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This paper presents an experimental study that aims to compare the practical performance of well-knownmetaheuristics for solving
the parameter estimation problem in a dynamic systems context. The metaheuristics produce good quality approximations to the
global solution of a finite small-dimensional nonlinear programming problem that emerges from the application of the sequential
numerical direct method to the parameter estimation problem. Using statistical hypotheses testing, significant differences in the
performance of the metaheuristics, in terms of the average objective function values and average CPU time, are determined.
Furthermore, the best obtained solutions are graphically compared in relative terms by means of the performance profiles. The
numerical comparisons with other results in the literature show that the testedmetaheuristics are effective in achieving good quality
solutions with a reduced computational effort.

1. Introduction

The present paper addresses the problem of finding a set of
parameter values in a dynamic system model that calibrates
the model so that it can reproduce the existing experimental
data in the best possible way [1]. This is performed by
minimizing an objective function thatmeasures the goodness
of the fit. Thus, an objective function, which gives the sum
of the squared errors between the model predicted state
values and the observed values (at certain time instants of a
fixed interval), is minimized, subject to a system of ordinary
differential equations (ODE).The dynamic model defined by
the system of ODE simulates the time varying processes that
take place in a certain time interval. This problem is known
in the literature as the dynamic model based parameter
estimation (DMbPE) process. Solving this problem is crucial
in systems biology and medicine, with a great impact on
both pharmaceutical and biotechnological industries [2].The
problem is also very common in the chemical engineering

area [3] and it has been extensively used to describe physical
phenomena [4].The DMbPE problemmay involve nonlinear
differential-algebraic equations and a multiplicity of local
solutionsmay exist. Nonconvexity and ill-conditioning issues
of the problem may be addressed with efficient global
optimization (GO) methods and proper regularization tech-
niques [5]. The problem is even more difficult than that of an
algebraic model. The nonlinear dynamic behavior makes the
analytical approach rather complicated, if not impossible, for
most of the real phenomena. Numerical direct methods are
therefore good alternatives to solve theDMbPEproblem. Like
any parameter estimation problem, themain advantage is that
the intended global minimum is known in advance.Themost
well-known methods, like Levenberg-Marquardt, gradient
descent, and the Nelder-Mead method, which have been
extensively used in parameter estimation problems, are local
optimization methods and cannot guarantee convergence to
a global solution. They are able to exploit a specified search
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region around a given initial value, but the global solution is
difficult to find when the initial value is far from the required
solution. Algorithms for GO can be roughly divided into two
categories: exact algorithms and heuristics [6].

Sörensen and Glover [7] have defined metaheuris-
tic as follows: “A metaheuristic is a high-level problem-
independent algorithmic framework that provides a set of
guidelines or strategies to develop heuristic optimization
algorithms.” Further, an implementation of a heuristic opti-
mization algorithm that follows the strategies laid out in the
metaheuristic framework is also referred to as a metaheuris-
tic. This term appeared for the first time in a publication
by Glover [8]. Metaheuristics are approximate methods or
heuristics that are designed to search for good solutions with
less computational effort and time than the more classical
algorithms. While heuristics are designed to solve a specific
problem, metaheuristics are general-purpose algorithms that
can be applied to solve almost any optimization problem.
The metaheuristics evaluate a set of potential solutions of
an optimization problem and perform a series of operations
on those solutions in order to find different and hopefully
better solutions. Depending on the way these operations are
carried out, a metaheuristic can be classified as a local search,
constructive, or population-based metaheuristic. For details,
the reader is referred to [7].

Most metaheuristics use random procedures that invoke
artificial intelligence tools and simulate nature behaviors and
their performance does not depend on the properties of the
problem to be solved. They are alternative methods to find
good approximations to optimal solutions of GO problems.
In addition, they are derivative-free and easy to implement
[9]. Metaheuristics can locate the vicinity of global solutions
with relative efficiency although global optimality cannot be
guaranteed in a finite number of iterations. On the other
hand, exact methods for GO can guarantee global optimality
for certain problems but the required computational effort
increases often exponentially with the problem size [10, 11].

Previous use of metaheuristics, mainly those that use
metaphors based on natural evolution and on behavior of
animal swarms, to solve some DMbPE problems showed that
they are able to provide good quality solutions when real
experimental data and noisy artificial data are considered.
In [15], a hybrid metaheuristic algorithm that introduces
evolutionary operations, namely, mutation and crossover,
into the firefly algorithm (FA), is presented. Two variants of
the differential evolution (DE)method—a trigonometric and
a modified version—have been implemented in [16, 17]. The
authors in [2] developed a new procedure based on the scatter
search (SS) methodology. A slightly different version of the
SS, which uses the fmincon solver from Matlab (Matlab is a
registered trademark ofMathWorks, Inc.) as an improvement
method, is tested in [12] to solve three well-known DMbPE
problems, including the chemical isomerization of 𝛼-pinene.
This latter problem is analyzed and solved by the FA in [13].
Alternatively, exact methods for GO have also been used to
solve DMbPE problems.These include the spatial branch and
bound (BB) algorithm to compute a global solution of the
partially discretized DMbPE problem [18], the 𝛼-BB method
to obtain a global solution within an 𝜖-precision of the

completely discretized DMbPE problem [10], and a method
based on interval analysis and on the partially discretized
DMbPE [19]. In [14], a deterministic outer approximation
approach is applied to the reformulation of the DMbPE
problem as a finite NLP by applying a complete discretization
using orthogonal collocation on finite elements.

Since the problem of estimating the parameters of a
dynamic model is important, the contribution of this study
is concerned with the implementation and practical compar-
ison of five very simple and easy to implementmetaheuristics,
hybridized with a local intensification phase, when solving
the finite nonlinear programming (NLP) problem that arises
when a numerical direct method of a sequential type is used
to locate a global optimal solution to the DMbPE problem.
The unknown parameters are the decision variables of the
NLP problem.

The selected metaheuristics are very popular and have
been used to solve a variety of real-world applications. The
selection includes the FA [20], the Harmony Search (HS)
algorithm [21], the DE algorithm [22], the Artificial Bee
Colony (ABC) algorithm [23], and the Directed Tabu Search
(DTS) algorithm [24]. During the local intensification phase,
the well-known Hooke-and-Jeeves (HJ) local search [25] is
implemented with all the metaheuristics. These local search
enhancements lead to much faster convergence and provide
good quality solutions. The practical comparison carried out
in the present study aims to analyze the performance of each
metaheuristic in terms of the quality of the obtained solu-
tions. To test the five metaheuristics, nine DMbPE problems
were selected from the literature [4, 10, 13, 19, 26], yielding
12 instances due to different experimental data.The problems
are described in the Appendix.

The remainder of the paper proceeds as follows. Section 2
addresses the DMbPE problem and the sequential numer-
ical direct method, and Section 3 introduces the selected
metaheuristics. Section 4 contains the results of all the
numerical experiments and the conclusions are summarized
in Section 5.

2. Sequential Direct Method to Solve the
DMbPE Problem

To solve theDMbPEproblem, the sequential numerical direct
method is used. For completeness, theDMbPEproblem reads
as follows. Find 𝑝∗ such that

𝐽 (𝑝∗) = min
�푝

𝐽 (𝑝) ≡
�퐷

∑
�푗=1

�푂

∑
�푖=1

(𝑦�푗 (𝑡�푖) − 𝑦obs
�푗,�푖 )
2

subject to 𝑦�耠 (𝑡) = 𝑔 (𝑡, 𝑦 (𝑡) , 𝑝) ∀𝑡 ∈ [𝑡0, 𝑡�푓]
𝑦 (𝑡0) = (𝑦10, . . . , 𝑦�퐷0)
𝑝L ≤ 𝑝 ≤ 𝑝U,

(1)

where 𝐽 : R�푛 → R represents the objective function
that depends on 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝�푛), a vector of the 𝑛
decision variables (the parameters that need to be estimated);
𝑦 = (𝑦1, 𝑦2, . . . , 𝑦�퐷) is the vector (with length 𝐷) of the
state variables that depend on 𝑡 (the independent variable);
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and 𝑦�耠 represents the vector with the derivatives of 𝑦 with
respect to 𝑡. 𝑂 represents the number of experimental data
available for each 𝑦�푗; 𝑦obs

�푗,�푖 , 𝑗 = 1, . . . , 𝐷, 𝑖 = 1, . . . , 𝑂,
are the experimentally observed values; 𝑦�耠 = 𝑔(𝑡, 𝑦, 𝑝) is
the system of first-order ODE; (𝑦10, . . . , 𝑦�퐷0) is the vector of
initial values to the variables 𝑦�푗, 𝑗 = 1, . . . , 𝐷; and 𝑝L and
𝑝U represent the vectors with the lower and upper bounds on
the parameters, respectively. 𝑡0 and 𝑡�푓 are the initial and final
values, respectively, of the independent variable 𝑡.

To solve problem (1), there are indirect methods and
direct methods [27]. Indirect methods use the first-order
necessary conditions from Pontryagin’s minimum principle
to reformulate the problem as a two-point boundary value
problem. The latter may become difficult to solve especially
if the problem contains state variable constraints.

In direct methods, the optimization present in (1) is
performed directly. This type of method discretizes the
problem and applies NLP techniques to the resulting finite-
dimensional optimization problem. There are two types of
direct methods. In the sequential direct method, the DMbPE
problem is transcribed into a small finite-dimensional opti-
mization problem through the discretization of the decision
variables only. Hence, the optimization is carried out in
the space of the decision variables only. Given a set of
values for the decision variables, the system of ODE is
accurately integrated (over the entire time interval) using a
specific numerical integration formula (with error control
mechanisms to enforce the accuracy of the state variable
values), so that the objective function value can be evaluated
[3]. Thus, the ODE are satisfied at each iteration of the NLP
solver. The method is called sequential, since the processes
of minimizing the sum of the squared errors and solving the
ODE are done in a sequential manner.This method may lead
to a slow convergence process since the system of ODE is
solved again and again each time an objective function value
is required. In the simultaneous direct method, approxima-
tions to the solution of the system of ODE are computed
instead. The optimization is carried out in the full space of
the discretized decision and state variables, which may lead
to very-large-dimensional finite NLP problem with equality
constraints (emerging from the discretization of the system
of ODE), in particular if a fine grid of points is required to
obtain a high level of integration accuracy.Thus, very efficient
NLP solvers are required when solving the finite problem.

We use the sequential direct method and the system
of ODE is numerically integrated by the Matlab function
ode15s. The default value for the scalar relative error toler-
ance is set to 1.0𝐸−08 and all the components of the vector of
absolute error tolerance are set to 1.0𝐸 − 08. The sequentially
discretized NLP problem is then solved by a stochastic
metaheuristic. This is further elaborated in the next section.

3. Stochastic Metaheuristics

To compute global optimal solutions to NLP problems,
stochastic or deterministic methods are available. Stochastic
GO methods are able to provide a near-optimal solution in
a short CPU time, although it may not be globally optimal.

Table 1: Nomenclature for the FA.

NP Number of fireflies in the population
𝛽 Attractiveness of a firefly
𝛾 Absorption coefficient/variation of attractiveness
𝛼 Randomization parameter
𝑝1 The brightest firefly
𝑝NP The less brighter firefly

In contrast, deterministic GO methods provide an interval
within which the global optimal solution falls, although
they require very large computational efforts [14]. Stochastic
metaheuristics, such as FA, HS, DE, ABC, and DTS, include
randomly generated numbers from probability distributions
to define a set of solutions on the search region, as well
as to move those solutions to hopefully better positions.
They ensure convergence to a global solution in probability,
while deterministic methods tend to guarantee asymptotic
convergence. Global search techniques use exploration and
exploitation search procedures that aim to diversify the
search so that a global optimal solution is located and to
intensify the search so that a good approximation is computed
in a promising area of the search space.

Most stochastic metaheuristics are classified in terms
of source of inspiration as nature-inspired algorithms. The
well-known swarm-intelligence-based algorithms belong to
a wider class called the bioinspired algorithms, and these
are a subclass of nature-inspired algorithms [28]. The most
popular are the algorithms based on swarm intelligence, with
the FA and the ABC algorithm being two examples. On the
other hand, the HS is not a bioinspired algorithm and has
its inspiration from music. Although the DE algorithm is
not based on any biological behavior, it can be classified
as a bioinspired algorithm due to the keyword “evolution,”
but it is not swarm-intelligence-based [28]. Finally, the DTS
algorithm is not a nature-inspired algorithm, but it has the
particularity of using past information of the search to record
it in memory. The majority of the metaheuristics define a set
of approximate solutions at each iteration, called population,
and generate new trial solutions that may be accepted as
the solutions for the next iteration, if some improvement is
detected relative to the current set of solutions.

We use the notation 𝑝�푖 = (𝑝�푖1, 𝑝�푖2, . . . , 𝑝�푖�푛)�푇 to represent
the 𝑖th point of a population of NP points, possible solutions
of problem (1). The set Ω = {𝑝 ∈ R�푛 : 𝑝L

�푗 ≤ 𝑝�푗 ≤ 𝑝U
�푗 , 𝑗 =

1, . . . , 𝑛} defines the bound constraints of the problem.

3.1. The FA. The FA is a bioinspired metaheuristic algorithm
that is capable of converging to a global solution of an
optimization problem. It is inspired by the flashing behavior
of fireflies at night [20, 29]. The main rules used to construct
the FA are as follows: (i) all fireflies are unisex, meaning that
any firefly can be attracted to any other brighter one; (ii)
the brightness of a firefly is determined from the encoded
objective function; (iii) attractiveness is directly proportional
to brightness but decreases with distance.

Table 1 lists the most relevant nomenclature used in the
basic FA. At the beginning, the positions of the fireflies in
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Table 2: Nomenclature for the HS algorithm.

HM Harmony memory
HMS Size of the HM
𝑝best The best solution in HM
𝑝worst The worst solution in HM
HMCR Harmony memory considering rate
PAR The pitch adjusting rate
BW Distance bandwidth

the search space are randomly generated. Then, they are
evaluated by computing the corresponding objective function
value and the points are ranked in ascending order; that is, 𝑝1
is the brightest firefly, 𝑝2 is the second brightest, and so on. In
the classical FA, a firefly 𝑖 (𝑖 = 2, . . . ,NP) ismoved towards the
brighter fireflies 𝑗 = 1, . . . , 𝑖 − 1 as follows:

𝑝�푖 = 𝑝�푖 + ((𝛽0 − 𝛽min) exp (−𝛾
𝑝
�푖 − 𝑝�푗

2) + 𝛽min)

⋅ (𝑝�푗 − 𝑝�푖) + 𝛼 (𝜆�푖 − 0.5)𝑋,
(2)

where the second term on the right-hand side of (2) is due to
the attraction while the third term is due to randomization
with 𝛼 ∈ (0, 1), 𝛽0 is the attraction parameter when the
distance is zero, 𝜆�푖 is a number uniformly distributed in [0, 1],
and 𝑋 is a vector that aims to scale the movement to the
set Ω. The parameter 𝛾 is crucial to speed the convergence
of the algorithm and it can take any value in the set [0,∞).
When 𝛾 → ∞, the attractiveness tends to the minimum
constant value 𝛽min. To accelerate convergence and at the
same time prevent premature convergence, the sequence of 𝛼
values is made to slowly decrease along the iterative process.
If a component 𝑗 of the final position of a firefly falls outside
the set [𝑝L

�푗 , 𝑝U
�푗 ], it is shifted onto the boundaries.

3.2. The HS Algorithm. The HS algorithm was developed to
solve GO problems in an analogy with the music impro-
visation process where music players improvise the pitches
of their instruments to obtain better harmony [21, 30]. At
each iteration 𝑘, the basic HS algorithm provides a set of
solution vectors, available in the harmony memory (HM),
from which the best and the worst solutions, in terms of
objective function values, are identified. Table 2 lists the most
relevant nomenclature used in the HS algorithm.

The HM contains HMS solution vectors that are main-
tained in memory throughout the iterative process. First, the
solutions in the HM are randomly generated in the search
space Ω, 𝑝�푖, 𝑖 = 1, . . . ,HMS. Then, they are evaluated and
the best harmony, 𝑝best, and the worst, 𝑝worst, in terms of
objective function value are identified. Hereafter, at each
iteration, a new harmony is improvised; that is, a new vector V
is generated, using three improvisation operators. When the
HM operator is used, the component 𝑗 of V is chosen from the
HMwith probability HMCR; otherwise, the random selection

Table 3: Nomenclature for the DE algorithm.

NP Number of points in the population
𝐹 Amplification parameter
V ∈ R�푛 Mutant point
𝑢 ∈ R�푛 Trial point
CR Crossover parameter

operator is used and the component is randomly generated in
Ω:

V�푗

= {
{
{

𝑝�푖�푗, 𝑖 random ∈ {1, . . . ,HMS} , if 𝜆 < HMCR

𝑝L
�푗 + 𝜆 (𝑝U

�푗 − 𝑝L
�푗 ) , otherwise.

(3)

for 𝑗 = 1, . . . , 𝑛, where 𝜆 is a random number uniformly
distributed in [0, 1]. Finally, the pitch adjustment operator is
subsequently applied with a probability 0 < PAR(𝐾) < 1,
which varies with the iteration counter 𝐾, to refine only the
components 𝑗 produced by the HM operator, as follows:

V�푗 =
{
{
{

V�푗 ± 𝜆BW (𝐾) , if 𝜆 < PAR (𝐾)
V�푗, otherwise,

(4)

where 0 < BW(𝐾) ≤ 1 is the distance bandwidth that
depends also on 𝐾 [31]. Finally, the components of V are
checked against the bounds and projected onto the bound-
aries if they fall outside. In the final stage, if 𝑓(V) < 𝑓(𝑝worst),
the HM is updated since the new harmony is included in the
HM, replacing the worst one.

3.3. The DE Algorithm. The DE is a bioinspired population-
based algorithm that relies on three strategies—mutation,
crossover, and selection—to define theNP solutions/points for
the next iteration [22].Themost important nomenclature and
parameters are shown in Table 3.

The initial population of points, 𝑝�푖 ∈ R�푛, 𝑖 = 1, . . . ,NP,
is randomly generated in the search space Ω. The most
commonly used mutation strategy defines the mutant point
𝑖, V�푖, as follows:

V�푖 = 𝑝�푟1 + 𝐹 (𝑝�푟2 − 𝑝�푟3) (5)

with uniformly chosen random indices 𝑟1, 𝑟2, and 𝑟3 from the
set {1, 2, . . . ,NP}, mutually different, and𝐹 is a real parameter
in [0, 2] which controls the amplification of the differential
variation, 𝑝�푟2 − 𝑝�푟3 . The indices 𝑟1, 𝑟2, and 𝑟3 are also chosen
to be different from the index 𝑖. 𝑝�푟1 is called the base point.

The components of themutant vector are thenmixedwith
components of the𝑝 vector to generate the trial point, 𝑢�푖.This
strategy is referred to as crossover and can be described as
follows:

𝑢�푖�푗 =
{
{
{

V�푖�푗, if 𝜆 ≤ CR or 𝑗 = 𝑠�푖
𝑝�푖�푗, otherwise.

(6)
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Table 4: Nomenclature for the ABC algorithm.

NP Number of bees in the colony
Nf Number of food sources
𝑝 ∈ R�푛 Food source/solution
V ∈ R�푛 Mutant solution
“limit” Limit for abandonment

for 𝑗 = 1, . . . , 𝑛, where𝜆 denotes a randomnumber uniformly
generated within the interval [0, 1] and aims to perform the
mixing of the component 𝑗 of the points, CR ∈ [0, 1],
and 𝑠�푖, an index randomly selected from {1, . . . , 𝑛}, aims to
ensure that 𝑢�푖 gets at least one component from V�푖. Finally,
the components of 𝑢 are projected onto the boundaries
of [𝑝L, 𝑝U] if they fall outside. Then, a selection strategy
compares each trial point 𝑢�푖 with 𝑝�푖 in terms of objective
function values and the best one is selected for the population
of the next iteration. The variant described above is referred
to as DE/rand/1/bin, where “rand” specifies the vector that
is mutated, “1” defines the number of difference vectors,
and “bin” means that crossover is based on independent
binomial experiments [22]. There are other frequently used
DE variants, for instance, the DE/best/1/bin which uses the
best point of the population as the base point to define
the mutant point and the DE/rand-to-best/1/bin with two
differential variations:

V�푖 = 𝑝�푖 + 𝐹 (𝑝best − 𝑝�푖) + 𝐹 (𝑝�푟1 − 𝑝�푟2) , (7)

where 𝑝best is the best point in the current population [32].

3.4. The ABC Algorithm. The ABC algorithm is an optimiza-
tion algorithm based on the intelligent behavior of honeybee
swarms [23]. The colony of artificial bees of size NP includes
the employed bees, the onlooker bees, and the scout bees.
The first half of the colony consists of employed bees and
the second half constitutes the onlookers and scouts. The
position of a food source represents a possible solution of the
optimization problem and the amount of nectar in the food
source gives the quality of that solution. The number of food
sources, Nf, is taken to be equal to the number of employed
bees. The most important nomenclature and parameters in
the ABC algorithm are shown in Table 4.

At the initial stage, a set of food source positions are
randomly selected by the bees; that is, the positions are
randomly generated in the search space Ω, and their nectar
amounts are determined in terms of fitness values. During
the employed bee phase, new candidate food positions, called
mutant solutions, are produced as follows:

V�푖�푗 = 𝑝�푖�푗 + 𝜆 (𝑝�푖�푗 − 𝑝�푘�푗) , (8)

for 𝑖 = 1, . . . ,Nf, where 𝑘 (different from 𝑖) and 𝑗 are ran-
domly chosen indexes from the sets {1, . . . ,Nf} and {1, . . . , 𝑛},
respectively, and 𝜆 is a random number uniformly generated
within the interval [−1, 1]. If the mutant component V�푖�푗 falls
outside [𝑝L

�푗 , 𝑝U
�푗 ], it is shifted to the boundaries. Afterwards,

Table 5: Nomenclature for the DTS algorithm.

TL Tabu list
VRL Visited region list
𝐻 Ratio of accepting diversification point
Edg = 𝑓edg min�푗(𝑝U

�푗 − 𝑝L
�푗 ) Edge length (with 0 < 𝑓edg < 1)

dVR = 𝑟dVREdg Region radius in VRL (𝑟dVR > 0)

the mutant solution V�푖 is compared with 𝑝�푖 and a greedy
selection is applied to choose the one with better nectar,
that is, with better fitness, as described in (9). If the current
solution 𝑝�푖 is maintained (meaning that it has not been
improved), its trial counter is increased.

On the other hand, during the onlooker bee phase, the
food sources are randomly chosen according to probability
values, 𝑃�푖 (associated with the food sources), that depend on
their fitness 𝐹�푖 evaluated by

𝐹�푖 = {
{
{

(𝐽 (𝑝�푖) + 1)−1 , if 𝐽 (𝑝�푖) ≥ 0
1 + 𝐽 (𝑝

�푖) , otherwise.
(9)

The mutant solution is produced from the chosen old one as
previously shown in (8) and the greedy selection is applied
between the current 𝑝�푖 and its mutant. Finally, in the scout
bee phase, if the trial counter of the solution that has not
been improved mostly exceeds a predetermined value, called
“limit,” that solution is abandoned and replaced by a position
randomly generated in the search space Ω [33].

3.5. The DTS Algorithm. The tabu search (TS) algorithm,
introduced to continuous optimization in the paper [34],
is capable of guiding the search out of local optima and
exploring new regions for the global optimum. This is a
point-by-point iterative procedure that maintains a list of the
most recent movements, denoted by “tabu list” (TL), so that
the movements that lead to solutions previously visited are
avoided.

The DTS method developed in [24] is hybridization of
the TS with a direct search method that aims to search the
neighborhood of a local minimum. The method comprises
three main search procedures: exploration, diversification,
and intensification.Themain loop consists of the exploration
and the diversification search procedures. The exploration
search aims to explore the search space Ω and uses direct
searchmethods to be able to stabilize the search, in particular
in the vicinity of a local minimum. Cycling is prevented
by the TL and by another four TS memory elements: the
multiranked tabu list, the tabu region, the semitabu region,
and the visited region list (VRL). The VRL works as a
diversification tool and is used to direct the search towards
regions that have not been visited in the search space. The
most important nomenclature and parameters of the DTS
algorithm are listed in Table 5.

During the exploration procedure, DTS uses an adaptive
pattern search strategy to generate an approximate descent
direction (ADD) for the objective function 𝐽 at the current
approximation. First, based on an approximation 𝑝, 𝑛 pattern
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directions parallel to the coordinate axes are constructed and
𝑛 trial points 𝑥�푖, 𝑖 = 1, . . . , 𝑛, are generated, along these
directions with a given step length. Thus, the ADD V is
obtained by

V =
�푛

∑
�푖=1

𝑤�푖𝑢�푖

where 𝑤�푖 =
𝐽 (𝑥�푖) − 𝐽 (𝑝)

∑�푛�푗=1 𝐽 (𝑥�푗) − 𝐽 (𝑝)
, 𝑢�푖 = − 𝑥�푖 − 𝑝

𝑥�푖 − 𝑝
.
(10)

Second, two local trial points𝑥�푛+1 and𝑥�푛+2 are then generated
along V with two different step lengths aiming to explore the
region along V [24].Thediversification procedure aims to ran-
domly generate a new trial point𝑝 ∈ Ω outside the previously
visited regions. The VRL contains the centers of the visited
regions and the frequency with which these regions are vis-
ited. If the shortest distance of 𝑝 to a region’s center, weighted
by its frequency, exceeds the predefined region radius, given
by𝐻 dVR, the point is accepted; otherwise, a new trial point
is generated. When one of the best obtained trial solutions is
sufficiently close to a global minimum, or its value has not
been changed for a specified number of iterations, the DTS
algorithm leaves the exploration and diversification search
procedures and invokes an intensification procedure. Here,
the HJ local search is used to compute a solution still closer
to the global minimum (see the next section).

3.6. Hooke-and-Jeeves Local Search. Apattern searchmethod
directs the search towards a minimizer using a pattern of
specific number points. At least 𝑛+1 points must be provided
by the pattern, where 𝑛 is the number of variables. Based on a
current approximation, the HJ method uses a pattern search
strategy to define a trial solution that gives an improvement in
the objective function value, when comparedwith the current
point [25]. Let the current approximation be denoted by
𝑝(�푘𝑖), where 𝑘�푖 represents the iteration counter in this iterative
process. Then, a trial point, V�푖, is generated along a search
direction (starting from the current point) with a certain step
size Δ(�푘𝑖) > 0 as follows:

V�푖 = 𝑝(�푘𝑖) + Δ(�푘𝑖)𝑑�푖, (11)

where 𝑑�푖 is the search direction chosen from a finite
set D of positive spanning directions in R�푛. The most
used set contains the 2𝑛 coordinate directions, defined as
the positive and negative unit coordinate vectors D =
{𝑒1, . . . , 𝑒�푛, −𝑒1, . . . , −𝑒�푛}.Themost important property of this
set is that at least one of the coordinate directions is a descent
direction for the objective 𝐽, when 𝑝(�푘𝑖) is not a stationary
point of 𝐽. When the search fails to generate a trial point
that is better than 𝑝(�푘𝑖), the iteration is called unsuccessful,
the step size Δ(�푘𝑖) is halved so that a refined search can be
carried out, and 𝑝(�푘𝑖+1) ← 𝑝(�푘𝑖). If Δ(�푘𝑖) falls below a given
stopping tolerance, the algorithm terminates and the current
𝑝(�푘𝑖) is considered an approximate minimizer of 𝐽. However,
when at the end of each iteration the objective function value

Table 6: Parameter values.

FA
NP min{5𝑛, 50}
𝛼 (initial) 0.25
𝛾 (constant) 1
𝛽0 1
𝛽min 0.2

HS
HMS min{2𝑛, 10}
HMCR 0.95

DE
NP min {4𝑛, 50}
𝐹, CR 0.9
Mutation DE/rand-to-best/1

ABC
NP min{4𝑛, 50}
“limit” 100

DTS
𝐻 1
𝑓edge 0.1
𝑟dVR 2

has reduced, then the iteration is called successful, Δ(�푘𝑖) is not
changed, and 𝑝(�푘𝑖+1) ← V�푖.

For a fair comparison, and to improve the quality of
the produced solutions, we propose the implementation of
the HJ intensification phase with all the above-mentioned
metaheuristics. Based on the final solution provided by the
metaheuristic, the HJ local search algorithm is invoked and
allowed to run for 5𝑛 iterations. The number of function
evaluations required by the HJ local search is added to the
function evaluations of the metaheuristic, herein denoted by
NFEval, to produce the total number of evaluations of the
run.

4. Numerical Experiments

This section aims to present and analyze the statistical
significance of the numerical results that were obtained when
the metaheuristics are used to solve the DMbPE problems in
the sequential direct method context. The dynamic system
models were coded in the Matlab programming language
and the computational application of the sequential direct
method with the FA, HS, DE, ABC, and DTS codes was
developed in Matlab programming environment. The com-
putational tests were performed on a PC with a 2.2GHz Core
i7-2670QM and 8GB of RAM. The parameter values for the
tested algorithms are set as shown in Table 6. Other values
have been tested, in particular for the parameter NP in the
FA, DE, and ABC and the parameter HMS in HS, but those
used seem adequate with reduced computational effort.

Nine case study problems have been selected to analyze
the performance of the described stochastic algorithms. A
comparison is made considering the quality of the solutions
and the time spent to reach the solution after a threshold
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�e mean ranks of DE and ABC are significantly different
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DE and DTS have mean ranks significantly different from ABC

(b) �푇avg metric

Figure 1: Estimates of the 95% confidence intervals for 𝐽avg and 𝑇avg, using NFmax = 50𝑛.

number of function evaluations. The problems and the
experimental data can be found in the Appendix.

Table 7 shows 𝐽avg (the average of the obtained final
solutions), St.D. (the standard deviations of the solutions),
and 𝑇avg (the average time in seconds) after running each
instance (inst.) 10 times with each metaheuristic (MH). For
these experiments, each algorithm is terminated solely with
the condition NFEval. > NFmax, where we have tested three
values of NFmax: 50𝑛, 100𝑛, and 200𝑛. The goal here is to
analyze the quality of the obtained solutions. Since the target
objective value is 0, the lower the value of 𝐽avg the better.

To analyze the statistical significance of the results,
we use the Matlab function friedman that performs a
nonparametric statistical test for multiple comparisons. The
Friedman test aims to determine significant differences in
the mean for one independent variable, for instance, 𝐽avg
or 𝑇avg, with different levels that correspond to the five
metaheuristics, and a dependent variable (corresponding to
matched groups, herein taken as the 12 instances) [35]. The
null hypothesis in this test is that the mean ranks assigned
to the results of the metaheuristics under testing are not
statistically different. Let 𝑘 be the number ofmetaheuristics to
be ranked and𝑁 be the number of groups. We note here that
the distribution of the Friedman statistic, here denoted by𝑄�퐹,
approaches the ordinary 𝜒2 distribution as 𝑁 increases. The
exact distribution of 𝑄�퐹 has been obtained for special cases
of 𝑘 and 𝑁 (the reader is referred to [35] and the references
cited in [36]). It has been concluded in [35] that “when the
number of groups is moderately large (say greater than 5 for
four or more ranks) the significance of the Friedman statistic
can be tested by reference to the available𝜒2 tables.”However,
in [36], it is argued that “the usual𝜒2 approximation is grossly
inaccurate for most commonly used combinations of 𝑘 and
𝑁.” Thus, hereafter, we use another statistic that has been
recommended in [36, 37] and depends on 𝑄�퐹, as well as on
both 𝑘 and𝑁:

𝐹�퐹 =
(𝑁 − 1)𝑄�퐹

𝑁(𝑘 − 1) − 𝑄�퐹
, (12)

which is distributed according to the𝐹-distributionwith 𝑘−1
and (𝑘 − 1)(𝑁 − 1) degrees of freedom.

When applied to 𝐽avg for NFmax = 50𝑛, 𝑄�퐹 = 25.27
and the value of 𝐹�퐹 is 12.229. With 𝑘 = 5 and 𝑁 = 12, 𝐹�퐹
is distributed according to the 𝐹-distribution with 4 and 44
degrees of freedom. For a significance level of 5%, the critical
value𝐹0.05(4,44) is 2.59 (computed by linear interpolation between
𝐹0.05(4,40) and 𝐹0.05(4,50)). Since 12.229 > 𝐹0.05(4,44), we have enough
evidence to reject the null hypothesis of “no significant
differences on mean ranks”; that is, the observed differences
between the five distributions of 𝐽avg values are statistically
significant. Pairwise comparisons may be carried out to
determine which mean ranks are significantly different. The
Matlab function multcompare is applied. The estimates of
the 95% confidence intervals are shown in Figure 1(a) for each
case under testing. The distributions of 𝐽avg are significantly
different if their intervals are disjoint and are not significantly
different if their intervals overlap. Hence, we conclude that
the mean rank produced by DE is significantly different from
that of ABC. For the other pairs of comparisons, there are no
significant differences on the mean ranks.

When the test is applied to 𝑇avg for NFmax = 50𝑛, 𝑄�퐹 =
14.97 and 𝐹�퐹 = 4.985 which exceeds the value of 𝐹0.05(4,44),
indicating that the null hypothesis is rejected at a significance
level of 5%, and we conclude that the distributions of 𝑇avg
values have statistically significant differences. Figure 1(b)
shows the estimates of the 95% confidence intervals. We
conclude that the mean rank of ABC is significantly different
from those of DE and DTS.

A similar analysis ismade for 𝐽avg and𝑇avg, whenNFmax =
100𝑛. We obtain for the statistics 𝑄�퐹 = 25.82 with 𝐹�퐹 =
12.805 and 𝑄�퐹 = 7.47 with 𝐹�퐹 = 2.027, respectively.
Hence, we may conclude that there is enough evidence to
reject the null hypothesis of “no significant differences on
mean ranks” of the distributions of 𝐽avg, at a significance
level of 5%. From Figure 2(a), we conclude that the mean
ranks of (the distribution of 𝐽avg values) ABC and DTS are
significantly different from themean ranks ofDE. For the𝑇avg
distributions, we conclude that there is not enough evidence
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Figure 2: Estimates of the 95% confidence intervals for 𝐽avg and 𝑇avg, using NFmax = 100𝑛.
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Figure 3: Estimates of the 95% confidence intervals for 𝐽avg and 𝑇avg, using NFmax = 200𝑛.

to reject the hypothesis of “no significant differences onmean
ranks,” at a significance level of 5%. Figure 2(b) shows the
corresponding estimates of the 95% confidence intervals and
it is noticed that all pairs have their intervals overlapping.

When the statistical analysis is extended to the distribu-
tions of 𝐽avg and 𝑇avg values, for NFmax = 200𝑛, the statistic
𝑄�퐹 gives 16.34 (with 𝐹�퐹 = 5.677) and 10.64 (with 𝐹�퐹 =
3.133), respectively.Hence, we have evidence to reject the null
hypothesis relative to the 𝐽avg values, at a significance level
of 5%. Figure 3(a) shows the corresponding estimates of the
95% confidence intervals (ABC and DTS have mean ranks
significantly different from DE). As far as the distributions
of 𝑇avg values are concerned, we conclude that there is
enough evidence to reject the hypothesis of “no significant
differences onmean ranks” at a significance level of 5%. From
Figure 3(b), we conclude that the differences are on the mean
ranks of DE and DTS. We note that, at a significance level
of 1%, a smaller probability of making a wrong decision,
where the critical value 𝐹0.01(4,44) is 3.79 (computed by linear
interpolation between 𝐹0.01(4,40) and 𝐹0.01(4,50)), there is no evidence
to reject the null hypothesis.

We now show in Table 8 the best solution obtained by
each metaheuristic, 𝐽best (after the 10 runs), and the time
required to reach that value, 𝑇best, for the three values of
NFmax. Based on themetrics 𝐽best and𝑇best, we use a graphical
procedure to visualize the performance differences among
the results produced by the five metaheuristics, in relative
terms on the 12 instances, known as performance profiles
[38]. Each plot reports (on the vertical axis) the percentage
of problems solved with each metaheuristic that is within a
certain threshold, 𝜏 (on the horizontal axis), of the best result.
The performance profiles of the five distributions of 𝐽best
values for NFmax = 50𝑛 are shown in Figure 4(a). Figure 4(b)
corresponds to the metric 𝑇best.

The higher the percentage, the better. A higher value for
𝜏 = 1 means that the metaheuristic achieves the lowest 𝐽best
value (or the smallest 𝑇best) mostly.

Therefore, the metaheuristic DE is the most successful
since it has the highest probability of achieving the lowest
𝐽 value, when NFmax = 50𝑛. From the plot, the probability
that DE wins on a given instance is 0.5 since it produces the
lowest 𝐽best in 6 of the 12 instances. It is followed by HS that
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Table 8: Best results (𝑇best and 𝐽best).

Inst. MH NFmax = 50𝑛 NFmax = 100𝑛 NFmax = 200𝑛
𝑇best 𝐽best 𝑇best 𝐽best 𝑇best 𝐽best

𝛼-PIN

FA 2.17𝐸 + 01 1.987279𝐸 + 01 3.08𝐸 + 01 1.987226𝐸 + 01 4.80𝐸 + 01 1.987264𝐸 + 01
HS 2.15𝐸 + 01 1.987260𝐸 + 01 3.04𝐸 + 01 1.987228𝐸 + 01 5.18𝐸 + 01 1.987230𝐸 + 01
DE 2.29𝐸 + 01 1.987271𝐸 + 01 2.92𝐸 + 01 1.987296𝐸 + 01 5.18𝐸 + 01 1.987263𝐸 + 01
ABC 1.51𝐸 + 01 7.990355𝐸 + 01 2.54𝐸 + 01 2.567832𝐸 + 01 4.82𝐸 + 01 2.036694𝐸 + 01
DTS 2.31𝐸 + 01 1.987234𝐸 + 01 3.83𝐸 + 01 1.987266𝐸 + 01 6.91𝐸 + 01 1.987274𝐸 + 01

BEL A

FA 4.29𝐸 + 00 2.218250𝐸 + 01 5.97𝐸 + 00 2.218155𝐸 + 01 1.10𝐸 + 01 2.218149𝐸 + 01
HS 3.95𝐸 + 00 2.218227𝐸 + 01 6.15𝐸 + 00 2.218149𝐸 + 01 1.14𝐸 + 01 2.218311𝐸 + 01
DE 4.48𝐸 + 00 2.218143𝐸 + 01 6.05𝐸 + 00 2.218147𝐸 + 01 1.06𝐸 + 01 2.218142𝐸 + 01
ABC 3.44𝐸 + 00 2.227154𝐸 + 01 5.78𝐸 + 00 2.218221𝐸 + 01 1.07𝐸 + 01 2.218150𝐸 + 01
DTS 4.59𝐸 + 00 2.218762𝐸 + 01 9.52𝐸 + 00 2.218738𝐸 + 01 1.76𝐸 + 01 2.218458𝐸 + 01

BEL B

FA 5.09𝐸 + 00 2.218269𝐸 + 01 6.07𝐸 + 00 2.218152𝐸 + 01 1.09𝐸 + 01 2.218170𝐸 + 01
HS 3.52𝐸 + 00 2.218164𝐸 + 01 6.04𝐸 + 00 2.218142𝐸 + 01 1.12𝐸 + 01 2.218159𝐸 + 01
DE 3.68𝐸 + 00 2.218181𝐸 + 01 6.26𝐸 + 00 2.218142𝐸 + 01 1.11𝐸 + 01 2.218142𝐸 + 01
ABC 3.17𝐸 + 00 2.218809𝐸 + 01 5.89𝐸 + 00 2.218259𝐸 + 01 1.15𝐸 + 01 2.218151𝐸 + 01
DTS 4.32𝐸 + 00 2.218208𝐸 + 01 7.33𝐸 + 00 2.218152𝐸 + 01 1.23𝐸 + 01 2.218187𝐸 + 01

CAT

FA 1.03𝐸 + 01 2.655668𝐸 − 03 1.76𝐸 + 01 2.655668𝐸 − 03 4.78𝐸 + 01 2.655668𝐸 − 03
HS 1.01𝐸 + 01 2.655686𝐸 − 03 1.61𝐸 + 01 2.655669𝐸 − 03 3.23𝐸 + 01 2.655669𝐸 − 03
DE 1.06𝐸 + 01 2.655683𝐸 − 03 1.62𝐸 + 01 2.655667𝐸 − 03 3.11𝐸 + 01 2.655667𝐸 − 03
ABC 9.82𝐸 + 00 2.666711𝐸 − 03 1.65𝐸 + 01 2.946387𝐸 − 03 3.45𝐸 + 01 2.662231𝐸 − 03
DTS 1.05𝐸 + 01 2.655667𝐸 − 03 1.73𝐸 + 01 2.655680𝐸 − 03 3.40𝐸 + 01 2.655672𝐸 − 03

IRR1

FA 4.45𝐸 + 00 1.221743𝐸 − 06 6.51𝐸 + 00 1.228962𝐸 − 06 1.18𝐸 + 01 1.187445𝐸 − 06
HS 4.29𝐸 + 00 1.375865𝐸 − 06 6.53𝐸 + 00 1.190046𝐸 − 06 1.15𝐸 + 01 1.193409𝐸 − 06
DE 4.49𝐸 + 00 1.188136𝐸 − 06 6.41𝐸 + 00 1.194300𝐸 − 06 1.18𝐸 + 01 1.185902𝐸 − 06
ABC 4.33𝐸 + 00 4.204506𝐸 − 05 6.90𝐸 + 00 1.271379𝐸 − 06 1.21𝐸 + 01 1.185851𝐸 − 06
DTS 4.22𝐸 + 00 1.333455𝐸 − 06 6.77𝐸 + 00 1.228666𝐸 − 06 1.18𝐸 + 01 1.228072𝐸 − 06

IRR2

FA 5.49𝐸 + 00 5.793696𝐸 − 06 8.67𝐸 + 00 5.290805𝐸 − 06 1.55𝐸 + 01 4.532302𝐸 − 06
HS 5.40𝐸 + 00 7.799776𝐸 − 06 8.10𝐸 + 00 7.581183𝐸 − 06 1.54𝐸 + 01 4.946930𝐸 − 06
DE 5.65𝐸 + 00 4.951955𝐸 − 06 8.65𝐸 + 00 4.512205𝐸 − 06 1.53𝐸 + 01 4.411032𝐸 − 06
ABC 5.15𝐸 + 00 1.539352𝐸 − 05 8.64𝐸 + 00 4.473528𝐸 − 06 1.52𝐸 + 01 4.411030𝐸 − 06
DTS 4.82𝐸 + 00 5.176208𝐸 − 06 8.00𝐸 + 00 8.305471𝐸 − 06 1.41𝐸 + 01 5.550882𝐸 − 06

REV A

FA 1.30𝐸 + 01 2.390974𝐸 − 07 1.95𝐸 + 01 2.301914𝐸 − 07 3.13𝐸 + 01 1.933663𝐸 − 07
HS 1.29𝐸 + 01 4.456872𝐸 − 07 1.95𝐸 + 01 2.772230𝐸 − 07 3.09𝐸 + 01 2.864920𝐸 − 07
DE 3.13𝐸 + 01 1.960909𝐸 − 07 1.78𝐸 + 01 2.060756𝐸 − 07 3.03𝐸 + 01 2.034098𝐸 − 07
ABC 1.03𝐸 + 01 1.184856𝐸 − 02 1.64𝐸 + 01 3.235180𝐸 − 04 3.05𝐸 + 01 4.414293𝐸 − 04
DTS 1.28𝐸 + 01 3.003054𝐸 − 07 1.90𝐸 + 01 2.925082𝐸 − 07 3.22𝐸 + 01 4.346120𝐸 − 07

REV B

FA 1.16𝐸 + 01 1.587466𝐸 − 03 1.70𝐸 + 01 1.587489𝐸 − 03 3.22𝐸 + 01 1.587486𝐸 − 03
HS 1.30𝐸 + 01 1.587876𝐸 − 03 1.86𝐸 + 01 1.587498𝐸 − 03 3.08𝐸 + 01 1.587476𝐸 − 03
DE 3.07𝐸 + 01 1.587467𝐸 − 03 2.88𝐸 + 01 1.587501𝐸 − 03 2.89𝐸 + 01 1.587516𝐸 − 03
ABC 7.27𝐸 + 00 7.753336𝐸 − 03 1.70𝐸 + 01 2.810094𝐸 − 03 3.03𝐸 + 01 1.816843𝐸 − 03
DTS 1.32𝐸 + 01 1.587997𝐸 − 03 1.90𝐸 + 01 1.587864𝐸 − 03 3.36𝐸 + 01 1.587618𝐸 − 03

THEO1

FA 9.28𝐸 + 00 1.089660𝐸 − 03 1.35𝐸 + 01 1.070636𝐸 − 03 2.58𝐸 + 01 1.089664𝐸 − 03
HS 8.95𝐸 + 00 1.070635𝐸 − 03 1.39𝐸 + 01 1.070637𝐸 − 03 2.33𝐸 + 01 1.070635𝐸 − 03
DE 8.21𝐸 + 00 1.070638𝐸 − 03 1.31𝐸 + 01 1.070635𝐸 − 03 2.25𝐸 + 01 1.070635𝐸 − 03
ABC 7.15𝐸 + 00 1.071921𝐸 − 03 1.23𝐸 + 01 1.071302𝐸 − 03 2.30𝐸 + 01 1.070637𝐸 − 03
DTS 1.03𝐸 + 01 1.089659𝐸 − 03 1.61𝐸 + 01 1.070635𝐸 − 03 2.78𝐸 + 01 1.070638𝐸 − 03

THEO2

FA 6.22𝐸 + 00 3.580257𝐸 − 02 1.10𝐸 + 01 3.578306𝐸 − 02 1.89𝐸 + 01 3.578128𝐸 − 02
HS 6.78𝐸 + 00 3.579577𝐸 − 02 1.13𝐸 + 01 3.578748𝐸 − 02 2.03𝐸 + 01 3.578180𝐸 − 02
DE 6.45𝐸 + 00 3.578201𝐸 − 02 1.02𝐸 + 01 3.578109𝐸 − 02 2.03𝐸 + 01 3.578180𝐸 − 02
ABC 7.99𝐸 + 00 3.608823𝐸 − 02 1.24𝐸 + 01 3.580068𝐸 − 02 2.09𝐸 + 01 3.578108𝐸 − 02
DTS 8.76𝐸 + 00 3.578341𝐸 − 02 1.42𝐸 + 01 3.578354𝐸 − 02 2.54𝐸 + 01 3.578140𝐸 − 02
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Table 8: Continued.

Inst. MH NFmax = 50𝑛 NFmax = 100𝑛 NFmax = 200𝑛
𝑇best 𝐽best 𝑇best 𝐽best 𝑇best 𝐽best

VOL A

FA 1.37𝐸 + 01 7.404584𝐸 − 03 2.56𝐸 + 01 9.624342𝐸 − 03 3.33𝐸 + 01 3.602099𝐸 − 03
HS 1.60𝐸 + 01 1.550778𝐸 − 02 3.04𝐸 + 01 2.731927𝐸 − 02 3.82𝐸 + 01 1.388033𝐸 − 02
DE 1.19𝐸 + 01 3.787360𝐸 − 03 1.81𝐸 + 01 3.574318𝐸 − 03 4.06𝐸 + 01 3.574082𝐸 − 03
ABC 2.37𝐸 + 01 5.221512𝐸 − 03 2.73𝐸 + 01 4.371459𝐸 − 03 4.51𝐸 + 01 4.326559𝐸 − 03
DTS 2.33𝐸 + 01 1.018590𝐸 − 02 4.11𝐸 + 01 5.239623𝐸 − 03 8.39𝐸 + 01 1.922888𝐸 − 02

VOL B

FA 1.36𝐸 + 01 9.124563𝐸 − 01 3.72𝐸 + 01 8.667088𝐸 − 01 4.07𝐸 + 01 8.684604𝐸 − 01
HS 1.66𝐸 + 01 8.700917𝐸 − 01 2.48𝐸 + 01 8.810708𝐸 − 01 3.90𝐸 + 01 8.697327𝐸 − 01
DE 1.54𝐸 + 01 8.709003𝐸 − 01 1.89𝐸 + 01 8.703102𝐸 − 01 4.67𝐸 + 01 8.667010𝐸 − 01
ABC 1.51𝐸 + 01 8.955672𝐸 − 01 2.02𝐸 + 01 8.671336𝐸 − 01 6.42𝐸 + 01 8.700530𝐸 − 01
DTS 2.66𝐸 + 01 8.919989𝐸 − 01 3.87𝐸 + 01 9.019120𝐸 − 01 7.12𝐸 + 01 8.679623𝐸 − 01
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Figure 4: Performance profiles for the five metaheuristics, using NFmax = 50𝑛.

has a probability of winning (prob w) of 0.25, by DTS with
prob w = 0.17, and by FA with prob w = 0.08. We note that
the differences on the produced 𝐽best are so small that the
plots of the cumulative distribution are packed around 𝜏 = 1.
From Figure 4(b), it is possible to conclude that the fastest
metaheuristic is ABC since the probability of achieving the
smallest value of 𝑇 (time in seconds) is 0.58.

Similarly, Figures 5(a) and 5(b) contain the performance
profiles of the five distributions of 𝐽best and 𝑇best, respectively,
when NFmax = 100𝑛. From the figure on the left, we may
conclude that DE is the most successful since it has prob w
= 0.58, followed by FAwith prob w = 0.25 (achieving the best
results in 3 out of 12 instances), by HS with prob w = 0.17,
and by ABC and DTS with prob w = 0.08. As far as 𝑇best is
concerned, it is possible to conclude that the metaheuristic
with the highest probability of requiring the lowest time is
ABC followed by DE.

Finally, Figures 6(a) and 6(b) display the performance
profiles of the metrics 𝐽best and 𝑇best, respectively, when

NFmax = 200𝑛. From these comparisons, we may conclude
that DE is the most successful in reaching the lowest 𝐽best,
with prob w = 0.5, followed by HS and ABC with prob w =
0.25 and finally the metaheuristics FA and DTS with prob w
= 0.08.When the profiles of𝑇best are analyzed, it is possible to
conclude that the metaheuristic DE is in general faster than
the others but for some problems is outstripped by FA and
HS.

Tables 9–19 contain comparative results relative to 11
instances. (The results obtained for instance VOL A are not
used in the comparison since the experimental data have been
herein generated for this study.) Tables 9–19 show the best
and the average 𝐽 values (computed from the 10 runs), as well
as the average CPU time and function evaluations, 𝑇avg and
NFEavg, respectively. Our results always appear along the first
row of each table and are taken from the metaheuristic that
produced the lowest 𝐽best with the least function evaluations.
This is identified in the table caption. (We note that the imple-
mented metaheuristics have been enhanced with the HJ local
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Figure 5: Performance profiles for the five metaheuristics, using NFmax = 100𝑛.
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Figure 6: Performance profiles for the five metaheuristics, using NFmax = 200𝑛.

search, and the reported NFEavg considers the sum of NFmax
with the function evaluations required by the HJ search.) In
the tables, “–” means that the information is not available
in the cited paper and “n.a.” means “not applicable.” The
comparisons use the results reported in the papers [2, 4, 10,
12–14, 16–19, 26]. Results in [16] are based on a trigonometric
version of the DE, and in [17], a modified version of the DE
is implemented.The authors in [12] use a modified version of
the metaheuristic scatter search (SSm) with a local search as
an improvement method. The results shown in the table use
the function fmincon fromMatlab. SSm uses a population of
100 points and a penalty technique with a weight of 1000 to
penalize infeasible solutions. In [19], the sequential approach
is implemented with an interval-based method for the NLP

optimization. The therein obtained solution is an 𝜖-global
solution. Global solutions are produced by the method of
orthogonal collocation on finite elements presented in [26].
This strategy is implemented within Matlab code Dynopt
after 100 runs of a multistart approach. (We note that a
direct comparison of the CPU time cannot be done since the
computational platforms are different.)

Overall, after all the numerical comparisons, it is possible
to conclude that the selected metaheuristics when enhanced
with the local intensification phase are effective in achieving
good quality solutions with a reduced computational effort.
Furthermore, we have also shown that the sequential direct
method combined with the selectedmetaheuristics competes
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Table 9: Comparative results for 𝛼-PIN (FA/100𝑛).
Source 𝐽best 𝐽avg 𝑇avg NFEavg

1.987226𝐸 + 01 1.991449𝐸 + 01 3.27𝐸 + 01 753
[2]♭ 1.987𝐸 + 01 – 1.22𝐸 + 02 (9518 iter.)
[12]† 1.9872𝐸 + 01 2.4747𝐸 + 01 0.41𝐸 + 02 1163
[13]§ 1.98772𝐸 + 01 2.56777𝐸 + 01 – 9148
[14]‡ 1.987𝐸 + 01 n.a. 8.92𝐸 + 03 (2 iter.)
♭PC: Pentium 4, 1.80GHz. †PC: Pentium 4, 3.06GHz. §PC with a 2.7 GHz Core i7-4600U and 8GB of memory. ‡PC: AMD Athlon II, 2.99GHz.

Table 10: Comparative results for BEL A (loose bounds on parameters) (DE/200𝑛).
Source 𝐽best 𝐽avg 𝑇avg NFEavg

2.218142𝐸 + 01 2.218148𝐸 + 01 1.08𝐸 + 01 434
[10]† 2.25684𝐸 + 01 n.a. 9.71𝐸 + 03 (10000 iter.)
†Result with relative convergence tolerance of 7.5�퐸 − 01. Computer HP J2240.

Table 11: Comparative results for BEL B (tight bounds on parameters) (HS/100𝑛).
Source 𝐽best 𝐽avg 𝑇avg NFEavg

2.218142𝐸 + 01 2.220014𝐸 + 01 6.02𝐸 + 00 245
[10]† 2.25684𝐸 + 01 n.a. 7.84𝐸 + 03 (9028 iter.)
†Result with relative convergence tolerance of 1.0�퐸 − 03. Computer HP J2240.

Table 12: Comparative results for CAT (DTS/50𝑛).
Source 𝐽best 𝐽avg 𝑇avg NFEavg

2.655667𝐸 − 03 2.657778𝐸 − 03 1.12𝐸 + 01 256
[4] 2.65567𝐸 − 03 n.a. – –
[10]♭ 2.6384𝐸 − 03 n.a. 1.58𝐸 + 02 (26 iter.)
[16]§ 2.655666𝐸 − 03 2.655666𝐸 − 03 1.81𝐸 + 00 –
[17] 2.6557𝐸 − 03 – 0.82𝐸 + 00 –
[18]‡ 2.65567𝐸 − 03 n.a. 2.66𝐸 + 04 (67 iter.)
[19]† 2.6557𝐸 − 03 n.a. 1.11𝐸 + 01 (182 iter.)
♭Result with relative convergence tolerance of 1.0�퐸 − 02. Computer HP
J2240. §PC: Pentium IV, 2.4GHz, 256MB RAM. ‡Ultra SPARC-II CPU
(2 × 360MHz), 512MB RAM. Optimality margin �휖 = 1�퐸 − 02. †Relative
convergence tolerance of 1.0�퐸 − 03. PC: Intel Pentium 4 with 3.2 GHz.

Table 13: Comparative results for IRR1 (ABC/200𝑛).
Source 𝐽best 𝐽avg 𝑇avg NFEavg

1.185851𝐸 − 06 2.381824𝐸 − 03 1.21𝐸 + 01 449
[4] 1.18584𝐸 − 06 n.a. – –
[10]♭ 1.1858𝐸 − 06 n.a. 1.08𝐸 + 01 (38 iter.)
[16]§ 1.185845𝐸 − 06 1.185845𝐸 − 06 0.46𝐸 + 00 –
[17] 1.1858𝐸 − 06 – 0.33𝐸 + 00 –
[18]‡ 1.18562𝐸 − 06 n.a. 7.67𝐸 + 02 (37 iter.)
[19]† 1.1858𝐸 − 06 n.a. 0.23𝐸 − 01 (4 iter.)
♭Result with relative convergence tolerance of 1.0�퐸 − 02. Computer HP
J2240. §PC: Pentium IV, 2.4GHz, 256MB RAM. ‡Ultra SPARC-II CPU
(2 × 360MHz), 512MB RAM. Optimality margin �휖 = 1�퐸 − 02. †Relative
convergence tolerance of 1.0�퐸 − 03. PC: Intel Pentium 4 with 3.2 GHz.

very favorably with exact methods and other metaheuristics
available in the literature.

Table 14: Comparative results for IRR2 (ABC/200𝑛).
Source 𝐽best 𝐽avg 𝑇avg NFEavg

4.411030𝐸 − 06 4.593098𝐸 − 06 1.55𝐸 + 01 447
[26]† 1.7604𝐸 − 04 1.7604174𝐸 − 04 – –
†Best solution obtained after 100 multistarts running Dynopt.

5. Conclusions

In this paper, we have analyzed the performance of five well-
known metaheuristics when solving parameter estimation
problems in dynamic system models. The sequential numer-
ical direct method is applied to the DMbPE problem and the
resulting optimization is performed directly making use of a
numerical integration formula for solving the system ofODE.
Using nine DMbPE problems and different experimental
data, error-free and random error-added data, a total of 12
instances have been used in the comparative experiments.
The solutions produced by the metaheuristics have been
analyzed in terms of quality, by stopping the algorithms after
a specified number of function evaluations, and compared
using statistical hypotheses testing. The statistical tests show
that the average obtained solutions and the average CPU
time are considered to be mostly significantly different, at
a significance level of 5%. The best solutions produced by
the metaheuristics are analyzed by means of the perfor-
mance profiles. After the graphical comparisons for different
numbers of allowed function evaluations, we are able to
conclude that the DE is the metaheuristic that has the highest
probability of giving the lowest value of the objective function
𝐽 mostly. It is followed by HS. The FA, ABC, and DTS
metaheuristics are, in this sequence, the least effective. Thus,
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Table 15: Comparative results for REV A (FA/200𝑛).
Source 𝐽best 𝐽avg 𝑇avg NFEavg

1.933663𝐸 − 07 2.119351𝐸 − 06 3.17𝐸 + 01 953
[10]† 3.367𝐸 − 07 n.a. 2.73𝐸 + 02 (56 iter.)
†Result with absolute convergence tolerance of 1.0�퐸 − 08. Computer HP J2240.

Table 16: Comparative results for REV B (FA/50𝑛).
Source 𝐽best 𝐽avg 𝑇avg NFEavg

1.587466𝐸 − 03 1.617494𝐸 − 03 1.27𝐸 + 01 374
[10]† 1.586𝐸 − 03 n.a. 5.68𝐸 + 02 (349 iter.)
[19]‡ 1.5875𝐸 − 03 n.a. 2.62𝐸 + 03 (40552 iter.)
†Result with relative convergence tolerance of 1.0�퐸 − 02. Computer HP
J2240. ‡Relative convergence tolerance of 1.0�퐸−03; PC/Intel Pentium 4with
3.2 GHz.

Table 17: Comparative results for THEO1 (HS/50𝑛).
Source 𝐽best 𝐽avg 𝑇avg NFEavg

1.070635𝐸 − 03 1.090058𝐸 − 03 9.11𝐸 + 00 255
[26]† 4.01𝐸 − 03 4.0303𝐸 − 03 – –
†Best local solution after 100 multistarts running Dynopt.

Table 18: Comparative results for THEO2 (ABC/200𝑛).
Source 𝐽best 𝐽avg 𝑇avg NFEavg

3.578108𝐸 − 02 4.220937𝐸 − 02 2.12𝐸 + 01 448
[26]† 2.595𝐸 − 02 2.595𝐸 − 02 – –
†Solution obtained after 100 multistarts running Dynopt.

Table 19: Comparative results for VOL B (DE/200𝑛).
Source 𝐽best 𝐽avg 𝑇avg NFEavg

8.667010𝐸 − 01 9.384865𝐸 − 01 7.89𝐸 + 01 440
[10]† 1.3194𝐸 − 03 n.a. 1.00𝐸 + 05 (1000 iter.)
[19]‡ 1.2492𝐸 − 03 n.a. 4.30𝐸 + 01 (536 iter.)
†Computer HP J2240. ‡Relative convergence tolerance of 1.0�퐸−03; PC/Intel
Pentium 4 with 3.2 GHz.

our recommendation for a reader that favors good quality
solutions falls in the DE and HS metaheuristics. On the
other hand, ABC and DE are in general the metaheuristics
that require the least computational effort, meaning that,
for a limited computational budget, our recommendation
is to choose one of them. Finally, from the comparisons
with other results in the literature, involving both sequential
and simultaneous direct methods and stochastic as well as
deterministic global optimization methods, we state that the
sequential direct method combined with one of the above
recommended metaheuristics is a good alternative to solve
DMbPE problems. Good quality solutions with a reduced
computational effort are thus provided.

Appendix

DMbPE Problems

𝛼-Pinene First-Order Kinetics (𝛼-PIN). A system of five ODE
with five parameters is given in [13]

𝑦�耠1 = − (𝑝1 + 𝑝2) 𝑦1,
𝑦�耠2 = 𝑝1𝑦1,
𝑦�耠3 = 𝑝2𝑦1 − (𝑝3 + 𝑝4) 𝑦3 + 𝑝5𝑦5,
𝑦�耠4 = 𝑝3𝑦3,
𝑦�耠5 = 𝑝4𝑦3 − 𝑝5𝑦5,

(A.1)

for 𝑡 ∈ [0, 36420], with initial conditions 𝑦1(0) = 100, 𝑦2(0) =
0, 𝑦3(0) = 0, 𝑦4(0) = 0, and 𝑦5(0) = 0. The lower and upper
bounds on the parameters are [𝑝L

�푖 , 𝑝U
�푖 ] = [0, 5.0𝐸 − 05], 𝑖 =

1, . . . , 5. Experimental data are available in Table 20.

Bellman’s Problem (BEL). This ODE has one dependent
variable and two parameters (see Section 7.4 in [10]). The
herein tested version uses the exponential transformation:

𝑦�耠 = 𝑒−�푝1 (126.2 − 𝑦) (91.9 − 𝑦)2 − 𝑒−�푝2𝑦2, (A.2)

for 𝑡 ∈ [0, 39.0], with initial condition 𝑦(0) = 0. The
following loose lower and upper bounds on the parameters
[𝑝L
�푖 , 𝑝U
�푖 ] = [5, 15], 𝑖 = 1, 2, can be considered defining

the instance BEL A. A second experiment was carried out
with this problem using the following tight lower and upper
bounds [𝑝L

1 , 𝑝U
1 ] = [10, 14] and [𝑝L

2 , 𝑝U
2 ] = [6, 10], giving the

instance BEL B. Experimental data have been generated using
𝑡 = [1, 2, 3, 4, 5, 6, 7, 9, 11, 14, 19, 24, 29, 39] and 𝑝1 = 3 and
𝑝2 = 1 with a small amount of random error added [10] (see
Table 21).

Catalytic Cracking of Gas Oil (CAT). This ODE has two
dependent variables and three parameters (see Section 6.3 in
[19] and Section 7.3 in [10]):

𝑦�耠1 = − (𝑝1 + 𝑝3) 𝑦21 ,
𝑦�耠2 = 𝑝1𝑦21 − 𝑝2𝑦2,

(A.3)

for 𝑡 ∈ [0, 0.95], with initial conditions 𝑦1(0) = 1 and
𝑦2(0) = 0. Lower and upper bounds on the parameters are
[𝑝L
�푖 , 𝑝U
�푖 ] = [0, 20], 𝑖 = 1, 2, 3, and the experimental data in

Table 22 have been generated using the following twenty time
instants: 0.025, 0.05, 0.075, 0.1, 0.125, 0.150, 0.175, 0.200, 0.225,
0.250, 0.300, 0.350, 0.400, 0.450, 0.500, 0.550, 0.650, 0.750,
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Table 20: Experimental values for 𝑦1, . . . , 𝑦5 for eight time instants.

1230.0 3060.0 4920.0 7800.0 10680.0 15030.0 22620.0 36420.0
𝑦obs
1 88.35 76.4 65.1 50.4 37.5 25.9 14.0 4.5

𝑦obs
2 7.3 15.6 23.1 32.9 42.7 49.1 57.4 63.1

𝑦obs
3 2.3 4.5 5.3 6.0 6.0 5.9 5.1 3.8

𝑦obs
4 0.4 0.7 1.1 1.5 1.9 2.2 2.6 2.9

𝑦obs
5 1.75 2.8 5.8 9.3 12.0 17.0 21.0 25.7

Table 21: Error-added generated experimental values for 14 time
instants, available in [10].

1 2 3 4 5 6 7
𝑦obs 1.4 6.3 10.4 14.2 17.6 21.4 23.0

9 11 14 19 24 29 39
𝑦obs 27.0 30.5 34.4 38.8 41.6 43.5 45.3

0.850, and 0.950, and 𝑝1 = 12, 𝑝2 = 8, and 𝑝3 = 2 with a
small amount of random error added [10].

First-Order Irreversible Series Reaction (IRR1). A system of
ODE with two dependent variables and two parameters
(Section 6.1 in [19] and Section 7.1 in [10]) is given:

𝑦�耠1 = −𝑝1𝑦1,
𝑦�耠2 = 𝑝1𝑦1 − 𝑝2𝑦2,

(A.4)

for 𝑡 ∈ [0, 1], with initial conditions 𝑦1(0) = 1, 𝑦2(0) = 0.
Lower and upper bounds on the parameters are [𝑝L

�푖 , 𝑝U
�푖 ] =

[0, 10], 𝑖 = 1, 2, and the experimental data in Table 23 have
been generated using 𝑡 = [0.1, 0.2, 0.3, . . . , 0.9, 1.0] and 𝑝1 =
5, 𝑝2 = 1 with no added error [10].

First-Order Irreversible Series Reaction (IRR2). This is the
system of ODE of the previous example with different initial
conditions, different upper bounds, and a different time
interval (Example 1 in [26]):

𝑦�耠1 = −𝑝1𝑦1,
𝑦�耠2 = 𝑝1𝑦1 − 𝑝2𝑦2,

(A.5)

for 𝑡 ∈ [0, 10], with the initial conditions 𝑦1(0) = 2, 𝑦2(0) = 0.
The lower and upper bounds on the parameters are [𝑝L

�푖 , 𝑝U
�푖 ] =[0, 1], 𝑖 = 1, 2. Experimental data have been generated using

the time instants 𝑡 = [0.5, 1, 1.5, 2, 2.5, . . . , 8.5, 9, 9.5, 10] and
𝑝1 = 0.8 and 𝑝2 = 0.3with no added error [26] (see Table 24).
First-Order Reversible Series Reaction (REV). This is a system
of three ODE with four parameters available in Section 7.2 of
[10]:

𝑦�耠1 = −𝑝1𝑦1 + 𝑝2𝑦2,
𝑦�耠2 = 𝑝1𝑦1 − (𝑝2 + 𝑝3) 𝑦2 + 𝑝4𝑦3,
𝑦�耠3 = 𝑝3𝑦2 − 𝑝4𝑦3,

(A.6)

for 𝑡 ∈ [0, 1], with initial conditions 𝑦1(0) = 1, 𝑦2(0) = 0,
and 𝑦3(0) = 0. Lower and upper bounds on the parameters
are [𝑝L

�푖 , 𝑝U
�푖 ] = [0, 10], 𝑖 = 1, 2, and [𝑝L

�푖 , 𝑝U
�푖 ] = [10, 50],

𝑖 = 3, 4. Two sets of data have been generated using 𝑡 =
[0.05, 0.1, 0.15, 0.2, 0.25, . . . , 0.9, 0.95, 1.0] and𝑝1 = 4,𝑝2 = 2,
𝑝3 = 40, and 𝑝4 = 20 [10]. The first set has no added error
(see Table 25) and yields the instance denoted by REV A. The
second set of data shown in Table 26 has been obtained by
adding a small amount of random errors [10] and yields the
denoted instance REV B.

Theoretical Kinetic Model Described by Three Reactions and
Based onThree Parameters (THEO1). This system of five ODE
depends on three parameters (Example 2 in [26]):

𝑦�耠1 = −𝑝1𝑦1𝑦2 − 𝑝2𝑦1𝑦3 − 𝑝3𝑦1𝑦4,
𝑦�耠2 = −𝑝1𝑦1𝑦2,
𝑦�耠3 = 𝑝1𝑦1𝑦2 − 𝑝2𝑦1𝑦3,
𝑦�耠4 = 𝑝2𝑦1𝑦3 − 𝑝3𝑦1𝑦4,
𝑦�耠5 = 𝑝3𝑦1𝑦4,

(A.7)

for 𝑡 ∈ [0, 501], with initial conditions 𝑦1(0) = 0.02090,
𝑦2(0) = 0.00697, 𝑦3(0) = 0, 𝑦4(0) = 0, and 𝑦5(0) = 0. Lower
and upper bounds on the parameters are [𝑝L

�푖 , 𝑝U
�푖 ] = [0.1, 30],

𝑖 = 1, 2, 3. Only the concentration of component 𝐴 (=𝑦1)
was measured.Thus, data for component 𝑦1 alone for 22 time
instants, shown in Table 27, are available in [26].

Theoretical Kinetic Model Based on Two Parameters (THEO2).
The following system has five dependent variables and two
parameters (see Example 3 in [26]):

𝑦�耠1 = −𝑝1𝑦1𝑦2 − 𝑝2𝑦1𝑦4,
𝑦�耠2 = −𝑝1𝑦1𝑦2,
𝑦�耠3 = 𝑝1𝑦1𝑦2,
𝑦�耠4 = 𝑝1𝑦1𝑦2 + 𝑝2𝑦1𝑦4,
𝑦�耠5 = 𝑝2√𝑦1𝑦4,

(A.8)

for 𝑡 ∈ [0, 10], with initial conditions 𝑦1(0) = 1.5, 𝑦2(0) = 1,
𝑦3(0) = 0, 𝑦4(0) = 0, and 𝑦5(0) = 0. The lower and upper
bounds on the parameters are [𝑝L

�푖 , 𝑝U
�푖 ] = [0.01, 1], 𝑖 = 1, 2.

Experimental data, shown in Table 28, have been generated
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Table 22: Error-added experimental values for 20 time instants, available in [10].

0.025 0.050 0.075 0.100 0.125 0.150 0.175
𝑦obs
1 0.7307 0.5982 0.4678 0.4267 0.3436 0.3126 0.2808

𝑦obs
2 0.1954 0.2808 0.3175 0.3047 0.2991 0.2619 0.2391

0.200 0.225 0.250 0.300 0.350 0.400 0.450
𝑦obs
1 0.2692 0.2210 0.2122 0.1903 0.1735 0.1615 0.1240

𝑦obs
2 0.2210 0.1898 0.1801 0.1503 0.1030 0.0964 0.0581

0.500 0.550 0.650 0.750 0.850 0.950
𝑦obs
1 0.1190 0.1109 0.0890 0.0820 0.0745 0.0639

𝑦obs
2 0.0471 0.0413 0.0367 0.0219 0.0124 0.0089

Table 23: Generated experimental values for 10 time instants, available in [10].

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
𝑦obs
1 0.606 0.368 0.223 0.135 0.082 0.050 0.030 0.018 0.011 0.007

𝑦obs
2 0.373 0.564 0.647 0.669 0.656 0.624 0.583 0.539 0.494 0.451

Table 24: Generated experimental values for 20 time instants, available in [26].

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
𝑦obs
1 1.341 0.899 0.602 0.404 0.271 0.181 0.122 0.082 0.055 0.037

𝑦obs
2 0.609 0.933 1.077 1.110 1.079 1.011 0.925 0.833 0.742 0.655

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
𝑦obs
1 0.025 0.016 0.011 0.007 0.005 0.003 0.002 0.001 0.001 0.001

𝑦obs
2 0.575 0.503 0.438 0.380 0.329 0.285 0.246 0.213 0.184 0.158

Table 25: Error-free generated experimental values for 20 time instants, available in [10].

0.05 0.1 0.15 0.2 0.25 0.3 0.35
𝑦obs
1 0.8241 0.6852 0.5747 0.4867 0.4166 0.3608 0.3164

𝑦obs
2 0.0937 0.1345 0.1654 0.1899 0.2094 0.2249 0.2373

𝑦obs
3 0.0821 0.1802 0.2598 0.3233 0.3738 0.4141 0.4461

0.4 0.45 0.5 0.55 0.6 0.65 0.7
𝑦obs
1 0.2810 0.2529 0.2304 0.2126 0.1984 0.1870 0.1780

𝑦obs
2 0.2472 0.2550 0.2613 0.2662 0.2702 0.2733 0.2759

𝑦obs
3 0.4717 0.4920 0.5082 0.5210 0.5313 0.5395 0.5460

0.75 0.8 0.85 0.9 0.95 1.0
𝑦obs
1 0.1709 0.1651 0.1606 0.1570 0.1541 0.1518

𝑦obs
2 0.2779 0.2794 0.2807 0.2817 0.2825 0.2832

𝑦obs
3 0.5511 0.5553 0.5585 0.5612 0.5632 0.5649

Table 26: Error-added experimental values for 20 time instants, available in [10].

0.05 0.1 0.15 0.2 0.25 0.3 0.35
𝑦obs
1 0.8261 0.6782 0.5721 0.4817 0.4226 0.3698 0.3114

𝑦obs
2 0.0917 0.1335 0.1644 0.1939 0.2111 0.2229 0.2313

𝑦obs
3 0.0826 0.1772 0.2628 0.3213 0.3598 0.4201 0.4511

0.4 0.45 0.5 0.55 0.6 0.65 0.7
𝑦obs
1 0.2710 0.2499 0.2354 0.2216 0.1974 0.1890 0.1780

𝑦obs
2 0.2398 0.2510 0.2703 0.2602 0.2732 0.2733 0.2769

𝑦obs
3 0.4797 0.4990 0.5122 0.5200 0.5281 0.5305 0.5500

0.75 0.8 0.85 0.9 0.95 1.0
𝑦obs
1 0.1729 0.1701 0.1606 0.1490 0.1531 0.1568

𝑦obs
2 0.2709 0.2754 0.2797 0.2817 0.2825 0.2792

𝑦obs
3 0.5601 0.5533 0.5485 0.5612 0.5632 0.5599
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Table 27: Experimental data for 22 time instants and for 𝑦1 alone, available in [26].

4.5 8.67 12.67 17.75 22.67 27.08
𝑦obs
1 0.0514 0.01422 0.01335 0.01232 0.01181 0.01139

32.00 36.00 46.33 57.00 69.00 76.75
𝑦obs
1 0.01092 0.01054 0.00978 0.009157 0.008594 0.008395

90.00 102.00 108.00 147.92 198.00 241.75
𝑦obs
1 0.007891 0.00751 0.00737 0.006646 0.005883 0.005322

270.25 326.25 418.00 501.00
𝑦obs
1 0.00496 0.004518 0.004075 0.003372

Table 28: Experimental data available in [26] for two state variables only (𝑦1 and 𝑦2).
1 2 3 4 5 6 7

𝑦obs
1 1.1529 0.9333 0.7806 0.6675 0.5801 0.5104 0.4535

𝑦obs
2 0.6747 0.4944 0.3828 0.3083 0.2558 0.2173 0.1881

8 9 10
𝑦obs
1 0.4060 0.3658 0.3314

𝑦obs
2 0.1653 0.1473 0.1327

Table 29: Error-added generated experimental values for 10 time instants.

1 2 3 4 5 6 7
𝑦obs
1 0.8170 0.8525 1.2451 1.0423 0.7868 0.9834 1.2771

𝑦obs
2 1.1142 0.8876 0.9619 1.1419 1.0144 0.8694 1.0247

8 9 10
𝑦obs
1 0.8776 0.7760 1.1412

𝑦obs
2 1.1231 0.9538 0.8797

Table 30: Error-added experimental values for 10 time instants, available in [10].

1 2 3 4 5 6 7
𝑦obs
1 0.7990 0.8731 1.2487 1.0362 0.7483 1.0024 1.2816

𝑦obs
2 1.0758 0.8711 0.9393 1.1468 1.0027 0.8577 1.0274

8 9 10
𝑦obs
1 0.8944 0.7852 1.1527

𝑦obs
2 1.1369 0.9325 0.9074

using 𝑡 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and 𝑝1 = 0.3 and 𝑝2 =
0.1 with added small error and are available in [26]. Only
the concentrations of components 𝐴 (=𝑦1) and 𝐵 (=𝑦2) were
measured.

Lotka-Volterra Predator-Prey Model (VOL). This is a system of
ODE with two dependent variables and two parameters (see
Section 6.4 in [19] and Section 7.6 in [10]):

𝑦�耠1 = 𝑝1𝑦1 (1 − 𝑦2) ,
𝑦�耠2 = 𝑝2𝑦2 (𝑦1 − 1) ,

(A.9)

for 𝑡 ∈ [0, 10], with initial conditions 𝑦1(0) = 1.2 and
𝑦2(0) = 1.1 and lower and upper bounds on the parameters:
[𝑝L
�푖 , 𝑝U
�푖 ] = [0.1, 10], 𝑖 = 1, 2. Experimental data in Table 29

have been generated using 𝑡 = [1, 2, 3, 4, . . . , 9, 10] and 𝑝1 = 3
and 𝑝2 = 1 with a small amount of random errors added,

according to the normal distribution𝑁(0, 0.01), yielding the
instance VOL A. A second set of experimental data, shown
in Table 30, is available in [10] and has also been tested,
corresponding to the herein denoted instance VOL B.
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