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Competitive market factors, such as more stringent government regulations, larger number of competitors, and shorter product
life cycle, in recent years have created more significant pressure on the management in all supply chain parties. To this end, the
ability of analyzing and evaluating systems and related operations involving the deployment of complex multiobjective material
handling systems is vital for distribution practitioners. In this respect, simulation modeling techniques together with optimization
have emerged as a very useful tool to facilitate the effective analysis of these complex operations and systems. In this paper, we apply
amultiobjective simulation-based optimization framework consisting of a hybrid immune-inspired algorithm named Suppression-
controlled Multiobjective Immune Algorithm (SCMIA) and a simulation model for solving a real-life multiobjective optimization
problem. The results show that the framework is able to solve large scale problems with a large number of parameters, operators,
and equipment involved.

1. Introduction

Simulation modeling is indeed a powerful industrial engi-
neering technique for studying the functioning, performance,
and operation of complex systems. As such, it becomes an
extremely useful tool for stakeholders and decision-makers
in various industries and domains including multiobjective
optimization. By changing input data and operating param-
eters of a system being studied with simulation, predic-
tions about the system’s behaviors can be obtained through
computer-aided simulation for helping management make
the right decisions. Unlike a mathematical model, simulation
can handle a variety of complex factors that are commonly
found in real world. In addition, simulation is a cost-effective
means for existing process redesign and new system design
because alternative solutions can be studied and evaluated
for correctness and feasibility before actual implementation.
More importantly, the accuracy of the performancemeasures
of the complex systems obtained from simulation models
is normally higher than that of analytical methods because
analytical methods in general involve making unrealistic

assumptions for the systems or problems under investigation
[1].

In real world, many problems no matter whether they
are in the domain of engineering, finance, business, or
science can be formulated into different forms of opti-
mization problems. These problems are characterized by
the requirement of finding the best possible solution that
fulfills certain criteria under certain constraints. Most of the
real-world optimization problems normally involve multiple
objectives rather than one single objective, in which some
objectives conflict with others. Solving this kind of problems
is never an easy task because objectives of such problems are
often found to be noncommensurable and conflicting. Very
often, there is no single best solution to the multiobjectives
optimization problems, but rather a set of optimal solutions
that exists among the objectives. However, using simulation
modeling alone cannot provide us with optimal solutions
to these optimization problems. Therefore, an optimization
algorithm is needed to guide the search process to the
optimal solutions. Over the past decades, different algorithms
have been developed for solving multiobjective optimization
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problems. However, some algorithms, such as Simulated
Annealing (SA) [2] and Tabu Search (TS) [3–5], do not easily
solve multiobjective optimization problems since they are
initially developed for solving single objective optimization
problems without having the ability to generate a set of
optimal trade-off solutions. One of the possible approaches
for them to solve the multiobjective optimization problems is
to transform the multiple-objective problems into the single
objective problems by emphasizing one particular optimal
solution at each run [6]. Some other algorithms, such as
Genetic Algorithm (GA) [7], Evolutionary Strategy (ES) [8],
and Artificial Immune Systems (AIS) [9] which are inspired
by natural processes, have been proved to be the effective
algorithms in both single objective and multiobjective opti-
mization contexts. Among these algorithms, AIS based on the
concepts of biological immune system have received special
attention among the research community because the biolog-
ical immune system provides a rich source of stimulation and
inspiration to the research community with their interesting
characteristics: distributed nature, self-organization, mem-
ory, and learning capabilities. Motivated by its great potential
for solving multiple-objective optimization problems, the
study reported in this paper is to demonstrate how a real-
life multiobjective simulation-based optimization problem in
logistics industry where material handling system (MHS) is
involved can be solved by a simulation-based optimization
framework comprising a simulation tool together with an
AIS-based algorithm.

This paper proceeds as follows: Section 2 starts by giving a
brief overview of material handling and multiobjective opti-
mization. Section 3 introduces the multiobjective optimiza-
tion framework for simulation-based optimization. Section 4
evaluates the performance of the framework through a real-
life case study on a MHS by benchmarking with some well-
known optimization algorithms. Finally, concluding remarks
are presented in Section 5.

2. Background

2.1. Importance of Material Handling in Distribution Indus-
try. Material handling, which is the total management of
material concerns in an operation, is a vital element of
industrial processes. Material handling involves a variety of
operations including the movement, storage, protection, and
control of materials, products, and wastes throughout the
processes of manufacturing, distribution, and disposal. Hav-
ing efficient MHS is of great importance to various industries
to maintain and facilitate a continuous flow of material
through theworkplace and guarantees that requiredmaterials
are available when needed. It is especially important to
logistics and manufacturing industries as it accounts for a
large percentage of the operation in these industries. In the
manufacturing sector, the time spent on different kinds of
product handling and transportation can be as much as the
time used on the value-added processes. Banks et al. [10]
claimed that the time of material handling accounts for about
85% of the total manufacturing time. In addition to time, the
money used on material handling activities is equally high
because thematerial handling equipment and systems require

large capital investment in terms of system design, instal-
lation, operations, maintenance, and so forth. A number
of studies conducted in different industries show that the
cost of material handling alone is about 20–25% of the total
manufacturing cost [11].

There are different kinds of material handling equipment
and systems available that range from simple hand truck
and pallet rack to complex conveyor system and Automated
Storage and Retrieval System (AS/RS). A typical MHS is
composed of different smaller components closely working
together, thus making business activities more efficient and
cost-effective. Over the past decade, MHS and its function
have undergone a big change because of new advances in
technologies, such as the development and applications of
automation techniques and robotics, bywhich a large number
of manual handling jobs are replaced by machines. Since the
entire production or distribution process is automated, MHS
has to respond just-in-time to the requirements of different
processing activities. These new technologies, today, increas-
ingly become prevalent in different industries as they help
ease drudgery formanual labors and some of themechanized
or automated handling jobs are physically impossible to be
done by workers.

Norman [12] claimed that equipment capacity, speed,
and arrangement are the most critical considerations when
modeling and optimizing MHS. Capacity under this context
is the maximum quantity of products handled by the equip-
ment. Speed is the average operating speed of the equipment,
which may include acceleration, deceleration, and speeds of
various equipment components. Configuration is the layout
and structure of the MHS or its moving paths.

2.2. Optimization of MHS via Simulation. In the literature,
there are a number of studies that dedicatedly contribute to
the optimization of MHS via simulation. For example,
Ebbesen et al. [13] studied the baggage handling system at
airports. They developed an approach to optimize the design
of conveyor systems, that is, the design of tracks suited
for baggage handling systems with the use of a time domain
simulation model of the entire system. Sergueyevich et
al. [14] proposed a simulation model of the overhead mon-
orail conveyor system coupled with statistical methods for
analyzing and solving the multiobjective optimization prob-
lem regarding the manufacturing process. The aim was to
determine the optimum speed of conveyor, lengths of queues,
time in system, capacity of machines, and so forth under
certain limitations. Elahi et al. [15] studied the General
Motors paint shop conveyor system by developing a sim-
ulation model. The model works firmly with a decision
optimizer incorporating integer linear programming model
and dynamic programming model at critical points such as
the beginning and end of buffer conveyors in the system in
order to regroup batches of different color cars. Leung and
Lau [16] proposed a simulation-based optimization frame-
work that combines the processes of optimization and
simulation for solving typical linear optimization problems
related to logistics and production operation.The framework
integrates an AIS-based algorithm with a simulation tool
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for the evaluation of optimal system parameters and to
reveal the performance of systems. Subulan and Cakmakci
[17] made use of ARENA simulation program and Taguchi
experimental design method to build a solution model for
effectively designing material handling–transfer systems and
optimizing the performance of automation technologies in
automobile industry. Chang et al. [18] proposed a framework
that integrates simulation optimization and data envelop-
ment analysis techniques to find out the optimal vehicle fleet
size for a multiobjective problem in automated materials
handling systems. Lin and Huang [19] extended the optimal
computing budget allocation by adding Genetic Algorithm
together with the help of a simulation model for optimizing
the vehicle allocation for the automated material handling
system in semiconductor industry.

2.3. Multiobjective Simulation-Based Optimization Approach-
es. In practice, optimization problems involve several objec-
tives that often conflict with each other and must be simul-
taneously optimized so that a possibly uncountable set of
trade-off solutions rather than a single optimal point is
found with respect to the contradicting objectives.Therefore,
the aim of these problems is to find out the global trade-
off solutions that effectively spread over the Pareto front.
No solution from the Pareto front is worse than any other
solution because it is better in at least one objective. These
problems are normally termed as multiobjective problems,
which were first studied in an economic context and then
extended to the fields of science and engineering [20].
Since multiobjective optimization problems involve several
objectives, the view towards optimum has changed, hence
changing the aim fromfinding a single solution to obtaining a
set of compromised solutions. Today, the notion of optimum
for amultiobjective optimization problem is frequently called
Pareto optimum, which was first proposed by Edgeworth [21]
and then generalized by Pareto [22, 23].

As is known, the notion of optimality for multiobjective
optimization problems is different from that of single objec-
tive optimization problems because the aim of multiobjective
optimization problems is to find a set of optimal trade-
off solutions rather than a single optimal solution. Thus, in
the absence of preference information on the objectives, the
concept of Pareto optimality is adopted in this study for solv-
ing multiobjective optimization problems [24] and several
definitions about Pareto optimality [20, 25, 26] are considered
and stated below.

Definition 1 (Pareto optimality). A point 𝑋∗ ∈ Ω in the
search space is said to be Pareto optimal/nondominated with
respect toΩ if and only if there are no other solutions𝑋 ∈ Ω
for which

󳨀→𝑓(𝑋) dominates
󳨀→𝑓(𝑋∗). In other words, 𝑋∗ is

Pareto optimal with regard to the whole decision variable
space if it cannot be improved in any one objective without
resulting in a simultaneous degradation in other objectives.

Definition 2 (Pareto dominance). Consider, without loss of
generality, two decision vectors 𝑋𝑎 and 𝑋𝑏 ∈ X of a
minimization problem. Then, a vector of decision variables𝑋𝑎 is said to dominate another vector 𝑋𝑏, which is denoted

by𝑋𝑎 ≺ 𝑋𝑏, if and only if𝑋𝑎 is partially less than𝑋𝑏. That is,
the following two conditions must be satisfied:

(1) 𝑋𝑎 is not worse than𝑋𝑏 in all objectives

𝑓𝑖 (𝑋𝑎) ≤ 𝑓𝑖 (𝑋𝑏) , ∀𝑖 = 1, 2, . . . , 𝑟 (1)

(2) 𝑋𝑎 is better than𝑋𝑏 in at least one objective

𝑓𝑖 (𝑋𝑎) < 𝑓𝑖 (𝑋𝑏) , ∃𝑖 = 1, 2, . . . , 𝑟, (2)

where 𝑖 is the number of objectives.

However, when any of these conditions are violated, the
two solutions 𝑋𝑎 and 𝑋𝑏 are said to be indifferent to each
other instead of dominating the other or being dominated by
the other. Based on the above relations, Pareto optimal set,
Pareto front, and nondominated set are defined below.

Definition 3 (Pareto optimal set). Pareto optimal set of
solutions is a collection of all Pareto optimal solutions, which
is defined as

PS fl {X ∈ Ω | ¬ ∃𝑋∗ ∈ Ω, 𝑋∗ ≺ X} . (3)

Pareto optimal solutions are those solutions in the deci-
sion variable space whose corresponding objective vector
elements cannot be all simultaneously improved [27]. The
solutions inside the Pareto optimal set may have no apparent
relationship except their membership in the set. Pareto
optimal solutions are classified as such based on their values
being evaluated through whatever means.

Definition 4 (Pareto front). A surface or line containing
all nondominated solutions is called Pareto front, which is
represented by

PF fl {󳨀→𝑓 (X) | X ∈ PS} . (4)

According to the literature, finding an analytical expres-
sion of the Pareto front is a very difficult task. Therefore, a
common approach for Pareto front generation is to find out
the points withinΩ and their corresponding value𝑓(𝑋), 𝑋 ∈Ω. When this procedure is repeated a sufficient number of
times, the nondominated points and hence the Pareto front
are most likely to be found in the objective space [20].

Definition 5 (nondominated set). Of a solution set 𝑆, a
nondominated set of solutions 𝑆∗ comprises solutions that are
not dominated by other solutions in the set 𝑆. It is worthmen-
tioning that while Pareto optimal solutions are always non-
dominated solutions, nondominated solutions may include
both non-Pareto optimal solutions and Pareto optimal solu-
tions, thus revealing that the true Pareto optimal solutions
could hardly be represented by the nondominated solutions
obtained from running an optimizer.Thus, the idea, stated by
van Veldhuizen and Lamont [28], about the true Pareto front
PFtrue distinguishing it from the final set of nondominated
solutions found by an algorithm is called known Pareto front
PFknown.
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Figure 1: The framework for multiobjective simulation-based optimization (source: modified from Leung and Lau’s work [16]).

Modern optimization approaches are very often
population-based and evolutionary in nature. In such
methods, the search for the global optima essentially
comprises an iterative process that replaces the candidate
solutions in the population by newly generated ones with
an aim of achieving continuous improvement in the
performance of the best candidate solutions through the
help of mechanisms that guide the search to find a set of
nondominated solutions.Theuse of themodern optimization
approaches, especially population-based evolutionary algo-
rithms, to solving the complex multiobjective optimization
problems has beenmotivatedmainly because of the following
critical reasons. First, population-based evolutionary algo-
rithms can recognize the specificity of multiobjective
optimization problems by working simultaneously on all
objectives and finally generating a group of optimal trade-off
solutions, thus forming a uniformly distributed Pareto front.
Second, as the name implies, the population-based ap-
proaches can deal with a population of candidate solutions
simultaneously, allowing the generation of several elements of
the Pareto optimal set in a single run of an optimizer instead
of performing many separate runs when using classical
mathematical programming methods [29]. This allows the
decision-makers to simply pick the one that best fits the
problem at hand, thus preventing the need to reconfigure and
to rerun the optimization tool for finding other alternative
Pareto optimal solutions. Third, their capability of main-
taining diversity among the candidate solutions in the
population is important to prevent the search frompremature
convergence to a specific region of the solution space, thus
allowing a better exploration of the solution space and
minimizing the susceptibility of the search to the presence
of poor local optima in the optimization problems [30]. The
final reason is that the population-based approaches are less
susceptible to the continuity or shape of the Pareto front as

they can deal with concave and discontinuous Pareto fronts
without difficulty [27, 31]. Nevertheless, on the other hand,
the weaknesses of these population-based methods are that
they do not guarantee the identification of optimal trade-off
solutions and the solutions obtained are likely to be stuck at
some “good” approximations [32].

During the past few decades, a large number of pub-
lications have been done in population-based evolutionary
algorithms and proved to be effective for solving multiob-
jective optimization problems since the first multiobjective
evolutionary algorithm has been developed by Schaffer [33].
These algorithms include PAES [34], NSGA-II [35], PESA
[36], SPEA2 [37], PESA-II [38], micro-GA [39], micro-GA2
[40], omni-aiNet [41], NNIA [42], omni-AIOS [43], MTLBO
[44], and SCMIA [45].

3. A Multiobjective Simulation-Based
Optimization Framework

3.1. Mechanisms of the Multiobjective Simulation-Based Opti-
mization Framework. The optimization framework adopted
in this study is developed by taking advantage of the idea of
separation between the optimizationmethod and the simula-
tion model. For this reason, the optimization framework can
remain the same or require only minor modifications such as
changing range of parameters, data type of decision vari-
ables, and number of decision variables, to optimize the
simulation model that incorporates new requirements. This
framework in fact is a modified version of Leung and Lau’s
work [16], which incorporates a multiobjective optimization
algorithm instead of a single objective algorithm (Figure 1).
The multiobjective algorithm adopted in the framework is
Suppression-controlled Multiobjective Immune Algorithm
(SCMIA) proposed by Leung and Lau [45]. Concepts of the
algorithm are briefly discussed in the next section.
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Table 1: Mapping between the biological immune system and SCMIA.

Biological Immune
System SCMIA

Antigen (Ag) Objective function (simulation model in simulation study) to be optimized
Antibody (Ab) Candidate solution (a set of decision variables) to be optimized
Ag-Ab affinity Fitness value of each candidate solution evaluated based on Pareto dominance
Ab-Ab affinity Crowding-distance proposed by Deb et al. [6] working as a measure of population diversity

Immune suppression Mechanism to control the number of nearby candidate solutions based on similarity among candidate solutions
in both the objective space and decision variable space

Memory cell Current best nondominated solution

The framework consists of two critical components,
namely, (1) the simulation model and (2) the immunity-
inspired multiobjective optimization algorithm. A problem
or a system to be optimized is represented by a discrete-event
simulation model, which is developed separately from the
optimization algorithm. The simulation model under study
takes inputs (solutions) produced from the optimization
algorithm (except the initial inputs which are entered by
user). Based on these inputs, the simulation is executed auto-
matically with various parameter settings. In other words,
the simulation of the system with the parameters under
consideration is iteratively conducted in an automatic man-
ner. And then the simulation model generates several output
performance metrics as feedback on the quality of solutions
obtained from the optimization algorithm. During the pro-
cess of simulation-based optimization, it is worth emphasiz-
ing that the general guidelines of discrete-event simulation
should be followed, such as performing multiple replications
of the simulationwith the same input parameters but different
random number streams to minimize the variability of the
simulation outputs.

In essence, the AIS-based multiobjective optimization
algorithm is a search algorithm. The simulation results (out-
put performance metrics) direct the algorithm to search for
a new set of input parameters that takes the system towards
its optimal setting with respect to certain criteria. Hence a
feedback mechanism is incorporated to direct the search for
optimal solution in a controlled manner. In other words, the
generation of a new set of input parameters for the simulation
model is based on the simulation results of past evaluations.
As such, the input parameters and the output performance
metrics shown in the figure in fact serve as the feedback
to the simulation model and the optimization algorithm,
respectively. This iterative process repeats until prespecified
termination criteria are met. The criteria could include the
following: for example, no improving solutions can be found
or the predefined number of iterations is reached.

In this framework, the optimization algorithmwas imple-
mented with Excel VBA, whereas the simulation model was
developed by using the FlexSim simulation tool [46].

3.2. Multiobjective Simulation-Based Optimization Algorithm.
The fundamental of the hybrid AIS-based optimization
algorithm [45] adopted in the framework was inspired from

mechanisms of biological immune system and biological evo-
lution. It was developed by hybridizing the clonal selection
principle and immune network theory with the idea from
Genetic Algorithm (GA). The algorithm makes use of the
Pareto dominance for fitness assignment and some common
AIS-based algorithm’s features for guiding the search process,
such as clonal selection and expansion, affinity matura-
tion, antibody concentration, metadynamics, and immune
memory. The interesting feature of this algorithm is the
introduction of an innovative suppression operator, which is
used to help eliminate similar antibodies, hence significantly
minimizing the number of unnecessary searches and increas-
ing the population diversity.The similarity among antibodies
is determined in terms of both the objective space and the
decision variable space to ensure that only similar antibodies
are eliminated in the suppression operation. Moreover, a
modified crossover operator originated from the biological
evolution was also developed to help further enhance the
diversity of the clone population and the convergence of the
algorithmbecause some good genes from the elite parents can
be passed to the offspring for facilitating the search of optimal
solutions, otherwise it may take a longer time to converge
towards the Pareto front [27] especially in simulation-based
optimization context. The mapping between the biological
immune system and the proposed artificial one is given in
Table 1.

The algorithm comprises five immune operators: cloning
operator, hypermutation operator, suppression operator,
selection and receptor editing operator, and memory updat-
ing operator, and one genetic operator: crossover operator.
Each of them takes responsibility for different tasks for the
purpose of finding uniformly distributed Pareto front. The
block diagram showing the computational steps for SCMIA
is presented in Figure 2 and the details of these operators are
provided as below.

Nondominated Neighbor-Based Selection. Based on the idea
proposed by Gong et al. [42], only nondominated antibodies
are selected to form an active parent population A(𝑡) (where𝑡 is the iteration counter) with the size of𝑁𝐴 for undergoing
cloning, crossover, and hypermutation. This process mimics
the biological immune system in which only those B-cells
(antibodies) that are capable of binding with foreign antigens
will undergo clonal expansion and then hypermutation.
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Figure 2: Computational steps for SCMIA.

However, if the number of nondominated antibodies is larger
than 𝑁𝐴, an antibody density measure called crowding-
distance [6] analogous with Ab-Ab affinity in biological
immune system is employed for selecting the nondominated
antibodies. The crowding-distance or Ab-Ab affinity for a
nondominated antibody is computed as follows:

𝑑 (𝑎𝑏∗𝑖 ) = 𝑟∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑏∗𝑖+1 (𝑓𝑗) − 𝑎𝑏∗𝑖−1 (𝑓𝑗)󵄨󵄨󵄨󵄨󵄨𝑎𝑏 (𝑓max
𝑗 ) − 𝑎𝑏 (𝑓min

𝑗 ) , (5)

where 𝑑(𝑎𝑏∗𝑖 ) is the crowding-distance of the 𝑖th nondomi-
nated antibody 𝑎𝑏∗, 𝑟 is the number of objectives, 𝑎𝑏(𝑓max

𝑗 )
and 𝑎𝑏(𝑓min

𝑗 ) are the maximum and minimum fitness values
of the 𝑗th objective, and 𝑎𝑏∗𝑖+1(𝑓𝑗) and 𝑎𝑏∗𝑖−1(𝑓𝑗) are the fitness
values of the nearest neighboring antibodies from both sides.

Cloning Operator. It enlarges the population by generating a
number of copies of each antibody in the active parent popu-
lation A(t) and the number of copies is directly proportional
to its Ab-Ab affinity, thus forming a clone population, which
is denoted as C(𝑡). Hence the size of the population now is𝑁𝐴 + 𝑁𝑐 and𝑁𝑐 is obtained by

𝑐𝑖 = round (𝑐max × 𝑑 (𝑎𝑏∗𝑖 )) ,
𝑁𝑐 = ∑𝑐𝑖, (6)

where 𝑁𝑐 is the total number of copies produced, 𝑐𝑖 is the
clone size for the antibody 𝑎𝑏∗𝑖 ∈ A(𝑡), 𝑐max is the predefined
maximum clone size of each antibody, and round() is an
operator for rounding its argument to the closest integer.
Thus, the higher the Ab-Ab affinity an antibody has, the more
the number of copies it generates.
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Hypermutation Operator. It brings multipoint mutations to
the pool of clones, hoping for producing better offspring.
The mutations are dependent on the Ab-Ab affinity of
their parents for the purpose of preventing the crowding
of antibodies and maintaining the population diversity. The
mechanism is that if the Ab-Ab affinity of an active parent is
lower, themutation rate for the clones of the parent should be
higher to obtain mutated children in sparse locations in
order to diversify the population. The clones are mutated
proportionally as follows:

𝛼 = 𝑒−𝑝×𝑑(𝑎𝑏∗)
C𝑚 (𝑡) = C (𝑡) + 𝛼 × 𝑅, (7)

where 𝛼 represents the mutation rate inversely proportional
to the Ab-Ab affinity 𝑑(𝑎𝑏∗), 𝑝 is an exponential coefficient
controlling the decay of 𝛼, 𝑅 ∈ [−1, 1] is a 𝑚-dimensional
random vector obtained with uniform distribution, and
C𝑚(𝑡) is the mutated clone population.

Crossover Operator. It works on the mutated clone popu-
lation to generate a mature clone population denoted as
C𝑐(𝑡) with the size of 𝑁𝑐. It is a modified single point
crossover operator through which offspring is generated by
randomly selecting a single crossover point on a clone and
then swapping its content beyond that point with that of a
parent antibody randomly selected from A(𝑡). This operator
is introduced to control the diversity of the clone population
and the convergence of the algorithm. That being said, the
diversity can be enhanced while the quick convergence can
be ensured because some good genes from the active parent
can be passed to the offspring.

Suppression Operator. It works on the whole population
including the parent cells and mutated clones A(𝑡) ∪ C𝑐(𝑡) to
eliminate similar individuals so as to avoid a particular
search space being over exploited and acquire the uniformly
distributed Pareto front based on the idea of immunenetwork
theory [47] such that B-cells are stimulated and suppressed
by not only non-self-antigens but the interacted B-cells.
Different from other AIS-based multiobjective optimization
algorithms, the similarity among antibodies in this algorithm
is determined in terms of both the objective space and the
decision variable space so as to determinewhether to retain or
discard individual antibodies. Therefore, the suppression
operation in this algorithm has two phases: in first phase, the
suppressionwill be applied to all antibodies and the similarity
between two antibodies is defined as follows:

dO (𝑎𝑏𝑎, 𝑎𝑏𝑏)𝑗 = 󵄨󵄨󵄨󵄨󵄨𝑎𝑏𝑎 (𝑓𝑗) − 𝑎𝑏𝑏 (𝑓𝑗)󵄨󵄨󵄨󵄨󵄨 ≤ 𝛿𝑗, (8)

where dO(𝑎𝑏𝑎, 𝑎𝑏𝑏)𝑗 is the distance between antibodies 𝑎𝑏𝑎
and 𝑎𝑏𝑏 in terms of 𝑗th objective and 𝛿𝑗 refers to the threshold
value for 𝑗th objective.

In this phase, if the distances for all objectives between
two antibodies are smaller than the thresholds, the two
antibodies are said to be similar and hence the cell with
poorer Pareto fitness pf will be suppressed and eliminated
from the population.

In second phase, the suppression will only be applied to
the similarity between nondominated cells and dominated
cells and the similarity between two antibodies is defined as
follows:

dV (𝑎𝑏𝑎, 𝑎𝑏𝑏) = √ 𝑚∑
𝑗=1

[𝑎𝑏𝑎 (𝑥𝑗) − 𝑎𝑏𝑏 (𝑥𝑗)]2 ≤ 𝜀, (9)

where dV(𝑎𝑏𝑎, 𝑎𝑏𝑏) is the Euclidean distance in decision
variable space between the two antibodies 𝑎𝑏𝑎 (dominated
cell) and 𝑎𝑏𝑏 (nondominated cell) ∈ A(𝑡) ∪ C𝑐(𝑡), 𝑚 is the
length of each antibody, and 𝜀 refers to the threshold value
for the decision variable space.

In this phase, if the distance between two cells is smaller
than the threshold in decision variable space, the two cells
are said to be similar and hence the dominated cell will be
suppressed and eliminated from the population. Eventually,
surviving populations A𝑠(𝑡) ∪ C𝑠(𝑡) are obtained and then
enter into the selection and receptor editing process and
memory updating process simultaneously.

To enhance the population diversity and facilitate the
search of uniformly distributed nondominated solutions, the
threshold values for the decision variable space and the
objective space are adaptive values that are dynamically
calculated based on the maximum and minimum values
found at each iteration. The adaptive threshold values are
computed according to the following equations:

𝜀 = 𝑎𝑏 (𝑥max) − 𝑎𝑏 (𝑥min)𝑛 ,
𝛿𝑗 = 𝑎𝑏 (𝑓max

𝑗 ) − 𝑎𝑏 (𝑓min
𝑗 )𝑛 ,

(10)

where 𝑎𝑏(𝑥max) and 𝑎𝑏(𝑥min) are the maximum and mini-
mum distance values in the decision variable space, 𝑎𝑏(𝑓max

𝑗 )
and 𝑎𝑏(𝑓min

𝑗 ) are the maximum and minimum fitness values
of the 𝑗th objective, and 𝑛 is the number of antibodies in the
population under investigation.

Selection and Receptor Editing Operator. It works like a
director to guide the search towards the promising regions
by selecting all nondominated antibodies with respect to
the Pareto fitness pf from the populations A𝑠(𝑡) ∪ C𝑠(𝑡) to
form a new population Ab(𝑡 + 1) with the size of 𝑁 for
the next generation 𝑡 + 1. If the new population Ab(𝑡 +1) is not full, dominated antibodies with a better Pareto
fitness pf are selected and some genes of these antibodies
are then randomly selected to be replaced by randomly
generated genes. These restructured antibodies are finally
added to the new population until the population is full in
order to further enhance the population diversity. This
process actually mimics the process of receptor editing in the
biological immune system. However, if the number of
nondominated antibodies found exceeds the limit of the
population size 𝑁, only 𝑁 nondominated antibodies with
higher Ab-Ab affinity 𝑑(𝑎𝑏) are selected.
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Memory Updating Operator. It works as an elitist mechanism
for helping preserve the best solutions that represent the
Pareto front found over the search process. The memory set
is updated at each iteration through the following procedure:

(1) If the size of P(𝑡) is equal to𝑁𝑚, there is no memory
archiving procedure to proceed.

(2) If the size of P(𝑡) is smaller than 𝑁𝑚, an archiving
procedure is triggered to copy some of the dominated
antibodies that have the best Pareto fitness pf and Ab-
Ab affinity 𝑑(𝑎𝑏) toP(𝑡) for filling the vacant space up.

(3) If the size of P(𝑡) is larger than 𝑁𝑚, an archiving
procedure is triggered to compress P(𝑡) based on
the antibody similarity (the measure used in the
suppression operator) until its size becomes𝑁𝑚.

After performing the final memory updating procedure
at the last iteration, the memory set P(𝑡) obtained represents
the resulting solution set of the algorithm.

The algorithm is conducted by applying these heuristic
and stochastic operators on the antibody population for
balancing both the local and global search capabilities. For the
detailed discussion of the hybrid multiobjective algorithm,
one can refer to [45].

4. Multiobjective Simulation-Based
Optimization Study

In this study, a set of experiments based on a real-lifemultiob-
jective optimization problem was performed to evaluate the
performance and capability of the optimization framework
and algorithm. In order to provide a better view on the
performance of each method, both the graphical presenta-
tions of the simulation results and the statistical results of
performance metrics on the problem under investigation
were analyzed. All these experiments were conducted using
a computer with Xeon E5-2620 2GHz CPU with 2GB RAM.

4.1. Performance Metrics. In this simulation-based optimiza-
tion study, two performancemetrics, namely, error ratio (ER)
[48] and spacing (𝑆) [49], are adopted to examine the quality
of solution set in terms of the optimality and diversity.

Error Ratio (ER). The PFtrue was originally used to compute
this metric. However, since the PFtrue can hardly be found
for the real-life problem under investigation in this paper,
we use the reference Pareto front “PFref”, that is, the best
approximation of the true Pareto front for measuring the
optimality of each solution set. The PFref is found by using
all of the algorithms used in this study. To achieve this, a set
of nondominated solutions, that is, a Pareto front for each
algorithm, is firstly generated by running a very large number
of iterations, e.g., 100 over 20 trials, and then all the fronts
obtained by all the trials of all the compared algorithms were

Figure 3: The distribution flow of S.F. Express’s imported goods in
Hong Kong.

merged together to form a reference Pareto front. Hence, this
metric is mathematically defined as

ER fl
∑𝑛𝑖=1 𝑒𝑖𝑛 , 𝑒𝑖 = {{{

0, 𝑥𝑖 ∈ PFref ,1, 𝑥𝑖 ∉ PFref , (11)

where 𝑛 is the number of solutions in the PFknown found by
the algorithm being evaluated, 𝑒𝑖 = 0 if solution 𝑖 belongs to
the PFref , and 𝑒𝑖 = 1 otherwise. ER = 0 indicates that all the
generated solutions belong to the PFref .

Spacing (𝑆). Thismetric is used for determining the diversity
of the generated solutions. That being said, it shows how well
the solutions are distributed in the PFknown. This metric is
mathematically defined as

𝑆 fl √∑𝑛𝑖=1 (𝑑 − 𝑑𝑖)2𝑛 − 1 ,
𝑑𝑖 = min

𝑗
( 𝑚∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨𝑓𝑖1 (𝑥) − 𝑓𝑗1 (𝑥)󵄨󵄨󵄨󵄨󵄨) , 𝑖, 𝑗 = 1, . . . , 𝑛,
(12)

where 𝑑 is the mean of all 𝑑𝑖, 𝑘 is the number of objective
functions, and 𝑛 is the number of solutions in the PFknown.𝑆 = 0 indicates that all the nondominated solutions found are
equally spaced and uniformly distributed in objective space.

4.2. Experimental Setup. In this section, a real-life mul-
tiobjective optimization problem, that is, the distribution
operation of the material handling system (MHS) imple-
mented at the distribution center (DC) of S.F. Express (Hong
Kong) Limited, was studied through the simulation-based
optimization approach. S.F. Express launched its service in
HongKong in 1993. At present, its service network is covering
almost all areas of Hong Kong, which is mainly served by
the DC located in Tin Shui Wai (TSW) in northern New
Territories (Figure 3). Its service stores are located in 30 areas
of Hong Kong [50].



Journal of Optimization 9

Figure 4: Inbound docks connecting to the conveyor system.

The DC has two major conveyor systems: one for han-
dling the exported goods and another for imported goods.
In this study, we focus on the physical goods flow at the
DC, where the items are imported from China and then
distributed to all parts of Hong Kong. At the DC, most of
the items received at inbound docks (Figure 4) are directly
transferred to outbound docks (Figure 5) and then shipped
to the final destinations with little material handling in
between, such as deconsolidation and sortation. As such,
the expensive physical distribution functions of putaway,
inventory holding, and order picking from the DC are elim-
inated. This approach is called cross-docking. To implement
cross-docking effectively and efficiently, timely distribution
of freight and better synchronization of all inbound and
outbound shipments are required by making use of the
information system infrastructure and advanced automated
MHS in the supply chain, such as automated conveyor sys-
tem, Warehouse Management System (WMS), and real-time
material identification and tracking system (e.g., barcode).

4.2.1. Current Physical Layout and Labor Deployment of the
MHS. The MHS is a circular shaped automated conveyor
system, which comprises a number of interconnected 5-
, 10-, and 20-meter long straight modular conveyor units
and 2.5-meter radius curved conveyor units. The layout of
the MHS is depicted in Figure 7. Each conveyor unit has
a programmable logic controller to control the movement
(speed, direction, acceleration, etc.) of the items being put on
it and to communicate with the central computer. The
conveyor system has 4 entrances connecting to 4 inbound
docks and 16 exits connecting 30 outbound docks (each
outbound dock serves trucks distributing parcels to one
destination) (Figure 6).

At each conveyor entrance, 7 workers are deployed
to deconsolidate the incoming bulky consolidated parcels
uploaded from the big inbound truck (16 tonnes) for facili-
tating the subsequent sortation process. To enable the distri-
bution process to go well and items to be accurately sorted
according to customer requirements, 4 workers are assigned
to each conveyor exit serving 2 destinations (except the 2 exits
close to the entrances serving 1 destination that requires 2
workers) and equipped a barcode reader for confirming the
destination of each small parcel and helping to load the parcel
to the small outbound truck (5.5 tonnes).

4.2.2. Operation of the MHS. Each step of the operation is
performed sequentially in the simulation process and the
operation is given as follows:

(1) When the operation starts, each of the incoming
bulky consolidated parcels is unloaded by the workers
from the 4 inbound trucks to the staging area of the 4
inbound docks.

(2) And then each bulky consolidated parcel is deconsol-
idated into multiple small parcels and transported to
the conveyor entrances by the workers.

(3) After the parcels arrive at the conveyor, they are
transported to the different exits of the conveyor
system according to their destinations.

(4) When the parcels reach the corresponding exits, they
are moved to the outbound docks by the workers and
ready for delivery.

4.2.3. Assumptions. To focus our study on the behavior of the
MHS, certain real-world factors were simplified. Thus, the
following assumptions were made:

(1) Every day, the DC handles around 3 to 4 batches of
parcels. Since the operation is similar in each batch,
only one batch in the simulation model is simulated
and studied.There are 400 bulky consolidated parcels
in each batch coming from 4 supply sources (each
contributes 100 bulky parcels) inwhich the processing
time (cycle time) in one batch and the workers’
utilization are studied.

(2) The time for unloading bulky parcels follows a uni-
form distribution.

(3) The time for deconsolidation of the bulky parcels
follows a normal distribution in which each bulky
parcel is separated into 10 small parcels. Therefore,
there are 4000 small parcels in total being handled by
the MHS.

(4) The system only processes two types of parcels
(namely, bulky consolidated parcels and small
parcels) because they are packed similarly in terms of
volume and weight.

(5) The demand for each destination is similar which
follows a uniform distribution, that is, the parcels are
uniformly distributed among the 30 destinations.

4.2.4. Simulation Model. The simulation model with specific
system configuration and behavior is implemented with
FlexSim (Figure 7). Details of model components and initial
model settings (Table 2) are as follows:

(i) Entities are the 400 bulky consolidated parcels and
the 4000 small parcels deconsolidated from the bulky
parcels, which are processed through the system
causing changes in the system state over time.

(ii) Activities are the deconsolidation of bulky consol-
idated parcels unloaded from each incoming truck
(represented by a source in the simulationmodel), the
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Figure 5: Outbound docks connecting to the conveyor system.

Figure 6: The docks and trucks at the DC.

Figure 7: The simulation model of the MHS implemented with
FlexSim.

picking of small parcels from the circular conveyor
to each outgoing truck (represented by a sink in the
simulation model) according to their destinations.

(iii) Item attribute is the product type associated with its
destination (one product type corresponds to one
specific destination).

4.2.5. Parameter Setting. Several parameters, including num-
ber of generations, initial population size, active population
size, maximum clone size, and mutation factor are studied
through sensitivity analysis so as to examine the individual
parameters’ impact on the overall performance of the system
and to determine the value for each parameter. Givenwith the
results of the sensitivity analysis, the parameters of SCMIA
were set as follows.

Table 2: Initial model settings.

Item Value
Conveyor speed 2.5m/sec (limit: 1–2.5m/sec)
Conveyor spacing 1 parcel
Number of workers deployed for
each conveyor entrance 7 workers (limit: 1–9 workers)

Number of workers deployed for
each conveyor exit (serving 1
destination)

2 workers (limit: 1–4 workers)

Number of workers deployed for
each conveyor exit (serving 2
destinations)

4 workers (limit: 1–6 workers)

Handling Capacity of Worker 1 parcel

Arrival pattern for each source Uniform distribution with a min.
of 5 sec and a max. of 10 sec

Processing time of
deconsolidation process

Normal distribution with a mean
of 30 sec and a standard

deviation of 2 sec

Demand for each destination
Uniform distribution with a min.
of 220 units and a max. of 280

units
The above model parameters are set based on the real system settings and
observation.

SCMIA. Initial population size is 𝑁 = 30; size of active
population, 𝑁𝐴 = 12; size of the memory population, 𝑁𝑚 =
30; maximum number of clones for each cell, max clone =
6; exponential distribution coefficient, 𝜌 = 0.05; number of
simulation replications per fitness evaluation, replication =
10.

To allow a fair comparison among the algorithms com-
pared, the parameters of the benchmarking algorithms were
set with similar values and the values suggested by the
authors.

MISA. Initial population size is 𝑁 = 30; size of clone
population, 𝑁𝑐 = 180; size of the memory population, 𝑁𝑚
= 30; number of grid subdivisions, subd size = 25; initial
mutation rate, 𝜔 = 0.6 (it decreases linearly over time until
reaching the rate of 1/m, where 𝑚 is the number of decision
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variables); number of simulation replications per fitness
evaluation, replication = 10.

NNIA. Size of dominant population is𝑁𝑝 = 30; size of active
population is 𝑁𝐴 = 8; size of clone population is 𝑁𝑐 = 30;
crossover probability is 𝑝𝑐 = 0.9; mutation probability is𝑝𝑚 = 1/m; distribution indexes for crossover and mutation
operators are 𝑛𝑐 and 𝑛𝑚 = 20 (crossover probability, 𝑝𝑐 =
1; mutation probability, 𝑝𝑚 = 1/m); number of simulation
replications per fitness evaluation is replication = 10.

NSGA-II. Initial population size is 𝑁 = 30; crossover
probability is 𝑝𝑐 = 0.9; mutation probability is 𝑝𝑚 = 1/m;
distribution indexes for crossover andmutation operators are𝑛𝑐 and 𝑛𝑚 = 20; number of simulation replications per fitness
evaluation is replication = 10.

SPEA2. Initial population size is 𝑁 = 30; archive size,𝑁𝑚 = 30; crossover probability, 𝑝𝑐 = 1; mutation probability,𝑝𝑚 = 0.006; number of simulation replications per fitness
evaluation, replication = 10.

Antibody Definition. An antibody 𝑎𝑏 (a set of decision vari-
ables) that has the direct impact on the system’s performance
in terms of cycle time (CT) and workers’ utilization (WU) is
defined as follows: 𝑥1 is taken to be the conveyor speed, 𝑥2 is
the number of workers deployed for each conveyor entrance,𝑥3 is the number of workers deployed for each conveyor exit
(serving 2 destinations), and 𝑥4 is the number of workers
deployed for each conveyor exit (serving 1 destination). Since
the objective of the study is to optimize the performance of
the MHS by minimizing the system cycle time and maximiz-
ing the workers’ utilization, the optimization problem can be
given by

Optimize

𝑎𝑏∈Ω

󳨀→𝑓 (𝑎𝑏) = 𝐸 [CT,WU, 𝜔] (13)

subject to

1 ≤ 𝑥1 ≤ 2.5,
1 ≤ 𝑥2 ≤ 9,
1 ≤ 𝑥3 ≤ 6,
1 ≤ 𝑥4 ≤ 4,

(14)

where a set of objective functions
󳨀→𝑓(𝑎𝑏) to be optimized in

objective space are the expected values of the random output
variables [CT,WU, 𝜔] that are obtained from running the
simulation model, 𝜔 is a sample path (i.e., the sequence of
random numbers used in a simulation run), and (14) define a
set of physical constraints.

4.2.6. Experimental Results and Analysis. We conducted two
experiments to evaluate the performance of the SCMIA
and the simulation-based optimization framework, that is,(1) to compare the results of integrating simulation and
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Figure 8: Graphical comparisons of the known Pareto fronts
generated by the five algorithms.

optimization with the results without using any optimiza-
tion algorithm and (2) to benchmark SCMIA against two
immune-inspired algorithms, MISA [20] and NNIA [42],
and two other evolutionary algorithms, NSGA-II [35] and
SPEA2 [37], under the framework. The first experiment
was conducted to evaluate the effectiveness of optimization
algorithms when being employed in the simulation study
while the second one was used to emphasize the comparison
among the algorithms under investigation with respect to the
optimality and the diversity using the same simulation-based
optimization framework. All algorithms were run for 30
generations over 30 trials to obtain the average performance
of each algorithm on the same condition.

(1) Simulation without Optimization versus Simulation with
Optimization. The results shown in Table 3 are the optimized
results obtained bymaking use of all optimization algorithms
studied in this research.

The table shows that the cycle time of the whole distri-
bution system at the DC is reduced by about 12–16% and the
workers’ utilization is increased by 38–49% when optimiza-
tion algorithms are deployed in the simulation process. This
proves that the use of the optimizers can enhance the
performance in the system’s cycle time and the workers’
utilization. However, the higher the utilization achieved, the
longer the cycle time spent, and vice versa. When comparing
SCMIA with other benchmark algorithms, SCMIA is able to
produce comparable results in both the cycle time and
workers’ utilization.

(2) Performance Comparison between SCMIA and Other
Benchmark Algorithms. The performance of the algorithms
studied in this study was compared by using the graphical
representation together with the application of the metrics
mentioned in Section 4.1. The comparison between the
known Pareto fronts shown in Figure 8 suggests that the
overall Pareto front patterns generated by the five algorithms
are largely similar inwhich the cycle time ranges from around
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Table 3: Performance comparison between the results obtained from the simulation alone and that from the simulation-based optimization
approach by using different optimization algorithms (the best results are bolded).

Cycle Time (the improvement in %
compared with the one without

optimization)

Workers’ Utilization (the improvement
in % compared with the one without

optimization)
Simulation without optimization 6788.64 sec 45.04%
Simulation-based optimization with SCMIA 5763.86 sec (15.10%) 65.46% (45.34%)
Simulation-based optimization with MISA 5754.88 sec (15.23%) 63.45% (40.87%)
Simulation-based optimization with NNIA 5672.87 sec (16.44%) 62.00% (37.66%)
Simulation-based optimization with NSGA-II 5680.23 sec (16.33%) 62.90% (39.65%)
Simulation-based optimization with SPEA2 5948.53 sec (12.38%) 67.10% (48.76%)

Table 4: Spacing and error ratio values generated by the five algorithms (the best results are bolded).

SCMIA MISA NNIA NSGA-II SPEA2
Mean

(Standard Deviation)
Error Ratio (ER) 0.71 (0.10) 0.85 (0.16) 0.78 (0.18) 0.76 (0.14) 0.74 (0.06)
Spacing (𝑆) 38.74 (10.97) 58.02 (55.82) 49.23 (26.10) 51.85 (17.58) 39.32 (37.16)

Table 5: Computational times of the five algorithms.

SCMIA MISA NNIA NSGA-II SPEA2
Time (hours) 33.75 104.19 24.46 24.54 23.75

5300 sec to 7000 sec and the workers’ utilization ranges from
around 50% to 75%. FromFigure 8, it is shown that the higher
the utilization achieved, the longer the cycle time spent, and
vice versa. This implies that increasing the utilization does
not mean that the efficiency of the system can be increased.
Therefore, according to the figure, although the optimal
solution with 75% utilization while spending almost 7000 sec
and another case achieving less than 50% utilization while
spending only around 5300 sec both fall within the reference
Pareto front PFref ; the latter case is preferred in practice
because the cycle time is much shorter and hence the
efficiency and productivity of the system are much higher.
The utilization becoming lower in the latter case ismainly due
to the increased values in the decision variables, namely, con-
veyor speed andnumber ofworkers.This implies that in order
to further enhance both objectives at the same time for the
DC, the company may need to do something other than
just changing the system parameters, such as redesigning
the layout of the material handling systems particularly the
conveyor system.

The performance regarding the optimality and diversity
of SCMIA in this multiobjective optimization problem was
then examined by applying the metrics, namely, spacing and
error ratio as shown in Table 4.

In this experiment, we compared the results of the
mean and standard deviation of the two metrics over 30
trials obtained by SCMIA with that of the other benchmark

algorithms. From the results shown in Table 4, we found that
SCMIA generally is able to provide the best results in terms
of the diversity and optimality because it generates the lowest
values in the metrics of ER (0.71) and 𝑆 (38.74) and the latter
metric is significantly lower than most of the other algo-
rithms. This implies that the generated front is very close to
the PFref . In terms of the stability, SCMIA is also the best
one among these five algorithms in error ratio and spacing
because it has much lower standard deviations (0.10) and
(10.97), respectively, than other algorithms except SPEA2,
implying that SCMIA is able to provide a relatively consistent
result for each trial.

(3) Comparison of Computational Time. The computational
times of the investigated algorithms are provided in Table 5,
which are the mean times of 30 trials of each algorithm
running for 30 generations. It can be observed that the com-
putational time of MISA is the longest (104.19 hours) because
MISA spends very much time in solution evaluation through
running the complex simulation model due to the largest
number of candidate solutions being generated and evaluated
at each iteration.This is very time-consuming. SCMIA comes
second (33.75 hours), although the performance in terms of
computational time is much better than MISA. The reason
is that SCMIA also generates a large number of solutions at
each iteration, but the suppression operator adopted in the
algorithm helps reduce the number of similar solutions and
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hence reduce the number of solution evaluations. On the
contrary, NNIA, NSGA-II, and SPEA2 consume less and
similar computational resources largely due to the much
smaller number of solution evaluations being conducted at
each iteration.

5. Conclusion

This study applies a multiobjective simulation-based opti-
mization framework incorporating a hybrid immune opti-
mization algorithm SCMIA for the evaluation of the opti-
mality of the distribution system with respect to two criteria:
system cycle time andworkers’ utilization through simulation
modeling. Based on the results of the simulation-based opti-
mization study, the following conclusions and implications
can be drawn regarding the performance of the framework
and algorithm.

SCMIA generally performs better than other benchmark
algorithms especially in the diversity aspect. This is largely
attributed to the operators employed in the algorithm. For
example, the selection operator incorporates the crowding-
distance as a measure to select nondominated antibodies for
undergoing the subsequent evolutionary processes so that the
antibodies in less crowded regions will have a higher priority
to be selected. The cloning operator and hypermutation
operator are based on the samemeasure to generate a number
of copies for exploring the solution space and bringing
variation to the clone population, respectively, where less
crowded individuals are given more chances for cloning and
hypermutation in order to hopefully produce better offspring
and increase population diversity. The crossover operator
helps further enhance the diversity of the clone population
and the convergence of the algorithm because some good
genes from the active parent can be passed to the offspring.
The suppression operator helps reduce antibody redundancy
by eliminating similar individuals, hence significantly mini-
mizing the number of unnecessary searches and increasing
the population diversity. The memory updating operator
takes account of the antibody similarity in terms of both the
objective space and the decision variable space to formulate
the memory population. As a result, SCMIA is able to
generate a well-distributed set of solutions while it is a good
approximation to the reference Pareto front. Other than the
optimality and diversity, the stability of each algorithm can
also be observed based on the standard deviations of the
metrics shown in Table 4. It can be seen that the standard
deviation of spacing obtained by SCMIA is much smaller
than the other four algorithms. In a word, SCMIA is the most
stable one among the five algorithms in terms of population
diversity in simulation-based optimization.

The results overall demonstrate the ability of themultiob-
jective simulation-based optimization framework to serve as
a decision support tool for helpingmanagement to effectively
and efficiently find near optimal system operating parameters
such as the speed of machines, the number of workers, or any
other decision variables of interest in order to fulfill different
objectives including system’s cycle time and workers’ uni-
tization. As a result, significant savings in money, energy,

and so forth, are achieved through the effective and effi-
cient deployment of material handling systems and well-
coordinated activities based on the optimized results. The
research also sheds light into important issues of logistics
system operation and management based on the case study,
such as manpower allocation and design capacity of facilities.

Based on the findings of the current undertaking, it
is worthwhile to extend the framework to tackle other
complex problems involving many objectives to be solved
in an efficient and effective manner in the future. Future
research could also extend this approach to solve other real-
world complex business problems other than the problems
associated with material handling systems so as to establish
the practical value of the framework in the simulation-based
optimization context.
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