random rules, a part of
a population is selected as the imperialists or the powerful
countries, and the remaining part of the population com-
prises the colonized. Figure 1 presents a flowchart of ICA
[16].
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Figure 1: Flowchart of ICA [16].

The method is conducted as follows:

(i) Form countries: the 𝑖th country is formed as follows:

country𝑖 = [𝑃1, 𝑃2, 𝑃3, . . . , 𝑃DN] , (8)

where DN denotes the problem variables or dimen-
sions. Initial random values for 𝑃𝑖 should be within
the lower and upper ranges for each variable.

(ii) Find the powers of each country by evaluating the
objective function of the optimization problem as
follows:

𝑓 (country𝑖) = 𝑓 (𝑃1, 𝑃2, 𝑃3, . . . , 𝑃DN) (9)

(iii) Select the imperialist and colonized countries. The
power of a country is inversely symmetrical to its
cost. The division of colonies among imperialists and
the normalized value of each imperialist is defined as
follows:

𝐶𝑛 = 𝑐𝑛 −max (𝑐𝑖) , (10)

where 𝑐𝑛 is the cost of 𝑛th imperialist and 𝐶𝑛 is the
normalized value.

(iv) Then, the colony countries move to the imperial-
ist ones to start the optimization process. The DN
country population is generated, and𝑁imp represents
the most powerful population, whose members are
selected as imperialists (the sets of controller coef-
ficients with smaller cost function in this problem).
The remaining𝑁col countries are the colonies (the sets
of controller coefficients with a high cost function in
this problem), each of which is a part of one of the
above-mentioned empires. In the attraction policy,
the colonies move toward the imperialists along Mx
units and are situated in a new position. Mx is a
random variable with regular distribution and can be
expressed as follows:

Mx ∼ 𝑈 (0, 𝛽 ⋅ 𝑑𝑠) , (11)

where 𝛽 is a constant number greater than 1 (𝛽 = 2)
and ds is the space between imperialist and colony. To
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Calculate the objective function for all the population as in Eqs. (1), (4) and (6)
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Figure 2: Flowchart of modified ICA.

search different points around the imperialist, we add
a random amount 𝜃 of deviation to the direction of
movement as follows:
𝜃 ∼ 𝑈(−�, �), where � is a parameter to adjust the
deviation value (� = 𝜋/4).

(v) Calculate total power of an empire. It can be deter-
mined by the power of imperialist country plus
percentage of power of its colonies as follows:
T.C.𝑛 = cost (imperialist ) + �⋅ mean (cost (colonies
of empire)), where T.C.𝑛 is the total cost of 𝑛th empire
and� is a positive number that is considered to be less
than 1 (� = 0.02). The weakest colony of the weakest
empire is picked out.

There are some other hyperparameters used in the inter-
nal calculations of this algorithm; for example, the percent
of search space size is a positive number (0.02), which
enables the uniting process of two empires, 𝛼 is a number
in the interval of [0 1] and denotes the importance of mean
minimum compares to the global minimum, and revolution
rate is a positive number (0.3) representing the process in
which the sociopolitical characteristics of a country change
suddenly.

3.1.2. ICA-Based Voltage Deviation Algorithm. The flowchart
of the modified ICA algorithms is shown in Figure 2, and the
steps are as follows.

Step 1. Initialize the ICA parameters, namely, population
size 𝑁pop, maximum iteration number Maxit, number of
imperialist countries 𝑁imp, and number of colony countries
𝑁col. Set the voltage magnitude limits, and set the possible
capacitor locations, capacitor size limits, and minimum and
maximum tap positions depending on the case being solved.

Step 2. Randomly create the size and location of the capaci-
tors and tap positions of the regulators, and form the initial
country as follows:

country𝑖

= [Cap1, . . . ,Cap𝑚, 𝑙1, . . . , 𝑙𝑚,Tap1, . . . ,Tap𝑛] ,
(12)

where𝑚 and 𝑛 represent the numbers of bank capacitors and
voltage regulators, respectively.

Step 3. Run a load flowusing the specified load profile and the
solution candidates, perform a power flow, and calculate the
fitness value of the test system depending on the case number
as in (1), (4), and (6).

Step 4. Determine the imperialist and colonized countries
depending on the fitness value as in (9) and (10).

Step 5. Update the size and location of the capacitors and the
tap position of the regulators for all empires as in (11).

Step 6. Repeat Steps 3–5 until the stopping condition is met.
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Figure 3: Flowchart of PSO algorithm.

3.2. Particle Swarm Optimization (PSO)

3.2.1. General Approach. PSO was originally developed in
1995 by Kennedy and Eberhart and inspired by the social
behavior of schooling fish and flocking birds [17]. The birds
in a group are considered an individual in the PSO method.
These particles can be flown through a search space. The
location of a particle in the search problem represents one
solution for the problem. A new and different solution is
created when the individual moves to a new location in
the search space. Each solution can be evaluated using an
objective function that supplies a cost of the benefit of
the solution. The direction and velocity of each individual
can move along all dimensions of the search space and
thus can change with all generation of movement. PSO
is generally considered an evolutionary computation (EC)
sample. Other EC examples include evolutionary strategies,
genetic programming, evolutionary programming, and GA
[18]. Each individual 𝑖 maintains the following information
[19]:

(i) 𝑋𝑖 is the individual current position.
(ii) 𝑉𝑖 is the individual current velocity.
(iii) 𝑌𝑖 is the local better position of the individual (pbest),

the better position visited yet by the individual.

(iv) 𝑌̂ is the global better position of the swarm (gbest),
the better position visited yet by the entire swarm.

Figure 3 shows a flowchart of the PSO algorithm.
By using the above notation, the method is implemented

as follows:

(1) Initialize the set constants, such as swarm size, dimen-
sion of the problem, maximum number of iterations,
and upper and lower bounds.

(2) Randomly initialize the individual positions.
(3) Randomly initialize the individual velocities.
(4) Repeat until the stopping condition is met.
(5) Evaluate the fitness values using the objective func-

tion.
(6) Determine pbest and gbest.
(7) Determine the alteration particle velocity vector as

follows:

𝑉𝑖 (𝑡 + 1) = 𝑊 ⋅ 𝑉𝑖 (𝑡) + 𝑐1 ⋅ 𝑟1 (𝑡) ⋅ (𝑌𝑖 (𝑡) − 𝑋𝑖 (𝑡))
+ 𝑐2 ⋅ 𝑟2 (𝑡) ⋅ (𝑌̂ (𝑡) − 𝑋𝑖 (𝑡)) ,

(13)

where, 𝑡 represents current iteration, 𝑟1(𝑡) and 𝑟2(𝑡)
represent uniform random numbers between 0 and
1, acceleration coefficients are 𝑐1 and 𝑐2, usually
between 0 and 4, and𝑊 represents the inertia weight;
a damping factor, usually decreasing from around 0.9
to around 0.4 during the computation, is calculated as
follows:

𝑊 = (Maxit − 𝑡)
Maxit

, (14)

where maximum number of iterations is Maxit.
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Figure 4: Flowchart of modified PSO algorithm.

(8) Determine the alteration particle position vector as
follows:

𝑋𝑖 (𝑡 + 1) = 𝑋𝑖 (𝑡) + 𝑉𝑖 (𝑡 + 1) . (15)

3.2.2. PSO-Based Voltage Deviation Algorithm. A flowchart
of the modified PSO algorithms is shown in Figure 4, and the
steps are as follows.

Step 7. Initialize the PSO parameters, namely, swarm size
𝑃size, dimension of the problem 𝑁par, maximum number of
iterations Maxit, cognitive parameter 𝑐1, social parameter 𝑐2,
upper bound value ub, lower bound value lb, and maximum
velocity value 𝑉max. Set the voltage magnitude limits, and
set the possible capacitor locations, capacitor size limits, and
minimumandmaximum tap positions depending on the case
being solved.

Step 8. Randomly create the initialized particle velocities,
determine the size and location of the capacitors and tap
positions of the regulators, and form particle positions as
follows:

particle𝑖

= [Cap1, . . . ,Cap𝑚, 𝑙1, . . . , 𝑙𝑚,Tap1, . . . ,Tap𝑛] ,
(16)

where𝑚 and 𝑛 represent the numbers of bank capacitors and
voltage regulators, respectively.

Step 9. Run a load flow using the specified load profile,
perform power flow using the solution candidates, and
compute the corresponding fitness value of the test system
depending on the case number as in (1), (4), and (6).

Step 10. Select local best (lb) and global best (gb), and then
determine alteration particle velocity vector and particle
positions as in (13)–(15).

Step 11. Repeat Steps 3 and 4 until the stopping condition is
met.

3.3. Moth Flame Optimization (MFO)
3.3.1. General Approach. MFO is a new population-based
algorithm refined in 2015 by Mirjalili; the optimization of
this algorithm reflects transverse orientation, which is the
method of transmission of moths in nature at night [13].
Approximately 160,000 different groups of insects, including
moths, are present in nature. Moths have two life phases:
larvae and adult phases.These insects are considerably similar
to the family of butterflies but possess a special feature
when moving at night [20]. Moths fly straight lines over
long distances by preserving a fixed angle with the moon.
This mechanism is effective for traveling, especially when
the light source is far. When the light source is close, moths
fly around it in a spiral path and ultimately converge with
it. These insects represent the candidate solutions, and their
position in the search space represents the problem variables.
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Figure 5: Flowchart of MFO algorithm.

Therefore, moths can fly in one or more dimensions by
updating the position vectors. Figure 5 presents a flowchart
of the MFO algorithm.

This model is implemented as follows:

(1) Initialize the set constants, such as number of moths,
number of variables (dimension), and upper and
lower bounds.

(2) Randomly initialize the population of moths depend-
ing on the number ofmoths, number of variables, and
upper and lower bounds as follows:

Mo =
[[[[[[
[

Mo11 ⋅ ⋅ ⋅ Mo1𝑑
Mo21 . . . Mo2𝑑
... d

...
Mo𝑛1 ⋅ ⋅ ⋅ Mo𝑛𝑑

]]]]]]
]

, (17)

where 𝑛 and 𝑑 represent the numbers of moths and
variables, respectively.

(3) Calculate and store the corresponding fitness values
for all the moths as follows:

OMo =
[[[[[[
[

OMo1
OMo2

...
OMo𝑛

]]]]]]
]

, (18)

where 𝑛 represents the number of moths.
(4) Initialize the population of flames, which is equal sort

population of moths, and flame fitness values, which
are the equal sort moth fitness values.

F =
[[[[[[
[

𝐹11 ⋅ ⋅ ⋅ 𝐹1𝑑
𝐹21 . . . 𝐹2𝑑
... d

...
𝐹𝑛1 ⋅ ⋅ ⋅ 𝐹𝑛𝑑

]]]]]]
]

, (19)

OF =
[[[[[[
[

OF1
OF2
...

OF𝑛

]]]]]]
]

, (20)

where 𝑛 and 𝑑 represent the numbers of moths and
variables, respectively.
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Table 1: Active and reactive loads on IEEE 13-bus for simulation I (minimum load) and simulation II (maximum load).

Bus number Phases
Active load of
simulation I

(kW)

Active load of
simulation II

(kW)

Reactive load
(kVar) Load type

671 a, b, c 854 1153 660 Delta
634 a 98 160 110 Wye
634 b 79 120 90 Wye
634 c 80 120 90 Wye
645 b 106 170 125 Wye
646 b, c 160 230 132 Delta
692 a, b, c 102 170 151 Delta
675 a 320 485 190 Wye
675 b 44 68 60 Wye
675 c 202 290 212 Wye
611 c 111 169 80 Wye
652 a 80 128 86 Wye
670 a 11 17 10 Wye
670 b 42 66 38 Wye
670 c 75 117 68 Wye

(5) Repeat until the stopping condition is met.
(6) Calculate the distance between the 𝑗th flame and the

𝑖th moth as follows:

𝐷𝑖 = 󵄨󵄨󵄨󵄨󵄨𝐹𝑗 −Mo𝑖
󵄨󵄨󵄨󵄨󵄨 . (21)

(7) Update the position of moths using a spiral function
as follows:

Mo𝑖 = 𝐷𝑖 ⋅ 𝑒𝑏𝑡 ⋅ cos (2𝜋𝑡) + 𝐹𝑗, (22)

where 𝐷𝑖 represents the distance, 𝑡 is a random value
in [−1, 1], and 𝑏 is a constant number.

(8) Update the flame position, which is equal to the
best previous moth position and the current moth
position (same as flame fitness values) as follows:

𝐹 = Sort (Mo𝑖−1,Mo𝑖) (23)

OF = Sort (OMo𝑖−1,OMo𝑖) , (24)

where 𝑖 represents the current iteration.
3.3.2. MFO-Based Voltage Deviation Algorithm. A flowchart
of the modified MFO algorithms is shown in Figure 6, and
the steps are as follows.

Step 12. Initialize the MFO parameters, namely, the number
of moths 𝑁, variable number 𝐷, maximum number of
repetitions Maxit, upper bound value ub, and lower bound
value lb. Set the voltagemagnitude limits, and set the possible
capacitor locations, capacitor size limits, and minimum and
maximum tap positions depending on the case being solved.

Step 13. Randomly create the size and location of the capac-
itors and tap positions of the regulators, and form the initial
moth position as in (17).

Step 14. Use the specified load profile to run a load flow,
perform power flow using the solution candidates, and
calculate the moth fitness value of the test system as in (18).
Use (1), (4), and (6) depending on the case number.

Step 15. Select the best moth position as a flame position and
the bestmoth fitness value as the flamefitness value using (23)
and (24), as shown in (19) and (20), respectively.

Step 16. Calculate the distance between moths and flames,
and then calculate new moth position using (21) and (22).

Step 17. Repeat Steps 3–5 until the stopping condition is met.

4. Experiments and Simulation Results

The proposed optimization models are experimented on
IEEE 13- and IEEE 123-bus test systems. The node maps of
the circuits are shown in Figures 7 and 8, respectively.

The different load conditions are given in Tables 1 and
2 and are denoted as simulation I (minimum load) and
simulation II (maximum load) on the IEEE 13- and IEEE 123-
bus test systems, respectively.

Graphical representations of the bus voltage magnitudes
in pu of simulations I and II with no control (test systems
do not contain tap regulators and capacitor banks) are
shown in Figures 9 and 10 for the IEEE 13- and IEEE 123-
bus test systems, respectively. The minimum and maximum
voltage magnitudes in pu with no control of IEEE 13-bus
test system in simulation I are 0.9081 and 0.99995, respec-
tively, and in simulation II they are 0.89236 and 0.99993,
respectively.



Journal of Optimization 9

Start

Initialize parameters values

Randomly initialize moths position using specified upper and
lower bounds as in Eq. (17)

Run a load flow and power flow by using the specified load profile

Select best moths position as a flames position and best moths 
fitness value as flames fitness value using Eqs. (23) and (24).

Update moths position, capacitors size and location and tap
position using Eqs. (21) and (22)

Is stop 
condition met?

Stop

Yes

No

Calculate the moths fitness value as in Eq. (18) using Eqs. (1), (4) and (6) 

Figure 6: Flowchart of modified MFO algorithm.

646 645 632 633 634

650

692 675611 684

652

671

680
Figure 7: IEEE 13-bus node map.

The minimum and maximum voltage magnitudes in pu
with no control of IEEE 123-bus test system in simulation
I are 0.93317 and 0.99999, respectively, and in simulation II
they are 0.91934 and 0.99999, respectively. The optimization
model results for all cases, which are based on modified
heuristic approaches ICA, PSO, and MFO, are graphically
compared to uncontrolled results, as shown in Figures 11–16
for the IEEE 13- and IEEE 123-bus test systems, respectively.

The numerical results in Tables 3 and 4 support graphi-
cally results in Figures 11–16, respectively.

The smooth curves in Figures 11–16 represent the per-
formance of Cases 1–3. Good voltage profile is observed
in Case 3, in which tap regulator position and capaci-
tor size and location are controlled. Through the curves
in Figures 11–16, the voltage magnitudes can be obtained
within the admissible range in any of the cases. The com-
parison of the simulation results that are based on ICA,
PSO, and MFO is given in Figures 17–19. The numer-
ical results in Tables 3–6 support graphically results in
Figures 17–19.
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Figure 8: IEEE 123-bus node map.
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Figure 9: Two different simulation bus voltage magnitudes of IEEE 13-bus test system with no controls.

Table 3: Best results values of IEEE 13-bus test system in simulation I condition.

Load profile
condition

Voltage
magnitude in pu Algorithm No control Case 1 values Case 2 values Case 3 values

Simulation I
(minimum
load)

Minimum

No control 0.9081 0.9081 0.9081 0.9081
ICA 0.9081 0.98544 0.98462 0.98684
PSO 0.9081 0.98544 0.98477 0.97644
MFO 0.9081 0.98544 0.9846 0.9838

Maximum

No control 0.99995 0.99995 0.99995 0.99995
ICA 0.99995 1.0347 1.0209 1.0234
PSO 0.99995 1.0347 1.022 1.0275
MFO 0.99995 1.0347 1.0269 1.0227
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Table 4: Best results values of IEEE 123-bus test system in simulation II condition.

Load profile
condition

Voltage
magnitude in

pu
Algorithm No control Case 1 values Case 2 values Case 3 values

Simulation II
(maximum
load)

Minimum

No control 0.91934 0.91934 0.91934 0.91934
ICA 0.91934 0.97758 0.98768 0.9685
PSO 0.91934 0.97758 0.96908 0.9658
MFO 0.91934 0.97758 0.98338 0.96869

Maximum

No control 0.99999 0.99999 0.99999 0.99999
ICA 0.99999 1.035 1.0408 1.0317
PSO 0.99999 1.035 1.0404 1.0369
MFO 0.99999 1.035 1.038 1.0334
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Figure 10: Two different simulation bus voltage magnitudes of IEEE 123-bus test system with no controls.
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Figure 11: ICA method output of IEEE 13-bus compared to uncontrolled case in simulation I condition.
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Figure 12: PSO method output of IEEE 13-bus compared to uncontrolled case in simulation I condition.
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Figure 13: MFO method output of IEEE 13-bus compared to uncontrolled case in simulation I condition.
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Figure 14: ICA method output of IEEE 123-bus compared to uncontrolled case in simulation II condition.
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Figure 15: PSO method output of IEEE 123-bus compared to uncontrolled case in simulation II condition.
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Figure 16: MFO method output of IEEE 123-bus compared to uncontrolled case in simulation II condition.
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Figure 17: Case 1 output of IEEE 13-bus compared to three methods in simulation II condition.
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Figure 18: Case 3 output of IEEE 13-bus compared to three methods in simulation I condition.
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Figure 19: Case 2 output of IEEE 123-bus compared to three methods in simulation I condition.

The performance curves in Figures 17–19 demonstrate
that improved voltage is achieved in Cases 2 and 3 using ICA
as shown in Tables 5 and 6. Meanwhile, as shown in Tables
5 and 6, Case 1 has the same values under all algorithms.
The proposed algorithm iteration versus best fitness value in
Case 3 of simulation I and simulation II of 13- and 123-bus
system is shown in Figures 20 and 21, respectively. Tables 5
and 6 present comparison results, namely, best fitness values,
mean voltagemagnitudes for best fitness values, and standard
deviation voltage magnitudes for best fitness values, in three

phases under the different cases and modified heuristic
approaches for the IEEE 13- and IEEE 123-bus test systems,
respectively.

5. Conclusion

The proposed optimization model is based on three meta-
heuristics approaches, namely, particle swarm optimization,
imperialist competitive algorithm, andmoth flame optimiza-
tion, for solving the voltage deviation problem. That model
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Figure 20: : The proposed algorithm iteration versus best fitness value of 13-bus test system in simulation I.
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Figure 21: The proposed algorithm iteration versus best fitness value of 123-bus test system in simulation II.

uses three different cases: Case 1, changing the tap positions
of the regulators; Case 2, changing the capacitor sizes; and
Case 3, integratingCases 1 and 2 and changing the locations of
the capacitors. To prove the implementation of the proposed
approach, it is applied and demonstrated on the IEEE 13- and
IEEE 123-bus test systems. The numerical simulation results
show that the voltage deviation problem is solved and the best
solution is obtained in Case 3, which considers tap changers
for the voltage regulators and the sizes and locations of the
capacitors. Moreover, the ICA method provides improved
results.
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