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This paper describes amodified three-termHestenes–Stiefel (HS)method.The originalHSmethod is the earliest conjugate gradient
method. Although the HS method achieves global convergence using an exact line search, this is not guaranteed in the case of an
inexact line search. In addition, the HS method does not usually satisfy the descent property. Our modified three-term conjugate
gradient method possesses a sufficient descent property regardless of the type of line search and guarantees global convergence
using the inexact Wolfe–Powell line search. The numerical efficiency of the modified three-term HS method is checked using 75
standard test functions. It is known that three-term conjugate gradient methods are numerically more efficient than two-term
conjugate gradient methods. Importantly, this paper quantifies how much better the three-term performance is compared with
two-termmethods.Thus, in the numerical results, we compare our newmodification with an efficient two-term conjugate gradient
method. We also compare our modification with a state-of-the-art three-term HS method. Finally, we conclude that our proposed
modification is globally convergent and numerically efficient.

1. Introduction

In the field of optimization conjugate gradient methods
are a well-known approach for solving large-scale uncon-
strained optimization problems.The conjugate gradient (CG)
methods are simple and have relatively modest storage
requirements. This class of methods has a vast number
of applications in different areas, especially in the field of
engineering [1–3].

Consider the unconstrained optimization problem:
min𝑓 (𝑥) , 𝑥 ∈ R

𝑛, (1)
where 𝑓 : R𝑛 → R is continuously differentiable and its
gradient is 𝑔(𝑥). Normally CG methods generate a sequence(𝑥𝑘) defined by

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 = 0, 1, . . . . (2)

In (2), 𝛼𝑘 > 0 is a general line search and 𝑑𝑘 is a search
direction given by

𝑑𝑘 = {{{
−𝑔𝑘 if 𝑘 = 0,
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1 if 𝑘 ≥ 1, (3)

where𝛽𝑘 is a parameter of the CGmethod.The six pioneering
forms of 𝛽𝑘 are defined in [4–10].

Line searches may be exact or inexact. Exact line searches
are time consuming, computationally expensive, and difficult
and require large amounts of storage [11–13]. Thus, inexact
line search techniques are often adopted because of their
efficiency and global convergence properties. Well-known

Hindawi
Journal of Optimization
Volume 2018, Article ID 5057096, 13 pages
https://doi.org/10.1155/2018/5057096

http://orcid.org/0000-0002-5897-2342
http://orcid.org/0000-0001-5877-9051
http://orcid.org/0000-0002-8283-0432
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/5057096


2 Journal of Optimization

inexact line search methods include the Wolfe and strong
Wolfe techniques, which can be written as

𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓 (𝑥𝑘) + 𝜌𝛼𝑘𝑔𝑇𝑘 𝑑𝑘,
𝑔 (𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇 𝑑𝑘 ≥ 𝜎𝑔𝑇𝑘 𝑑𝑘,

(4)

where 0 < 𝜌 < 𝜎 < 1, and
𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓 (𝑥𝑘) + 𝜌𝛼

𝑘
𝑔𝑇𝑘 𝑑𝑘,𝑔 (𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇 𝑑𝑘 ≤ 𝜎 𝑔𝑇𝑘 𝑑𝑘 .

(5)

Recently, Alhawarat and Salleh [14], Salleh and Alhawarat
[15], and Alhawarat et al. [16, 17] proposed efficient CG
and hybrid CG methods that fulfill the required global
convergence properties. To improve the existing methods,
a three-term CG technique has been introduced. Several
different researchers have suggested various modifications
to the three-term CG method. For instance, Beale [18] and
Nazareth [19] proposed CG methods based on three terms
that possess the finite termination property, but these do
not perform well in practice [20, 21]. Furthermore, reports
by McGuire and Wolfe [22], Deng and Li [23], Zhang et al.
[24, 25], Cheng [26], Al-Bayati and Sharif [27], Zhang Xiao
andWei [28], Andrei [29–31], Sugiki et al. [32], Narushima et
al. [33], Babaie-Kafaki and Ghanbari [34], Al-Baali et al. [35],
Sun and Liu [36], and Baluch et al. [37] discuss the global
convergence and numerical results of modified three-term
CGmethods.

In this paper, a modified three-term Hestenes–Stiefel
(HS) method is proposed. The general formula of the HS
method [4] is

𝛽𝐻𝑆
𝑘 = 𝑔𝑇𝑘𝑦𝑘−1𝑑𝑇

𝑘−1
𝑦𝑘−1 . (6)

This is known to be the first of all the CG parameters. This
method ensures the global convergence of the exact line
search. A nice property of theHSmethod is that it satisfies the
conjugacy condition, regardless of whether the line search is
exact or inexact [38]. However, this method does not satisfy
the global convergence property when used with an inexact
line search.

In this paper, the method of Zhang et al. [25] is modified
with the help of another efficient CG parameter proposed
by Wei et al. [39]. An attractive feature of the new three-
term HS method is that it satisfies the sufficient descent
condition regardless of the line search used. Furthermore,
our modification is globally convergent for both convex and
nonconvex functions when using an inexact line search.
Numerical experiments show that the new modification
is more efficient and robust than the MTTHS algorithm
proposed by Zhang et al. [25]. The second aspect of this
paper is to quantify the improvement of the three-term CG
method over two-term approaches. To do this, we consider
the efficient two-term CG method [40] given by

𝛽𝐷𝐻𝑆𝑘 = 𝑔𝑘2 − (𝑔𝑘 / 𝑔𝑘−1) 𝑔𝑇𝑘 𝑔𝑘−1𝜇 𝑔𝑇𝑘 𝑑𝑘−1 + 𝑑𝑇
𝑘−1

𝑦𝑘−1 . (7)

This DHS [40] method is one of the more efficient CG
techniques, as it possesses the sufficient descent property and
offers global convergence under Wolfe–Powell line search
conditions. The numerical results given by this method
are also convincing. Therefore, this two-term CG method
is compared with our new modification to quantify the
improvement offered by three-term CG methods.

The remainder of this paper is organized as follows. In
Section 2, the motivation for and construction of the three-
term HS CG method is discussed, and the general form
is presented in Algorithm A. Section 3 is divided into two
subsections, with Section 3.1 covering the sufficient descent
condition and the global convergence properties for convex
and nonconvex functions and Section 3.2 presenting detailed
numerical results to evaluate the proposed method. Finally,
Section 4 concludes this paper.

2. Motivation and Formulas

Zhang et al. [25] proposed the first three-term HS (TTHS)
method. This can be written as

𝑑𝑘 = {{{
−𝑔𝑘, if 𝑘 = 0,
−𝑔𝑘 + 𝛽𝐻𝑆𝑘 𝑑𝑘−1 − 𝜃𝐻𝑆𝑘 𝑦

𝑘−1
, if 𝑘 > 0, (8)

𝛽𝐻𝑆𝑘 = 𝑔𝑇𝑘𝑦𝑘−1/𝑑𝑇𝑘−1𝑦𝑘−1 and 𝜃𝐻𝑆𝑘 = 𝑔𝑇𝑘 𝑑𝑘−1/𝑑𝑇𝑘−1𝑦𝑘−1.
TTHS satisfies the descent property; if an exact line search

is used, then it reduces to the original HS method. Further,
to guarantee the global convergence properties of the search
direction given by (8), a modified (MTTHS) algorithm was
introduced with the search direction:

𝑑𝑘 = {{{
−𝑔𝑘, if 𝑘 = 0,
−𝑔𝑘 + 𝛽𝑀𝐻𝑆𝑘 𝑑𝑘−1 − 𝜃𝑀𝑘 𝑧

𝑘−1
, if 𝑘 > 0, (9)

where 𝛽𝑀𝐻𝑆𝑘 = 𝑔𝑇𝑘 𝑧𝑘−1/𝑑𝑇𝑘−1𝑧𝑘−1, 𝜃𝑀𝑘 = 𝑔𝑇𝑘 𝑑𝑘−1/𝑑𝑇𝑘−1𝑧𝑘−1 and𝑧𝑘 = 𝑦𝑘 + 𝑡‖𝑔(𝑥𝑘)‖𝑟𝑠𝑘.
As MTTHS was introduced to prove the global conver-

gence properties of the search direction in (8), the question
arises as towhy (8) is not used to prove the global convergence
properties. Instead of ignoring (8), it should bemade efficient
and globally convergent. Thus, there is room to modify (8) so
as to satisfy the global convergence properties. It is expected
that such a modification would outperform the MTTHS
algorithm numerically.

Wei et al. [39] proposed an efficient CG parameter given
by

𝛽𝑉𝐹𝑅
𝑘 = 𝜇1 𝑔𝑘2𝜇2 𝑔𝑇𝑘𝑑𝑘−1 + 𝜇3 𝑔𝑘−12 ,
for 𝜇1𝜖 (0, +∞) , 𝜇2𝜖 [𝜇1 + 𝜀1, +∞) , 𝜇3𝜖 (0, +∞) .

(10)

In this parameter, the term 𝜇2|𝑔𝑇𝑘 𝑑𝑘−1| plays an important role
in satisfying the sufficient descent and global convergence
properties. Thus, we take 𝜇2|𝑔𝑇𝑘 𝑑𝑘−1| from the denominator
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of the above parameter and use it with (8) to construct a new
modified three-term HS method. Hence,

𝛽𝐵𝑍𝐴𝑘 = 𝑔𝑇𝑘 (𝑔𝑘 − 𝑔𝑘−1)𝑑𝑇
𝑘−1

𝑦𝑘−1 + 𝜇 𝑔𝑇𝑘 𝑑𝑘−1 . (11)

It is known that the HS method does not converge globally
when the objective function is nonconvex. Further, Gilbert
and Nocedal [41] showed that the parameter 𝛽𝐻𝑆

𝑘
must

be nonnegative to achieve convergence for nonconvex or
nonlinear functions, i.e.,

𝛽𝐻𝑆+𝑘 = max {𝛽𝐻𝑆𝑘 , 0} . (12)

Applying the same technique to our parameter 𝛽𝐵𝑍𝐴𝑘 gives

𝛽𝐵𝑍𝐴+𝑘 = max{ 𝑔𝑇
𝑘
(𝑔𝑘 − 𝑔𝑘−1)𝑑𝑇

𝑘−1
𝑦𝑘−1 + 𝜇 𝑔𝑇𝑘 𝑑𝑘−1 , 0} , (13)

𝜃𝐵𝑍𝐴𝑘 = 𝑔𝑇𝑘 𝑑𝑘−1𝑑𝑇
𝑘−1

𝑦𝑘−1 + 𝜇 𝑔𝑇𝑘 𝑑𝑘−1 , (14)

where 𝜇 > 1. If the line search is exact, then the parameters𝛽𝐵𝑍𝐴𝑘 , 𝛽𝐵𝑍𝐴+𝑘 , and 𝜃𝐵𝑍𝐴𝑘 reduce to the original parameters 𝛽𝐻𝑆𝑘
[4],𝛽𝐻𝑆+𝑘 [41], andTTHS [25].Theprocedure of our proposed
three-step CG method is described in Algorithm A.

Algorithm A.

Step 0. Choose an initial point 𝑥0𝜖R𝑛, 𝜇 > 1, 0 < 𝜌 < 𝜎 < 1,
and set 𝑑0 = −𝑔0, 𝑘 fl 0.
Step 1. For convergence, if ‖𝑔𝑘‖ ≤ 𝜀 (= 10−6), then the
algorithm terminates; otherwise, go to step 2.

Step 2. Compute

𝑑𝑘 = {{{
−𝑔𝑘 if 𝑘 = 0,
−𝑔𝑘 + 𝛽𝐵𝑍𝐴𝑘 𝑑𝑘−1 − 𝜃𝐵𝑍𝐴𝑘 𝑦𝑘−1 if 𝑘 ≥ 1. (15)

𝑦𝑘−1 = 𝑔𝑘 −𝑔𝑘−1, 𝛽𝐵𝑍𝐴𝑘 and 𝜃𝐵𝑍𝐴𝑘 are given in (11) and (14).

Step 3. Determine the step size 𝛼𝑘 > 0 by theWolfe line search
(4).

Step 4. Compute the new point 𝑥𝑘+1.
Step 5. Set 𝑘 = 𝑘 + 1 and go to step 1.

3. Results and Discussion

This section contains a theoretical discussion and numerical
results. The first subsection considers the global convergence
properties of our proposed method and the second presents
the results from numerical computations.

3.1. Global Convergence Properties

Assumptions
(A1) The level set R0 = {𝑥|𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded.
(A2) In some neighborhood N of R0, the gradient 𝑔(𝑥)

is Lipschitz continuous on an open convex set 𝐸 that contains
R0, i.e., there exists a positive constant 𝐿 > 0 such that

𝑔 (𝑥𝑘) − 𝑔 (𝑥𝑘−1) ≤ 𝐿 𝑥𝑘 − 𝑥𝑘−1
for any 𝑥𝑘, 𝑥𝑘−1 ∈ 𝐸. (16)

Assumptions (A1) and (A2) imply that there exist positive
constants 𝛾 and 𝑏 such that

𝑔 (𝑥𝑘) ≤ 𝛾 ∀𝑥𝑘 ∈ R0, (17)
𝑥𝑘 − 𝑥𝑘−1 ≤ 𝑏 ∀𝑥𝑘, 𝑥𝑘−1 ∈ R0. (18)

We now prove the sufficient descent condition independent
of the line search 𝑔𝑇𝑘𝑑𝑘 = −‖𝑔𝑘‖2 and also ‖𝑔𝑘‖ ≤ ‖𝑑𝑘‖. From
(15), (11), and (14), we can write

𝑑𝑘 = −𝑔𝑘 + 𝛽𝐵𝑍𝐴𝑘 𝑑𝑘−1 − 𝜃𝐵𝑍𝐴𝑘 𝑦𝑘−1
𝑔𝑇𝑘 𝑑𝑘 = − 𝑔𝑘2 + (𝑔𝑇𝑘 (𝑔𝑘 − 𝑔𝑘−1) (𝑔𝑇𝑘 𝑑𝑘−1)𝑑𝑇

𝑘−1
𝑦𝑘−1 + 𝜇 𝑔𝑇𝑘 𝑑𝑘−1 )

− ((𝑔𝑇𝑘 𝑑𝑘−1) 𝑔𝑇𝑘 (𝑔𝑘 − 𝑔𝑘−1)𝑑𝑇
𝑘−1

𝑦𝑘−1 + 𝜇 𝑔𝑇𝑘 𝑑𝑘−1 ) ,
(19)

that is,

𝑔𝑇𝑘 𝑑𝑘 = − 𝑔𝑘2 . (20)

Hence, the sufficient descent condition holds regardless of the
line search. Now, we prove that

𝑔𝑘 ≤ 𝑑𝑘 . (21)

As we have 𝑔𝑇𝑘𝑑𝑘 = −‖𝑔𝑘‖2, taking the modulus on both sides
gives

𝑔𝑇𝑘 𝑑𝑘 = − 𝑔𝑘2 = 𝑔𝑘2 . (22)

By the Schwartz inequality, we have
𝑔𝑇𝑘 𝑑𝑘 ≤ 𝑔𝑘 𝑑𝑘 (23)

so
𝑔𝑘2 ≤ 𝑔𝑘 𝑑𝑘 (24)

or
𝑔𝑘 ≤ 𝑑𝑘 . (25)

Hence, we have

𝑔𝑇𝑘 𝑑𝑘 = − 𝑔𝑘2 ,𝑔𝑘 ≤ 𝑑𝑘 . (26)
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The HS method is well known for its conjugacy conditions,
such as

𝑑𝑇𝑘𝑦𝑘−1 = 0. (27)

By [15], CG methods that inherit (27) will be more efficient
than other CG parameters that do not inherit this property.
Dai and Liao [42] proposed the following conjugacy condi-
tion for an inexact line search:

𝑑𝑇𝑘𝑦𝑘−1 = −𝑡𝛼𝑘−1𝑔𝑇𝑘 𝑑𝑘−1, where 𝑡 > 0. (28)

Using the exact line search 𝑔𝑇𝑘 𝑑𝑘−1 = 0, (28) reduces to the
conjugacy condition in (27).

Lemma 1 (see [43]). Suppose there is an initial point 𝑥0 for
which Assumptions (A1) and (A2) hold. Now, consider the
method in the form of (2), in which 𝑑𝑘 is a descent direction
and 𝛼𝑘 satisfies the Wolfe line search condition (4). Then

∞∑
𝑘=0

(𝑔𝑇𝑘𝑑𝑘)2𝑑𝑘2 < +∞. (29)

This is known as Zoutendijk’s condition and is used for proving
the global convergence of a CGmethod. This condition together
with (26) shows that

∞∑
𝑘=0

𝑔𝑘4𝑑𝑘2 < +∞. (30)

Definition 2. The function 𝑓 is called uniformly convex [36]
onR𝑛 if there exists a positive constant 𝑚 such that

𝑚𝑑𝑘2 ≤ 𝑑𝑇∇2𝑓 (𝑥𝑘) 𝑑 ∀𝑥, 𝑑 ∈ R
𝑛. (31)

We now show the global convergence of Algorithm A for
uniformly convex functions.

Lemma 3. Let the sequences (𝑥𝑘) and (𝑑𝑘) be generated by
Algorithm A and suppose that (31) holds. Then,

𝑧1𝛼𝑘 𝑑𝑘2 ≤ −𝑔𝑇𝑘𝑑𝑘, (32)

where 𝑧1 = (1 − 𝜌)−1(𝑚/2).
Proof. For details, see Lemma 2.1 of [44].

Theorem 4. Let the conditions in Assumptions (A1) and (A2)
hold and the function 𝑓(𝑥) be uniformly convex. Then,

lim
𝑘→∞

𝑔𝑘 = 0. (33)

Proof. As

𝛽𝐵𝑍𝐴𝑘 = 𝑔𝑇𝑘 (𝑔𝑘 − 𝑔𝑘−1)𝑑𝑇
𝑘−1

𝑦𝑘−1 + 𝜇 𝑔𝑇𝑘 𝑑𝑘−1 ,
⟨𝑑𝑘−1, 𝑦𝑘−1⟩ = ⟨𝑑𝑘−1, 𝑔𝑘 − 𝑔𝑘−1⟩

= ⟨𝑑𝑘−1, 𝑔𝑘⟩ − ⟨𝑑𝑘−1, 𝑔𝑘−1⟩ .
(34)

Then, using the secondWolfe condition (4) and the sufficient
descent condition,

⟨𝑔 (𝑥𝑘 + 𝛼𝑘𝑑𝑘) , 𝑑𝑘⟩ ≥ 𝜎1 ⟨𝑔𝑘, 𝑑𝑘⟩ ,
⟨𝑔𝑘, 𝑑𝑘⟩ = − 𝑔𝑘2 ,

(35)

we have

⟨𝑑𝑘−1, 𝑦𝑘−1⟩ = ⟨𝑑𝑘−1, 𝑔𝑘⟩ − ⟨𝑑𝑘−1, 𝑔𝑘−1⟩
≥ 𝜎1 ⟨𝑔𝑘−1, 𝑑𝑘−1⟩ − ⟨𝑔𝑘−1, 𝑑𝑘−1⟩
= − (1 − 𝜎1) ⟨𝑔𝑘−1, 𝑑𝑘−1⟩
= (1 − 𝜎1) 𝑔𝑘−12 .

(36)

From (11), (32), and (36) and Assumption (A2),

𝛽𝐵𝑍𝐴𝑘  ≤

𝑔𝑇𝑘 (𝑔𝑘 − 𝑔𝑘−1)𝑑𝑇
𝑘−1

𝑦𝑘−1
 ≤

𝑔𝑘 𝐿 𝑥𝑘 − 𝑥𝑘−1(1 − 𝜎1) 𝑔𝑘−12
= 𝑔𝑘 𝐿 𝑠𝑘−1(1 − 𝜎1) (−𝑔𝑇

𝑘−1
𝑑𝑘−1)

≤ 𝐿 𝑔𝑘 𝛼𝑘−1 𝑑𝑘−1(1 − 𝜎1) 𝑧1𝛼𝑘−1 𝑑𝑘−12
= 𝐿 𝑔𝑘(1 − 𝜎1) 𝑧1 𝑑𝑘−1 .

(37)

Let us suppose that (1 − 𝜎1)𝑧1 = 𝑧2, where 0 < 𝜎1 < 1 and
z1 > 0 so that z2 > 0. Thus,

𝛽𝐵𝑍𝐴𝑘  ≤ 𝐿 𝑔𝑘𝑧2 𝑑𝑘−1 ⇒ 𝛽𝐵𝑍𝐴𝑘  𝑑𝑘−1 ≤ 𝐿 𝑔𝑘𝑧2 . (38)

Now,

𝜃𝐵𝑍𝐴𝑘  ≤

𝑔𝑇𝑘 𝑑𝑘−1𝑑𝑇
𝑘−1

𝑦𝑘−1
 ≤

𝑔𝑘 𝑑𝑘−1(1 − 𝜎1) 𝑧1𝛼𝑘−1 𝑑𝑘−12
𝜃𝐵𝑍𝐴𝑘  𝑦𝑘−1 ≤ 𝑔𝑘 𝑑𝑘−1 𝑦𝑘−1(1 − 𝜎1) 𝑧1𝛼𝑘−1 𝑑𝑘−12

≤ 𝑔𝑘 𝑑𝑘−1 𝐿 𝑠𝑘−1𝑧2𝛼𝑘−1 𝑑𝑘−12
= 𝑔𝑘 𝑑𝑘−1 𝐿𝛼𝑘−1 𝑑𝑘−1𝑧2𝛼𝑘−1 𝑑𝑘−12 = 𝐿 𝑔𝑘𝑧2 .

(39)

Combining (38) and (39) with (15), we obtain
𝑑𝑘 ≤ 𝑔𝑘 + 𝛽𝐵𝑍𝐴𝑘  𝑑𝑘−1 + 𝜃𝐵𝑍𝐴𝑘  𝑦𝑘−1

≤ 𝑔𝑘 + 𝐿 𝑔𝑘𝑧2 + 𝐿 𝑔𝑘𝑧2 = 𝑔𝑘 + 2𝐿 𝑔𝑘𝑧2
≤ (1 + 2𝐿𝑧2 )

𝑔𝑘 .
(40)
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Now, let √𝐶 = 1 + 2𝐿/𝑧2 so that
𝑑𝑘 ≤ √𝐶 𝑔𝑘 , (41)

and we get ‖𝑑𝑘‖2 ≤ 𝐶‖𝑔𝑘‖2. This implies that

1
𝐶 𝑔𝑘2 ≤ 1𝑑𝑘2𝑔𝑘4𝑔𝑘2 ≤ 𝐶 𝑔𝑘4𝑑𝑘2 .

(42)

Hence, by (30), we have

lim
𝑘→∞

𝑔𝑘2 ≤ 𝐶 lim
𝑘→∞

𝑔𝑘4𝑑𝑘2 = 0. (43)

We are now going to prove the global convergence of
Algorithm A for nonconvex functions.

Lemma 5. Suppose that Assumptions (A1) and (A2) hold. Let
the sequence (𝑥𝑘) be generated by Algorithm A. If there exists a
constant 𝜖 > 0 such that ‖𝑔𝑘‖ ≥ 𝜖 for every 𝑘 ≥ 0, then

∞∑
𝑘=0

𝑢𝑘+1 − 𝑢𝑘2 < +∞, (44)

where 𝑢𝑘 = 𝑑𝑘/‖𝑑𝑘‖.
Proof. As ‖𝑔𝑘‖ ≤ ‖𝑑𝑘‖ and 𝑔𝑇𝑘 𝑑𝑘 = −‖𝑔𝑘‖2, and also ‖𝑔𝑘‖ ≥ 𝜖
for all 𝑘, then ‖𝑑𝑘‖ > 0 for all 𝑘. Hence, 𝑢𝑘 is well defined. If

𝑟𝑘 = −(1 + 𝜃𝐵𝑍𝐴𝑘 𝑔𝑘𝑇𝑦𝑘−1/ 𝑔𝑘2) 𝑔𝑘𝑑𝑘 ,
𝛿𝑘 = 𝛽𝐵𝑍𝐴+𝑘

𝑑𝑘−1𝑑𝑘 ,
(45)

then 𝑢𝑘 = 𝑟𝑘 + 𝛿𝑘𝑢𝑘−1, where 𝑢𝑘 and 𝑢𝑘−1 are unit vectors.
Therefore,

𝑟𝑘 = 𝛿𝑘𝑢𝑘 − 𝑢𝑘−1 = 𝑢𝑘 − 𝛿𝑘𝑢𝑘−1 . (46)

As 𝛿𝑘 ≥ 0,
𝑢𝑘 − 𝑢𝑘−1 ≤ (1 + 𝛿𝑘) (𝑢𝑘 − 𝑢𝑘−1)

≤ 𝑢𝑘 − 𝛿𝑘𝑢𝑘−1 + 𝛿𝑘𝑢𝑘 − 𝑢𝑘−1
= 2 𝑟𝑘 .

(47)

Now, from Assumption (A2), (14), and (18),

𝜃𝐵𝑍𝐴𝑘 
𝑔𝑇𝑘  𝑦𝑘−1𝑔𝑘2 ≤ 

𝑔𝑇𝑘 𝑑𝑘−1𝜇 𝑔𝑇𝑘 𝑑𝑘−1

𝑔𝑇𝑘  𝑦𝑘−1𝑔𝑘2

≤ 𝐿 𝑥𝑘 − 𝑥𝑘−1𝜇 𝑔𝑘 ≤ 𝐿𝑏𝜇𝜖 .
(48)

From (17), (18), and (48), there exists a constant 𝑁1 ≥ 0 such
that−(1 + 𝜃𝐵𝑍𝐴𝑘 𝑔𝑘𝑇𝑦𝑘−1𝑔𝑘2 )𝑔𝑘


≤ 𝑔𝑘 + (𝜃𝐵𝑍𝐴𝑘 

𝑔𝑇𝑘  𝑦𝑘−1𝑔𝑘2 )𝑔𝑘 ≤ 𝛾 + 𝐿𝑏𝜖𝜇 𝛾
= 𝑁1.

(49)

From (30) and (49), we obtain
∞∑
𝑘=0

𝑟𝑘2 ≤
∞∑
𝑘=0

𝑁21𝑑𝑘2 ≤ ∞∑
𝑘=0

𝑁21𝑔𝑘4
𝑔𝑘4𝑑𝑘2

≤ 𝑁21𝜖4
∞∑
𝑘=0

𝑔𝑘4𝑑𝑘2 < +∞.
(50)

Combining this with (44) completes the proof.

Theorem 6. Let Assumptions (A1) and (A2) hold. Then, the
sequence (𝑥𝑘) generated by Algorithm A satisfies

lim
𝑘→∞

inf 𝑔𝑘 = 0. (51)

Proof. Suppose that lim𝑘→∞inf‖𝑔𝑘‖ ̸= 0. Then, there exists a
constant 𝜖 > 0 such that ‖𝑔𝑘‖ ≥ 𝜖 ∀𝑘 ≥ 0.

The proof has two parts.

Part 1. See Theorem 2.2, step 1 in [36].

Part 2. From (15) and (49), we have
𝑑𝑘2

≤ (𝛽𝐵𝑍𝐴+𝑘  𝑑𝑘−1 + −(1 + 𝜃𝐵𝑍𝐴𝑘 𝑔𝑇𝑘𝑦𝑘−1𝑔𝑘2 )𝑔𝑘
)
2

≤ (𝛽𝐵𝑍𝐴+𝑘  𝑑𝑘−1 + 𝑁1)2
≤ 2 (𝛽𝐵𝑍𝐴+𝑘  𝑑𝑘−1)2 + 2𝑁21
≤ 2(𝑔𝑇𝑘 (𝑔𝑘 − 𝑔𝑘−1)𝜀 )2 𝑑𝑘−12 + 2𝑁21
≤ 2(𝑔𝑘 𝐿 𝑠𝑘−1𝜀 )2 𝑑𝑘−12 + 2𝑁2

1

≤ 2𝛾2𝐿2 𝑠𝑘−12𝜀2 𝑑𝑘−12 + 2𝑁21 .

(52)

In the beginning of the proof, we suppose that
lim𝑘→∞inf‖𝑔𝑘‖ ̸= 0. Then, there exist a positive constant 𝜖
and some 𝛾 > 0 such that ‖𝑔𝑘‖ > 𝛾 > 0. Thus,

∞∑
𝑘=0

(𝑔𝑇𝑘 𝑑𝑘)2𝑑𝑘2 > +∞ ⇒ 1𝑑𝑘2 > +∞, (53)

which contradicts Assumption (A2), (30), and (52). There-
fore,
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Figure 1: Performance profiles based on number of iterations.

lim
𝑘→∞

inf 𝑔𝑘 = 0. (54)

3.2. Numerical Discussion. We now report the results of sev-
eral numerical experiments. Zhang et al. [25] demonstrated
the superior numerical efficiency of the MTTHS algorithm
with respect to PRP+ [41], CG DESCENT [45], and L-BFGS
[46] using the Wolfe line search, while Dai and Wen [40]
reported the numerical efficiency of the DHS method. Thus,
we compare the efficient three-term HS method proposed in
this paper (named the Bakhtawar–Zabidin–Ahmad method,
BZA) with MTTHS [25] and DHS [40]. The BZA method
was implemented using theWolfe–Powell line search (4) with𝜌 = 0.1, 𝜎 = 0.5, and 𝜇 = 2.

All codes were written inMATLAB 7.1 and run on an Intel
Core i5 system with 8.0 GB RAM and a 2.60GHz processor.
Table 1 lists the numerical results given by BZA, MTTHS,
and DHS for a number of test functions. In the Table 1,
NI/CT/GE/FE represents number of iterations, CPU time,
number of gradient evaluations and number of function
evaluations.

According toMoré et al. [47], the efficiency of anymethod
can be determined by its performance on a number of
test functions. The number of test functions should not be
too large or too small, with 75 considered ideal for testing
the efficiency of any method. The test functions in Table 1
were taken from Andrei’s test function collection [48] with
standard initial points and dimensions ranging from 2 to
10000.

If the solution had not converged after 500 seconds,
the program was terminated. Generally, convergence was
achieved within this time limit; functions for which the time
limit was exceeded are denoted by “F” for Fail in Table 1.

The Sigma plotting software was used to graph the data.
We adopt the performance profiles given by Dolan and Moré
[49]. Thus, MTTHS, DHS, and BZA are compared in terms
of NI/CT/GE/FE in Figures 1–4. For each method, we plotted
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Figure 2: Performance profiles based on CPU time.
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Figure 3: Performance profiles based on gradient evaluation.

the fraction 𝑃 of problems that were solved correctly within
a factor 𝑡 of the best time. In the figures, the uppermost
curve is the method that solves the most problems within a
factor t of the best time. From Table 1 and Figures 1–4, the
BZA method outperforms the MTTHS algorithm and DHS
method in terms of NI, CT, GE, and FE.

The BZA method solves around 99.5% of the problems,
and the performance of BZA is 85% better than that of DHS
and 77% better than that of MTTHS. We can also conclude
that, on average, three-term conjugate gradient methods
are 85% better than two-term conjugate gradient methods
(DHS).
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Table 1: List of test problem functions.

Problem n MTTHS DHS BZA
NI/CT/GE/FE NI/CT/GE/FE NI/CT/GE/FE

Extended 2 1323/9.3448/4645/3321 1267/10.1753/4756/3488 364/3.1079/1365/1000
Trigonometric -1 50 4533/28.4686/15849/11315 3771/25.5829/14146/10374 2376/18.4341/8910/6533
function 500 11125/67.51/38848/27722 8163/55.0526/30616/22452 5904/46.5577/22140/16235
HIMMELBH(Cute) 2 9/0.4680/77/67 9/0.4538/77/67 9/0.4471/77/67

50 9/0.4572/77/67 9/0.4574/77/67 9/0.4620/77/67
5000 9/2.0529/77/67 9/2.0198/77/67 9/1.9930/77/67

Power function 2 3/0.3968/13/9 2/0.3881/9/6 2/0.3884/9/6
50 212/2.0540/849/636 3431/24.0407/13725/10293 65/0.7751/261/195
1000 4612/33.5261/18449/13836 F/F/F/F 1565/11.567/6261/4695

DENSCHNF 2 11/0.6773/64/52 12/0.5399/67/54 8/0.4719/50/41
50 14/0.5959/78/63 14/0.5260/75/60 9/0.4739/54/44

5000 10/1.7879/56/45 14/2.1633/75/60 9/1.6783/54/44
Sum Squares 2 3/0.4203/13/9 2/0.3861/9/6 2/0.3966/9/6
function 50 47/0.7252/189/141 39/0.6318/157/117 39/0.6162/157/117

1000 229/2.4542/917/687 1333/11.3244/5333/3999 191/1.9552/765/573
TRIDIA(Cute) 2 3/0.4056/13/9 2/0.3980/9/6 2/0.4024/9/6

50 100/1.6029/401/300 193/1.7752/773/579 56/0.7390/225/168
1000 604/5.2318/2417/1812 16019/122.48/64077/48057 349/3.22771397/1047

SINQUAD(Cute) 2 25/0.4804/102/76 1734/12.6402/6076/4341 25/0.5218/101/75
5000 F/F/F/F F/F/F/F 411/198.6198/2837/2425
10000 F/F/F/F F/F/F/F 417/493.6830/2650/2232

Generalized 50 23/0.5659/101/77 25/0.5348/109/83 21/0.5187/94/72
Quartic GQ2 100 23/0.5588/103/79 31/0.5938/133/101 22/0.5233/96/73
function. 5000 26/2.9409/116/89 23/2.6517/103/79 25/2.7548/110/84
Generalized 50 50/0.7767/248/197 43/0.6750/192/148 42/0.6934/198/155
Triagonal-2 500 43/1.5284/206/162 46/1.4306/209/162 38/1.4029/182/143
function 1000 45/2.1144/214/168 47/2.1176/214/166 39/1.8380/181/141
Extended 2 8/0.4315/32/23 9/0.4256/37/27 6/0.4158/25/18
Trigonometric -2 50 33/0.6514/148/114 26/0.5848/124/97 22/0.5586/106/83
function 7000 85/63.5473/626/540 71/44.8822/440/368 33/25.6757/251/217
LIARWHD 100 20/0.5798/136/115 16/0.5065/95/78 14/0.4865/84/69

5000 50/8.8611/390/339 53/8.7426/384/330 24/4.4628/189/164
10000 33/14.6362/245/211 53/19.3591/331/277 23/9.7171/165/141

Generalized 2 6/0.4058/27/20 6/0.4127/27/20 5/0.4008/23/17
Quartic GQ1 6000 11/1.8086/47/35 10/1.6695/43/32 10/1.7246/43/32
function 10000 11/3.4464/47/35 10/3.0683/43/32 10/3.0317/43/32
Extended QP2 2 17/0.8111/98/80 21/0.6076/125/103 16/0.5702/111/94
Quadratic Penalty 5000 226/56.4248/2247/2020 F/F/F/F 82/25.7327/1018/935
function 10000 137/95.8189/1457/1319 F/F/F/F 82/67.1490/1024/941
Extended Maratos 2 20/0.6479/131/110 43/0.8956/225/181 30/0.8305/193/162
function 1000 26/0.8290/176/149 F/F/F/F 30/0.8300/193/162

5000 F/F/F/F 45/5.8526/233/187 32/6.0318/243/210
DENSCHNC 2 6/0.4508/36/29 10/0.4624/51/40 6/0.4486/34/27

50 7/0.4499/38/30 10/0.4590/51/40 6/0.4696/34/27
600 8/0.5625/44/35 15/0.6240/130/114 7/0.5445/38/30

DIXON3DQ (Cute) 2 3/0.4835/13/9 2/0.3904/9/6 2/0.3878/9/6
20 106/1.2286/424/317 262/2.4917/1061/798 90/1.0709/360/269
600 2266/18.9637/9064/6797 F/F/F/F 2185/18.4756/8740/6554
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Table 1: Continued.

Problem n MTTHS DHS BZA
NI/CT/GE/FE NI/CT/GE/FE NI/CT/GE/FE

EDENSCH function 50 3094/15.3448/9288/6193 3094/16.4610/9288/6193 3089/15.3239/9273/6183
1000 3094/17.6514/9288/6193 3094/18.4918/9288/6193 3089/17.6263/9273/6183
5000 3094/198.8550/9288/6193 3094/199.0048/9288/6193 3089/198.2240/9273/6183

Diagonal 2 function 50 749/6.8385/2626/1876 495/3.0663/1488/992 490/3.3271/1473/982
1000 16517/126.4914/59593/43075 8569/53.8256/25711/17141 8563/53.3166/25693/17129
10000 F/F/F/F 16484/283.6569/49456/32971 16478/279.44/49438/32959

DQDRTIC(Cute) 50 12/0.4358/49/36 5/0.4070/21/15 5/0.3940/21/15
5000 14/1.6324/57/42 5/0.7966/21/15 5/0.8084/21/15
10000 14/3.7862/57/42 5/1.6205/21/15 5/1.5979/21/15

Perturbed 50 43/0.6470/173/129 38/0.5837/153/114 38/0.6313/153/114
Quadratic function 1000 207/2.1710/829/621 1397/10.8367/5589/4196 187/1.9258/749/561

5000 481/44.4081/1925/1443 5125/435.0973/20501/15375 425/39.4768/1701/1275
Diagonal 4 function 50 4/0.3919/17/12 2/0.4015/9/6 2/0.3963/9/6

1000 5/0.4493/21/15 2/0.4005/9/6 2/0.4039/9/6
5000 5/0.8522/21/15 2/0.5598/9/6 2/0.5698/9/6

Extended Beale 50 15/0.4685/74/58 68/0.8247/281/212 15/0.4890/72/56
function 100 16/0.4739/74/57 68/0.8245/281/212 15/0.4855/72/56

500 16/0.5450/74/57 68/0.8840/281/212 15/0.5050/72/56
DENSCHNA 50 9/0.4336/44/34 24/0.5609/102/77 9/0.4462/44/34

1000 10/0.5912/48/37 26/0.7584/110/83 9/0.5909/44/34
5000 10/1.6387/46/35 26/3.0388/110/83 9/1.4694/44/34

STAIRCASE S1 20 79/0.9390/316/236 202/1.7976/818/615 72/0.8546/290/217
50 215/2.0539/860/644 1117/8.6778/4503/3385 183/1.6893/732/548
100 426/3.4107/1705/1278 3896/29.4293/15737/11840 372/3.0840/1490/1117

NONDQUAR 50 28674/216.605/114767/86092 F/F/F/F 14756/104.86/59098/44341
100 32283/244.026/129157/96873 F/F/F/F 17900/127.16/71670/53769
500 F/F/F/F F/F/F/F 32748/241.1/131043/98294

Extended Wood 500 128/1.5299/605/476 942/8.5789/4143/3200 96/1.4535/551/454
1000 146/1.7443/676/529 946/8.8946/4100/3153 101/1.7151/606/504
10000 213/57.8431/979/765 956/249.5361/4202/3245 89/31.8805/545/455

Extended Penalty 20 33/0.6528/144/110 37/0.7031/158/120 22/0.5670/98/75
300 F/F/F/F F/F/F/F 64/1.2248/365/300
600 F/F/F/F F/F/F/F 28/0.7428/172/143

Sphere function 2 1/0.4750/5/3 1/0.3777/5/3 1/0.3902/5/3
1000 1/0.3904/5/3 1/0.3877/5/3 1/0.3860/5/3
5000 1/0.4687/5/3 1/0.4576/5/3 1/0.4616/5/3

ARGLINB(Cute) 2 1/0.3913/5/3 1/0.3903/5/3 1/0.3840/5/3
50 1/0.3868/5/3 1/0.3941/5/3 1/0.3832/5/3
500 2/0.4279/9/6 2/0.4266/9/6 2/0.4246/9/6

Extended White 2 28/0.7668/192/163 69/1.2885/354/284 21/0.6586/136/114
and Holst function 500 29/0.9337/213/183 102/1.5134/488/385 21/0.6586/136/114

5000 23/4.6845/168/144 125/14.3950/577/451 21/3.8322/136/114
Extended Hiebert 50 2040/33.6457/16304/14263 F/F/F/F 838/21.7040/9977/9138

200 F/F/F/F F/F/F/F 901/23.007/10513/9611
1000 F/F/F/F F/F/F/F F/F/F/F
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Table 1: Continued.

Problem n MTTHS DHS BZA
NI/CT/GE/FE NI/CT/GE/FE NI/CT/GE/FE

Quadratic QF1 50 44/0.6479/177/132 38/0.6068/153/114 38/0.6306/153/114
500 147/1.4565/589/441 574/4.7399/2297/1722 131/1.3814/525/393
10000 744/179.6695/2977/2232 F/F/F/F 606/146.3228/2425/1818

Quartic 50 11579/66.6569/34740/23160 11579/66.7991/34740/23160 11574/64.593/34725/23150
500 24975/148.8391/74928/49952 24975/146.0726/74928/49952 24968/142.57/74907/49938
1000 31473/201.6973/94422/62948 31473/218.8475/94422/62948 31466/191.54/94401/62934

Shallow function 1000 10/0.5712/45/34 48/0.7436/200/151 10/0.5557/45/34
5000 11/1.4925/49/37 48/4.9218/200/151 10/1.4117/45/34
10000 12/3.6303/53/40 50/13.2094/209/158 10/3.1569/45/34

VARDIM 50 28/1.1175/322/293 143/4.0110/1604/1460 16/0.8685/221/204
100 20/1.0429/286/265 293/5.9711/2604/2310 17/0.9508/250/232
500 41/2.2545/736/694 1557/25.9389/11724/10166 34/1.8745/645/610

DIXMAANA 6000 8/1.8623/35/26 8/1.8913/35/26 8/1.8504/35/26
6015 8/1.9276/35/26 8/1.8546/35/26 8/1.9200/35/26
6030 8/1.9301/35/26 8/1.9700/35/26 8/1.8819/35/26

DIXMAANB 9 7/0.4044/30/22 7/0.4141/30/22 7/0.4036/30/22
300 7/0.4550/30/22 7/0.4776/30/22 8/0.4415/34/25
6000 8/1.8966/34/25 8/1.8364/34/25 9/2.0362/38/28

DIXMAANC 9 6/0.4033/29/22 6/0.4191/29/22 6/0.4168/29/22
300 7/0.4701/33/25 6/0.4721/29/22 7/0.4707/33/25
6000 7/2.0093/33/25 7/2.0148/33/25 8/2.1736/37/28

DIXMAAND 90 7/0.4450/34/26 8/0.4333/38/29 8/0.4263/38/29
300 8/0.5272/38/29 8/0.5406/38/29 8/0.5418/38/29
6000 9/2.4166/42/32 7/2.0165/34/26 7/2.0556/34/26

DIXMAANE 9 19/0.5080/88/68 23/0.5720/107/83 18/0.4832/84/65
300 84/1.5278/421/336 1211/7.7407/3707/2495 84/2.1712/420/335
6000 331/81.2267/1655/1323 F/F/F/F 333/83.0952/1685/1351

EG2 2 5/0.4912/25/19 8/0.4128/40/31 4/0.4139/20/15
20 160/1.4413/642/481 1958/14.8104/8106/6147 110/1.0755/447/336
50 F/F/F/F 48/0.7452/228/179 656/5.3312/2773/2116

EG3 20 21/0.5445/88/66 25/0.5611/102/76 14/0.4851/60/45
50 25/0.5965/110/84 43/0.7618/207/163 25/0.5236/69/53
100 F/F/F/F F/F/F/F 20/0.5290/88/67

Fletcher function 50 24/0.5879/126/101 23/0.5870/123/99 22/0.5687/118/95
6000 27/5.2874/161/133 28/5.4497/168/139 26/4.7950/152/125
10000 27/10.4312/161/133 27/10.6308/163/135 26/9.8879/155/128

Extended 50 8/0.4229/37/28 11/0.4510/49/37 9/0.4370/41/31
Himmelblau 1000 8/0.4706/39/30 12/0. 5342/53/40 9/0.4775/41/31
function 5000 9/1.4066/43/33 13/1.6584/57/43 9/1.3377/41/31
Extended 2 11/0.5889/75/63 33/0.6806/163/129 10/0.4929/69/58
Freudenstein 50 F/F/F/F 36/0.7871/230/193 10/0.4700/69/58
and Roth function 200 16/0.5442/102/85 37/0.8501/241/203 11/0.4993/73/61
Dixon and Price 20 132/1.6580/615/482 333/3.2018/1409/1075 131/1.5682/603/471
function 50 185/2.5157/1034/848 478/4.7648/2199/1720 165/2.2048/900/734

100 523/6.5773/2938/2414 1243/11.1703/5672/4428 439/5.4568/2422/1982
Raydan 1 function 2 106/1.3363/319/212 105/0.8502/316/210 99/0.8493/298/198

50 59/0.8854/237/177 88/1.0277/364/275 58/0.7714/233/174
100 70/0.9532/282/211 155/1.5252/625/469 70/0.8892/282/211

Raydan 2 function 2 2/0.4129/9/6 2/0.3995/9/6 3/0.3971/13/9
50 2/0.3991/9/6 2/0.3981/9/6 3/0.4176/13/9
100 2/0.4002/9/6 2/0.4123/9/6 3/0.3906/13/9
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Table 1: Continued.

Problem n MTTHS DHS BZA
NI/CT/GE/FE NI/CT/GE/FE NI/CT/GE/FE

NONDIA(SHANO- 500 9/0.5483/63/53 11/0.4937/70/58 7/0.4938/55/47
78) 6000 14/2.7799/82/67 46/6.5297/212/165 9/2.3946/70/60

10000 16/6.3412/96/79 74/21.4446/339/264 15/6.2113/92/76
Extended Block 500 30/1.0226/52000/44250 32/0.9386/32250/24000 39/1.1887/44000/34000
Diagonal BD1 1000 39/3.6068/195000/175000 33/1.3795/66500/49500 39/1.6724/88500/68500
function 10000 38/22.3738/1070000/875000 35/14.5725/705000/525000 43/20.1088/965000/745000
SINCOS 2000 F/F/F/F F/F/F/F 8/0.6960/39/30

5000 F/F/F/F F/F/F/F 8/1.2553/39/30
10000 F/F/F/F F/F/F/F 8/2.7535/39/30

DIXMAANH 90 58/0.8867/290/231 388/2.5254/1230/841 57/1.0443/286/228
300 81/1.5051/408/326 1264/7.8924/3872/2607 81/1.3140/408/326
600 126/4.4107/630/503 2407/40.8602/7294/4886 119/4.0122/596/476

Quadratic QF2 50 77/0.9476/330/252 107/1.1580/454/346 68/0.8775/293/224
function 200 183/1.7984/787/603 337/2.9913/1419/1081 139/1.5/610/470

2000 1150/34.4704/4862/3711 2903/85.3362/12110/9206 540/17.4638/2404/1863
Tridiagonal double 20 108/1.1547/438/329 1915/14.1311/7667/5751 101/1.1136/410/308
Bordered 50 407/3.3266/1633/1225 11157/78.2325/44633/33475 355/2.9421/1425/1069

500 6278/48.1130/25119/18840 13470/103.5476/53887/40416 4595/35.3993/18387/13791
Generalized 2 1323/8.3265/4645/3321 1267/8.4042/4756/3488 364/2.6867/1365/1000
Triagonal1 function 50 25/0.5255/103/77 28/0.504/115/86 24/0.5140/99/74

100 24/0.5630/99/74 27/0.6205/111/83 23/0.5242/95/71
Extended QP2 50 9/0.4269/49/39 15/0.4503/71/55 9/0.4190/49/39
Quadratic penalty 200 13/0.4682/70/56 14/0.6931/74/59 12/0.4620/66/53
function 3000 F/F/F/F F/F/F/F 17/1.5340/118/100
Extended 2 5/0.4089/22/16 6/0.4254/26/19 5/0.4095/22/16
DENSCHNB 500 5/0.4222/22/16 7/0.4313/30/22 6/0.4165/26/19
function 10000 5/1.7240/22/16 7/2.1577/30/22 6/1.9461/26/19
Extended three- 2 7/0.4187/30/22 13/0.4386/54/40 7/0.417/30/22
Exponential terms 50 7/0.4211/750/550 14/0.4492/1450/1075 7/0.4255/750/550

100 7/0.4378/1500/1100 14/0.4705/2900/2150 7/0.4183/1500/1100
DIXMAANF 9 23/0.6308/109/85 23/0.5828/109/85 19/0.5129/90/70

90 51/0.8509/256/204 386/2.4637/1229/842 51/1.1421/256/204
300 90/1.4444/451/360 1260/7.8258/3871/2610 90/1.5578/451/360

DIXMAANG 9 19/0.5318/95/75 26/0.5670/127/100 21/0.5403/103/81
90 83/1.2240/424/340 379/2.4949/1221/841 56/0.8767/280/223
300 137/1.8866/643/505 1241/14.5812/3834/2592 569/5.5495/2477/1907

Extended 2 25/0.7100/159/133 24/0.9013/120/95 27/0.7803/163/135
Rosenbrock 1000 14/0.8076/82/67 26/0.6537/128/101 28/0.7818/167/138
function 5000 19/2.8693/109/89 27/3.2102/132/104 30/4.4233/175/144
ARWHEAD 500 F/F/F/F F/F/F/F 10/0.4429/54/43

3000 F/F/F/F F/F/F/F 5/0.7593/38/32
8000 F/F/F/F F/F/F/F 7/2.5096/49/41

Hager function 2 4/0.4001/17/12 6/0.4188/25/18 4/0.4008/17/12
50 20/0.4789/82/61 24/0.5101/98/73 20/0.4738/82/61
100 24/0.5275/98/73 F/F/F/F 24/0.5382/111/86

Extended Powell 1000 4008/108.2/4032500/3030250 F/F/F/F 361/10.5/384000/293500
function 3000 1026/86.1/3124500/2354250 F/F/F/F 108/10.8/379500/297750

5000 2213/330/11330000/8562500 F/F/F/F 306/48/1652500/1268750
BIGGSB1 function 2 1/0.3861/5/3 1/0.3866/5/3 1/0.3895/5/3

20 53/0.7214/213/159 20/0.4869/80/59 20/0.4764/80/59
50 201/1.9444/804/602 867/7.1960/3500/2632 50/0.7281/200/149
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Table 1: Continued.

Problem n MTTHS DHS BZA
NI/CT/GE/FE NI/CT/GE/FE NI/CT/GE/FE

Extended Cliff 100 11657/87/2075150/1492250 39907/329/7892000/5896600 1674/12/293750/210000
5000 F/F/F/F F/F/F/F 1009/132/8857500/633250

ENGVAL8 2 7/0.4675/33/25 10/0.4709/45/34 7/0.4756/36/28
20 22/0.5657/99/76 32/0.6306/138/105 20/0.5382/90/69

Trecanni function 2 6/0.4146/26/19 6/0.4212/26/19 4/0.3982/18/13
GENROSEN-2 2 25/0.8096/159/133 24/0.5864/120/95 27/0.6770/163/135
Generalized Quartic function 2 6/0.4068/27/20 6/0.4082/27/20 5/0.4081/23/17
Diagonal 1 function 2 6/0.4015/25/18 7/0.4085/29/21 4/0.4207/18/13
Six Hump function 2 7/0.4112/31/23 7/0.4271/31/23 6/0.4064/27/20
Three Hump function 2 11/0.4441/52/40 11/0.4335/50/38 10/0.4397/47/36
Booth function 2 3/0.3930/13/9 2/0.4043/9/6 2/0.3919/9/6
Zett1 function 2 26/0.5067/105/78 30/0.5581/126/95 24/0.5046/102/77
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Figure 4: Performance profiles based on function evaluation.

4. Conclusion

We have proposed a modified three-term HS conjugate
gradient method. An attractive property of the proposed
method is that it produces a sufficient descent condition𝑔𝑇𝑘𝑑𝑘 = −‖𝑔𝑘‖2, regardless of the line search. The global
convergence properties of the proposed method have been
established under Wolfe line search conditions. Numerical
results show that the proposed method is more efficient and
robust than state-of-the-art three term (MTTHS) and two-
term (DHS) CG methods.
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