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Multiobjective linear fractional programming (MOLFP) problems are the important problems with special structures in multiob-
jective optimization. In the MOLFP problems, the objective functions are linear fractional functions and the constraints are linear;
that is, the feasible set is a polyhedron. In this paper, we suggest a method to identify the efficiency status of the feasible solutions of
an MOLFP problem. By the proposed method, an efficient projection on the efficient space for an inefficient solution is obtained.
The proposed problems are constructed in linear programming structures.

1. Introduction

Multiobjective programming (MOP) is a well-known
research field in optimization and operations research. The
multiobjective optimization problems have several objective
functions and a set of feasible solutions. There are several
special structures in multiobjective optimization problems.
One class of them includes multiobjective linear fractional
programming (MOLFP) problems which contain several
linear fractional objective functions and a polyhedron as the
feasible set.

There are many methods to find the efficient solutions of
multiobjective optimization problems which are constructed
based on iterative, scalarization, interactive, and other meth-
ods. If the objective functions or the constraints are not
linear, then we should solve a mathematical programming
problemwhich is not linear, but if the objective functions and
constraints are linear, then the current approaches, usually,
solve linear programming (LP) problems which are usually
more desirable than nonlinear programming problems in the
computationally efforts.

One of the well-known and the interesting methods
to find the efficiency status of a feasible solution in MOP
is Benson’s method which was proposed by Benson [1].

This method receives an initial feasible solution of the
MOP problem and identifies the efficiency status of that.
If the feasible solution is not efficient, then this approach
produces an efficient solution as a projection of the under-
assessment inefficient solution. Another well-knownmethod
to find the efficient solution of an MOP problem is the
weighted sum method. By this method the MOP problem is
converted to an optimization problem with a single objective
function. The weights of the objective functions of the MOP
problems are specified by the decision-maker’s point of view.
If the weights are nonnegative, then the optimal solutions are
weakly efficient and in particular if the weights are positive,
then the optimal solutions are efficient. Besides the weighted
sum approach, the 𝜀-constraint method is also a well-known
technique to solveMOP problems.There is no aggregation of
objective functions; instead only one of the original objectives
is optimized, while the others are transformed to constraints.
This approach was introduced by Haimes et al. [2], and an
extensive discussion can be found in Chankong and Haimes
[3].

The objective functions of theMOLFP problems are frac-
tional but the numerator and denominator of the objective
functions are affine. To check the efficiency status of a feasible
solution of anMOLFPproblemby the traditional approaches,
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we should solve a fractional programming problem which
is not desirable compared to solving a linear programming
problem.

A linear fractional programming (LFP) problem includes
a polyhedron as the feasible set and a fractional objective
function whose numerator and denominator are affine func-
tions. In other words, the numerator and denominator of the
objective function are convex and concave simultaneously,
but the whole of the objective function usually is not convex
and concave, while it is quasi convex and quasi concave,
simultaneously. So all local optimal solutions of an LFP
problem are global optimal solutions. Moreover, if the LFP
problem has an optimal solution, then it has an extreme
optimal solution. To guarantee the existence of an optimal
solution of an LFP problem, we suppose that the feasible set
is bounded and the denominator of the objective function is
positive or negative in the whole of the feasible set. Charnes
and Cooper [4] have shown that an LFP problem can be
solved by a linear programming technique; that is, the opti-
mal solution of the constructed linear programming problem
is the optimal solution of the LFP problem, where the sign
of the denominator of the objective function is not changed
in the whole of the feasible set. There are some researches
to focous on solving LFP problems such as Gilmore and
Gomory [5], Martos [6], Illés et al. [7], Tantawy [8], and
Odior [9].

Because of the importance of solving MOLFP problems
in multiobjective optimization, some articles have been pub-
lished on the subject of solvingMOLFPproblems.Most of the
techniques in the published researches are based on interac-
tive, iterative, linearization, parametric, and decomposition
methods. Kornbluth and Steuer [10] found a weakly efficient
solution of an MOLFP problem based on a simplex based
algorithm. Meteve and Gueorguieva [11] identified a weakly
efficient solution using a nonlinear programming problem.
Also Caballero and Hernández [12] proposed a controlled
estimation method to find a set of weakly efficient solutions.
Dinkelbach [13] solved anMOLFP problem using a paramet-
ric technique and this approach was extended by Almogy
and Levin [14], Crouzeix et al. [15], Falk and Palocsay [16],
Tammer et al. [17], Skiscimi and Palocsay [18], and Schaible
and Shi [19].

In the parametric technique of Tammer et al. [17], the
parameters are calculated by solving some equations and
the obtained feasible solution, necessarily, is not efficient
solution. Most of parametric techniques extracted from
Dinkelbach [13] cannot guarantee solving the MOLFP prob-
lems. Also some of approaches to solve MOLFP problems
are based on iterative techniques such as Costa [20], Kuno
[21], Phuong and Tuy [22], Dai et al. [23], Costa and Alves
[24], Matejaš and Perić [25], and Valipour et al. [26]. Most
of techniques for solving MOLFP problems try to find an
efficient solution for an MOLFP problem.

In this paper, at first, we propose an approach which
identifies the efficiency status of an arbitrary feasible solution
of anMOLFP problem.Then, we propose an approach which
not only identifies the efficiency status of an arbitrary feasible
solution but also finds an efficient projection of an arbitrary
feasible solution. In these two approaches, we construct linear

programming problems regarding the MOLFP problem.
Moreover, we show that in evaluating the under-assessment
feasible solution by the proposed linear programming prob-
lem, in the first approach, if the optimal value is zero, then
the under-assessment feasible solution is an efficient solution.
In the second approach, the optimal solution of the linear
programming problem is a weakly efficient solution. In
particular, if the optimal solution of the proposed problem
is unique, then the optimal solution is an efficient solution.
The behavior and application of our proposed problems are
similar to Benson’s [1] problem and 𝜀-constraint problem,
proposed by Haimes et al. [2], for solving MOLFP prob-
lems. The differences among Benson’s method, 𝜀-constraint
method, and our proposed methods are the structures of
the suggested problems. Our proposed problems are linear
programming problems, while Benson’s and the 𝜀-constraint
problem, corresponding to an MOLFP problem, not only
have nonlinear objective functions but also have nonlinear
constraints.

In Section 2, we introduce some notions, definitions, and
properties which are required in the main discussions. In
Section 3, the main discussions and properties are presented.
Two numerical examples to illustrate our approaches are
presented in Section 4, and the final section is conclusion.

2. Preliminaries

2.1. Linear Fractional Programming Problem. The linear frac-
tional programming problems are modeled as follows:

Min 𝑓 (𝑥) =

𝑐𝑥 + 𝛼

𝑑𝑥 + 𝛽

,

s.t. 𝑥 ∈ 𝑋 = {𝑥 ∈ 𝑅
𝑛

: 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} ,

(1)

where 𝑋 is a nonempty and bounded set, 𝑏 ∈ R𝑚 and 𝑐, 𝑑 ∈

R𝑛 are vectors of (known) coefficients,𝐴 ∈ R𝑚×𝑛 is a (known)
matrix of coefficients, and 𝛼, 𝛽 are constant in R. Moreover,
𝑑𝑥 + 𝛽 ̸= 0 for all 𝑥 ∈ 𝑋.

To solve LFP problem (1), usually, the method of Charnes
and Cooper [4] is used. Let 𝑡 = 1/(𝑑𝑥 + 𝛽) and 𝑦 = 𝑥𝑡; there-
fore, problem (1) can be converted to the following problem:

Min 𝑓 (𝑥) = 𝑐𝑦 + 𝛼𝑡,

s.t. 𝑑𝑦 + 𝛽𝑡 = 1,

𝐴𝑦 − 𝑏𝑡 ≤ 0,

𝑦 ≥ 0, 𝑡 ≥ 0.

(2)

Theorem 1. Let (𝑦
∗

, 𝑡
∗

) be an optimal solution of problem (2);
then, 𝑥

∗

= 𝑦
∗

/𝑡
∗ is an optimal solution of LFP problem (1).

Proof. See Charnes and Cooper [4].

2.2. Multiobjective Optimization. Consider the following
Multiobjective programming problem:

Min 𝑓 (𝑥) = (𝑓
1

(𝑥) , . . . , 𝑓
𝑝

(𝑥))

𝑡

,

s.t. 𝑥 ∈ 𝑋,

(3)
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where 𝑋 ⊆ R𝑛 is the feasible set and 𝑓
𝑖
(𝑥), 𝑖 = 1, 2, . . . , 𝑝, are

the objective functions. Usually, there exist conflicts among
objective functions in their targets; then, usually, there does
not exist any feasible solution of an MOP problem that
optimizes all objective functions. Therefore, the notions of
efficient solutions and weakly efficient solutions are intro-
duced in MOP instead of optimal solutions.

Definition 2. A point 𝑥 ∈ 𝑋 is an efficient solution or pareto-
optimal solution of problem (3) if there is no other 𝑥 ∈ 𝑋

such that 𝑓
𝑘
(𝑥) ≤ 𝑓

𝑘
(𝑥) for all 𝑘 = 1, . . . , 𝑝 and 𝑓

𝑗
(𝑥) < 𝑓

𝑗
(𝑥)

for at least one 𝑗 ∈ {1, . . . , 𝑝}.

Definition 3. A point 𝑥 ∈ 𝑋 is a weakly efficient solution of
problem (3) if there is no other 𝑥 ∈ 𝑋 such that𝑓

𝑘
(𝑥) < 𝑓

𝑘
(𝑥)

for all 𝑘 = 1, . . . , 𝑝.

Definition 4. A point 𝑥 ∈ 𝑋 is a strictly efficient solution
of problem (3) if there is no other 𝑥 ∈ 𝑋, 𝑥 ̸= 𝑥, such that
𝑓
𝑘
(𝑥) ≤ 𝑓

𝑘
(𝑥) for all 𝑘 = 1, . . . , 𝑝.

Remark 5. Definitions 2, 3, and 4 imply that each strictly effi-
cient solution is an efficient solution and each efficient solu-
tion is a weakly efficient solution but the reverses, necessarily,
are not true.

There are many methods to find the efficient solutions in
MOP. One of the most well-known methods to identify the
efficiency status of a feasible solutionwas proposed byBenson
[1] which is presented here in synopsis.

The idea and the aim of Benson’s method are on iden-
tifying the efficiency status of a feasible solution of MOP.
If the mentioned feasible solution is not efficient and then
Benson’smethod finds an efficient solution of theMOPwhich
dominates the mentioned inefficient feasible solution. This
found efficient solution is called the projection of the inef-
ficient solution on the efficient space. The problem proposed
by Benson [1] maximizes the distance between the vector of
objective functions corresponding to the under-assessment
feasible solution (𝑥0) and the vectors of objective functions
corresponding to all feasible solutionswhich dominate𝑓(𝑥

0

).
The distance function in Benson’s method is ‖ ⋅ ‖

1
(𝐿1-norm).

By the above explanation, Benson’s method is modeled as
follows:

Max
𝑝

∑

𝑘=1

𝑙
𝑘
,

s.t. 𝑓
𝑘

(𝑥) + 𝑙
𝑘

≤ 𝑓
𝑘

(𝑥
0

) , 𝑘 = 1, 2, . . . , 𝑝,

𝑙
𝑘

≥ 0,

𝑥 ∈ 𝑋.

(4)

Theorem 6. If 𝑥
∗ is an optimal solution of problem (4), then

𝑥
∗ is an efficient solution of problem (3).

Proof. See Benson [1].

Theorem 7. If the optimal objective value of (4) equals zero,
then the feasible solution 𝑥

0

∈ 𝑋 is efficient.

Proof. See Benson [1].

Another technique to solve the multiobjective optimiza-
tion problems is the 𝜀-constraint method which was intro-
duced by Haimes et al. [2]. In this method, only one of the
original objectives is minimized, while the others are trans-
formed to constraints. The 𝜀-constraint problem associated
with the MOP problem (3) is formulated as

Min 𝑓
𝑗
(𝑥) ,

s.t. 𝑓
𝑘

(𝑥) ≤ 𝜀
𝑘
, 𝑘 = 1, 2, . . . , 𝑝, 𝑘 ̸= 𝑗,

𝑥 ∈ 𝑋,

(5)

where 𝜀 ∈ 𝑅
𝑝.

Theorem 8. Let 𝑥
∗ be an optimal solution of (5) for some 𝑗,

and then 𝑥
∗ is a weakly efficient solution of (3).

Proof. See Haimes et al. [2].

Theorem9. Let𝑥
∗ be a unique optimal solution of (5) for some

𝑗, then 𝑥
∗ is a strictly efficient solution of (3), and therefore 𝑥

∗

is efficient.

Proof. See Haimes et al. [2].

3. The Proposed Approaches

The multiobjective linear fractional programming problems
are formulated as follows:

Min 𝑓 (𝑥) = (

𝑐
1
𝑥 + 𝛼
1

𝑑
1
𝑥 + 𝛽
1

, . . . ,

𝑐
𝑝
𝑥 + 𝛼
𝑝

𝑑
𝑝
𝑥 + 𝛽
𝑝

)

𝑡

,

s.t. 𝑥 ∈ 𝑋 = {𝑥 ∈ 𝑅
𝑛

: 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} ,

(6)

where 𝑋 is a nonempty and bounded set, 𝐴 ∈ 𝑅
𝑚×𝑛, 𝑏 ∈ 𝑅

𝑚,
𝑐
𝑘
, 𝑑
𝑘

∈ 𝑅
𝑛, and 𝛼

𝑘
, 𝛽
𝑘

∈ 𝑅 for all 𝑘 = 1, 2, . . . , 𝑝. Moreover,
the feasible set 𝑋 is a polytope (bounded polyhedron) and
𝑑
𝑘
𝑥 + 𝛽

𝑘
is positive or negative in all feasible solutions of

MOLFP problem (6) for all 𝑘 = 1, 2, . . . , 𝑝. Without loss of
generality, in this paper we assume that 𝑑

𝑘
𝑥 + 𝛽
𝑘

> 0 for all
𝑥 ∈ 𝑋 and 𝑘 = 1, 2, . . . , 𝑝.

To explain the proposed approaches, at first, we express
Benson’s method for MOLFP problem (6) and convert it to a
linear programming problem. Benson’s problem correspond-
ing to MOLFP problem (6) is as follows:

Max
𝑝

∑

𝑘=1

𝑙
𝑘
,

s.t.
𝑐
𝑘
𝑥 + 𝛼
𝑘

𝑑
𝑘
𝑥 + 𝛽
𝑘

+ 𝑙
𝑘

≤ 𝑓
𝑘

(𝑥
0

) , 𝑘 = 1, 2, . . . , 𝑝,

𝑙
𝑘

≥ 0, 𝑘 = 1, 2, . . . , 𝑝,

𝑥 ∈ 𝑋,

(7)

where 𝑥
0

∈ 𝑋 is a feasible solution of (6) and𝑓
𝑘
(𝑥
0

) = (𝑐
𝑘
𝑥
0

+

𝛼
𝑘
)/(𝑑
𝑘
𝑥
0

+ 𝛽
𝑘
), 𝑘 = 1, . . . , 𝑝.
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Let 𝑋 ̸= 0 be a bounded set. It implies that the feasible set
of (7) is bounded.Then, the efficient MOP problem (6) is not
empty and problem (7) has an optimal solution.

Regarding the nonlinearity of the first group of the con-
straints of problem (7), we convert these constraints to linear
constraints as follows:

𝑐
𝑘
𝑥 + 𝛼
𝑘

𝑑
𝑘
𝑥 + 𝛽
𝑘

+ 𝑙
𝑘

≤ 𝑓
𝑘

(𝑥
0

) ⇒

𝑐
𝑘
𝑥 + 𝛼
𝑘

𝑑
𝑘
𝑥 + 𝛽
𝑘

− 𝑓
𝑘

(𝑥
0

) ≤ −𝑙
𝑘

⇒

𝑐
𝑘
𝑥 + 𝛼
𝑘

− 𝑓
𝑘

(𝑥
0

) (𝑑
𝑘
𝑥 + 𝛽
𝑘
)

𝑑
𝑘
𝑥 + 𝛽
𝑘

≤ −𝑙
𝑘
,

(8)

for 𝑘 = 1, 2, . . . , 𝑝. Since, for all 𝑥 ∈ 𝑋, we have 𝑑
𝑘
𝑥 + 𝛽
𝑘

> 0

and −𝑙
𝑘

≤ 0, 𝑘 = 1, 2, . . . , 𝑝, we have 𝑐
𝑘
𝑥 + 𝛼
𝑘

− 𝑓
𝑘
(𝑥
0

)(𝑑
𝑘
𝑥 +

𝛽
𝑘
) ≤ 0 for 𝑘 = 1, 2, . . . , 𝑝.
Consider the following linear programming problem:

Max
𝑝

∑

𝑘=1

𝑙


𝑘
,

s.t. 𝑐
𝑘
𝑥 + 𝛼
𝑘

+ 𝑙


𝑘
≤ 𝑓
𝑘

(𝑥
0

) (𝑑
𝑘
𝑥 + 𝛽
𝑘
) ,

𝑘 = 1, 2, . . . , 𝑝,

𝑙


𝑘
≥ 0, 𝑘 = 1, 2, . . . , 𝑝,

𝑥 ∈ 𝑋.

(9)

The following theorem shows the relation between the opti-
mal objective value of the above problem and the efficient
solutions of MOLFP problem (6).

Theorem 10. If the optimal objective value of (9) equals zero,
then the feasible solution 𝑥

0

∈ 𝑋 is an efficient solution of
MOLFP problem (6).

Proof. With respect to the constraints of problem (9) and
because of 𝑙



𝑘
≥ 0, 𝑘 = 1, 2, . . . , 𝑝, we conclude the following

results for all 𝑥 in the feasible set of (9):

𝑐
𝑘
𝑥 + 𝛼
𝑘

+ 𝑙


𝑘
≤ 𝑓
𝑘

(𝑥
0

) (𝑑
𝑘
𝑥 + 𝛽
𝑘
) ⇒

𝑐
𝑘
𝑥 + 𝛼
𝑘

≤ 𝑓
𝑘

(𝑥
0

) (𝑑
𝑘
𝑥 + 𝛽
𝑘
) ,

𝑘 = 1, 2, . . . , 𝑝.

(10)

Because of𝑑
𝑘
𝑥+𝛽
𝑘

> 0 for all𝑥 ∈ 𝑋, we have (𝑐
𝑘
𝑥+𝛼
𝑘
)/(𝑑
𝑘
𝑥+

𝛽
𝑘
) ≤ 𝑓
𝑘
(𝑥
0

) for all 𝑘 = 1, 2, . . . , 𝑝.
Since all coefficients of variables 𝑙



𝑘
, 𝑘 = 1, 2, . . . , 𝑝, in

the objective function of problem (9) are positive, they are
equal to one, and 𝑥

∗ is an optimal solution of (9); therefore,
𝑙


𝑘
associated with 𝑥

∗, which is shown by 𝑙
∗

𝑘
, satisfies in the

following relations:

𝑐
𝑘
𝑥
∗

+ 𝛼
𝑘

+ 𝑙
∗

𝑘
= 𝑓
𝑘

(𝑥
0

) (𝑑
𝑘
𝑥
∗

+ 𝛽
𝑘
) ⇒

−𝑙
∗

𝑘
= 𝑐
𝑘
𝑥
∗

+ 𝛼
𝑘

− 𝑓
𝑘

(𝑥
0

) (𝑑
𝑘
𝑥
∗

+ 𝛽
𝑘
) ,

𝑘 = 1, 2, . . . , 𝑝,

(11)

and so

−

𝑝

∑

𝑘=1

𝑙
∗

𝑘
=

𝑝

∑

𝑘=1

(𝑐
𝑘
𝑥
∗

+ 𝛼
𝑘

− 𝑓
𝑘

(𝑥
0

) (𝑑
𝑘
𝑥
∗

+ 𝛽
𝑘
)) . (12)

Now, suppose that (𝑥
∗

, 𝑙
∗

) = (𝑥
∗

, 0) is an optimal solu-
tion of (9) and by contradiction suppose that 𝑥

0 is not an
efficient solution of MOLFP problem (6). Then, there exists
a feasible solution 𝑥 ∈ 𝑋 such that (𝑐

𝑘
𝑥 + 𝛼
𝑘
)/(𝑑
𝑘
𝑥 + 𝛽
𝑘
) ≤

(𝑐
𝑘
𝑥
0

+𝛼
𝑘
)/(𝑑
𝑘
𝑥
0

+𝛽
𝑘
) = 𝑓
𝑘
(𝑥
0

) for all 𝑘 and (𝑐
𝑗
𝑥+𝛼
𝑗
)/(𝑑
𝑗
𝑥+

𝛽
𝑗
) < (𝑐
𝑗
𝑥
0

+ 𝛼
𝑗
)/(𝑑
𝑗
𝑥
0

+ 𝛽
𝑗
) = 𝑓
𝑗
(𝑥
0

) for some 𝑗.
Let 𝐼 = {𝑘 | (𝑐

𝑘
𝑥 + 𝛼

𝑘
)/(𝑑
𝑘
𝑥 + 𝛽

𝑘
) = 𝑓

𝑘
(𝑥
0

)} and 𝑙



𝑘
=

𝑓
𝑘
(𝑥
0

)(𝑑
𝑘
𝑥 + 𝛽

𝑘
) − (𝑐
𝑘
𝑥 + 𝛼

𝑘
) for all 𝑘 = 1, 2, . . . , 𝑝. These

relations imply that 𝑙



𝑘
= 0 for all 𝑘 ∈ 𝐼 and 𝑙



𝑘
> 0 for all 𝑘 ∉ 𝐼.

Because of 𝑙



𝑘
≥ 0, 𝑘 = 1, 2, . . . , 𝑝, we conclude that (𝑥, 𝑙



) is a
feasible solution of (9).

Also, {1, 2, . . . , 𝑝} \ 𝐼 ̸= 0 and we have ∑
𝑝

𝑘=1
𝑙



𝑘
> 0

which contradicts with the assumption of the optimality of
(𝑥
∗

, 𝑙
∗

) = (𝑥
∗

, 0) in (9). Because the objective value of (9)
corresponding to (𝑥, 𝑙



) is strictly positive while the objective
value of (9) corresponding to (𝑥

∗

, 𝑙
∗

) is zero, therefore 𝑥
∗ is

an efficient solution of (6).

Now, we express the 𝜀-constraint method for MOLFP
problem (6). Let 𝑥

0 be a feasible solution of (6) and 𝜀
𝑘

=

𝑓
𝑘
(𝑥
0

), 𝑘 = 1, 2, . . . , 𝑝. Therefore, 𝜀-constraint problem (5)
corresponding to MOLFP problem (6) is as follows:

Min
𝑐
𝑗
𝑥 + 𝛼
𝑗

𝑑
𝑗
𝑥 + 𝛽
𝑗

,

s.t. 𝐴𝑥 ≤ 𝑏,

𝑐
𝑘
𝑥 + 𝛼
𝑘

𝑑
𝑘
𝑥 + 𝛽
𝑘

≤ 𝑓
𝑘

(𝑥
0

) , 𝑘 = 1, . . . , 𝑝, 𝑘 ̸= 𝑗,

𝑥 ≥ 0.

(13)

We transform the above nonlinear programming problem to
a linear programming problem using Charnes and Cooper’s
transformation method. Let 𝑡 = 1/(𝑑

𝑗
𝑥 + 𝛽

𝑗
) and 𝑦 = 𝑥𝑡.

The above problem is transformed to the following linear
programming problem:

Min 𝑐
𝑗
𝑦 + 𝛼
𝑗
𝑡,

s.t. 𝐴𝑦 − 𝑏𝑡 ≤ 0,

𝑐
𝑘
𝑦 + 𝛼
𝑘
𝑡 ≤ 𝑓
𝑘

(𝑥
0

) (𝑑
𝑘
𝑦 + 𝛽
𝑘
𝑡) ,

𝑘 = 1, . . . , 𝑝, 𝑘 ̸= 𝑗,

𝑑
𝑗
𝑦 + 𝛽
𝑗
𝑡 = 1,

𝑦 ≥ 0, 𝑡 ≥ 0.

(14)

Theorem 11. Let (𝑦
∗

, 𝑡
∗

) be an optimal solution of problem
(14) for some 𝑗, and then 𝑥

∗

= 𝑦
∗

/𝑡
∗ is an optimal solution

of problem (13).
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Proof. At first, we claim that 𝑡 is not zero in all feasible
solutions of (14). By contradiction, suppose that (𝑦, 𝑡) = (𝑦, 0)

is a feasible solution of (14). So𝐴𝑦 ≤ 0 and𝑦 ≥ 0.These imply
that 𝑦 is a recession direction of𝑋 (the feasible set of MOLFP
(6)) which is a contradiction to the primary assumption of
the boundedness of 𝑋. So 𝑡 > 0 in all feasible solutions, and
in particular 𝑡 is positive in all optimal solutions of (14).

(𝑦
∗

, 𝑡
∗

) is an optimal solution of (14) and 𝑡
∗

> 0. Let 𝑥
∗

=

𝑦
∗

/𝑡
∗. We prove that 𝑥

∗ is an optimal solution of (13).

𝐴𝑥
∗

𝑡
∗

= 𝐴𝑦
∗

≤ 𝑏𝑡
∗

⇒

𝐴𝑥
∗

≤ 𝑏.

(15)

Moreover,

𝑐
𝑘
𝑥
∗

𝑡
∗

+ 𝛼
𝑘
𝑡
∗

= 𝑐
𝑘
𝑦
∗

+ 𝛼
𝑘
𝑡
∗

≤ 𝑓
𝑘

(𝑥
0

) (𝑑
𝑘
𝑦
∗

+ 𝛽
𝑘
𝑡
∗

)

= 𝑓
𝑘

(𝑥
0

) (𝑑
𝑘
𝑥
∗

𝑡
∗

+ 𝛽
𝑘
𝑡
∗

) ,

(16)

for all 𝑘 = 1, 2, . . . , 𝑝 and 𝑘 ̸= 𝑗. These imply that

𝑐
𝑘
𝑥
∗

+ 𝛼
𝑘

𝑑
𝑘
𝑥
∗

+ 𝛽
𝑘

≤ 𝑓
𝑘

(𝑥
0

) , 𝑘 = 1, . . . , 𝑝, 𝑘 ̸= 𝑗. (17)

So 𝑥
∗ is a feasible solution of problem (13). We show that 𝑥

∗

is an optimal solution of (13). By contradiction, suppose that
𝑥
∗ is not an optimal solution of (13). Therefore, there exists

feasible solution 𝑥 of (13) such that

𝑐
𝑗
𝑥 + 𝛼
𝑗

𝑑
𝑗
𝑥 + 𝛽
𝑗

<

𝑐
𝑗
𝑥
∗

+ 𝛼
𝑗

𝑑
𝑗
𝑥
∗

+ 𝛽
𝑗

. (18)

Let 𝑡 = 1/(𝑑
𝑗
𝑥 + 𝛽
𝑗
) and 𝑦 = 𝑥𝑡. It is easy to see that (𝑦, 𝑡) is

a feasible solution of (14). Moreover, from (18) we have 𝑐
𝑗
𝑦 +

𝛼
𝑗
𝑡 < 𝑐

𝑗
𝑦
∗

+ 𝛼
𝑗
𝑡
∗, which contradicts with the assumption

that (𝑦
∗

, 𝑡
∗

) is an optimal solution of (14). Therefore 𝑥
∗

=

𝑦
∗

/𝑡
∗ is an optimal solution of problem (13), and the proof is

completed.

Theorem 12. Let (𝑦
∗

, 𝑡
∗

) be an optimal solution of problem
(14) for some 𝑗, and then 𝑥

∗

= 𝑦
∗

/𝑡
∗ is a weakly efficient

solution for MOLFP problem (6). In particular, if (𝑦
∗

, 𝑡
∗

) is a
unique optimal solution of (14), then 𝑥

∗

= 𝑦
∗

/𝑡
∗ is a strictly

efficient solution and an efficient solution for MOLFP problem
(6).

Proof. Suppose that (𝑦
∗

, 𝑡
∗

) is an optimal solution of (14).
Therefore, by Theorem 11, 𝑥

∗

= 𝑦
∗

/𝑡
∗ is an optimal solution

of (13) and, regarding to Theorem 8, 𝑥
∗ is weakly efficient

solution of MOLFP problem (6). Moreover, if (𝑦
∗

, 𝑡
∗

) is a
unique optimal solution of problem (14), then 𝑥

∗

= 𝑦
∗

/𝑡
∗

is a unique optimal solution of problem (13) and, regarding
toTheorem 9, 𝑥∗ is a strictly efficient solution and, therefore,
it is an efficient solution of MOLFP problem (6), which com-
pletes the proof.

Remark 13. By Theorem 12, we conclude that an optimal
solution of problem (14) clarifies a weakly efficient solution
of MOLFP problem (6). If the optimal solution of (14) is

unique, then this optimal solution determines an efficient
solution of MOLFP problem (14). Otherwise, if problem (14)
has alternative optimal solutions, then to clarify the efficiency
status of an optimal solution of (14) we use problem (9) and
Theorem 10.

4. Examples

Example 1. Consider the following MOLFP problem:

Min 𝑓
1

(𝑥) =

𝑥
1

+ 2𝑥
2

+ 5

𝑥
1

+ 𝑥
2

+ 2

,

Min 𝑓
2

(𝑥) =

𝑥
1

+ 𝑥
2

+ 10

−𝑥
1

+ 2𝑥
2

+ 4

,

s.t. 𝑥
1

≤ 3,

𝑥
2

≤ 4,

𝑥
1
, 𝑥
2

≥ 0.

(19)

According to problem (14) for 𝑗 = 1, problem (19) can be
converted to the following problem:

Min 𝑦
1

+ 2𝑦
2

+ 5𝑡,

s.t. 𝑦
1

+ 𝑦
2

+ 10𝑡 ≤ 𝑓
2

(𝑥
0

) (−𝑦
1

+ 2𝑦
2

+ 4𝑡) ,

𝑦
1

+ 𝑦
2

+ 2𝑡 = 1,

𝑦
1

− 3𝑡 ≤ 0,

𝑦
2

− 4𝑡 ≤ 0,

𝑦
1
, 𝑦
2
, 𝑡 ≥ 0,

(20)

where 𝑥
0 is a feasible solution of problem (19).

For each arbitrary feasible point, which is called an under-
assessment feasible solution, we will solve problem (20)
and obtain the projection of the under-assessment feasible
solution of problem (19) on the weakly efficient space of that.
Then, we check the efficient status of the projection solution
using problem (9) and Theorem 10. The optimal solutions
of problem (20) corresponding to several under-assessment
feasible solutions and their efficiency statuses have been listed
in Table 1. Note that if (𝑦

∗

, 𝑡
∗

) is a unique optimal solution of
problem (20), then 𝑦

∗

/𝑡
∗ is an efficient solution for MOLFP

problem (19) and we do not need to check the projection by
(9). Figure 1 shows the feasible set and the efficient solutions
of (19). The rectangle with vertex 𝐴, 𝐵, 𝐶, 𝑂 and its interior is
the set of feasible solutions. All points on bold segments 𝐴𝐵

and 𝐵𝐶 are the efficient solutions of (19).
Note that points 𝐴, 𝐵, and 𝐶 are extremely efficient. If

we choose them as under-assessment points (𝑥
0

) and solve
problem (20), then the optimal solutions of (20) correspond-
ing to the three points, which are the projections of these
feasible solutions on the efficient space, are unique and equal
to themselves.

Table 1 presents the results of examining 7 feasible solu-
tions of (19) of which 6 feasible solutions are on the boundary
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Table 1: Results of Example 1 using different feasible solutions of
(19).

Row Feasible solution
(𝑥
0

)

Efficiency status
of 𝑥
0 Projection

1 𝐴 = (0.0000, 4.0000) Efficient (0.0000, 4.0000)
2 𝐵 = (3.0000, 4.0000) Efficient (3.0000, 4.0000)
3 𝐶 = (3.0000, 0.0000) Efficient (3.0000, 0.0000)
4 (2.1078, 4.0000) Efficient (2.1078, 4.0000)
5 (0.0000, 0.0000) Inefficient (3.0000, 2.6250)
6 (0.0000, 2.0000) Inefficient (1.6000, 4.0000)
7 (1.6789, 1.5678) Inefficient (3.0000, 2.7424)

x1

x2

O

A B

C

A = (0, 4)

B = (3, 4)

C = (3, 0)

Figure 1: Feasible and efficient sets of problem (19).

of the feasible set and one of them is an interior point of
the feasible set. The projection points corresponding to the
feasible points in rows 1 to 4 are themselves and they are
efficient by problem (9) which are also endorsed by Figure 1.
In particular, the points in rows 1 to 3 are basic feasible
solutions of (19) and so they are the efficient extreme points
of (19). Also the feasible solution in row 4 is on segments 𝐴𝐵.

The other feasible solutions in rows 5 to 7 are inefficient.
The points in rows 5 and 6 are on the inefficient boundary of
the feasible set of (19) and their projections are on segments
𝐵𝐶 and 𝐴𝐵, respectively. The point in row 7 is an interior
point of the feasible set of (19) and its projection is on segment
𝐵𝐶.

Example 2. Here, we consider anMOLFP problemwith three
objective functionswhich has been extracted fromKornbluth
and Steuer [10] as follows:

Min 𝑓
1

(𝑥) =

−𝑥
1

+ 4

−𝑥
2

+ 3

,

Min 𝑓
2

(𝑥) =

𝑥
1

− 4

𝑥
2

+ 1

,

Min 𝑓
3

(𝑥) = 𝑥
1

− 𝑥
2
,

s.t. −𝑥
1

+ 4𝑥
2

≤ 0,

𝑥
1

− 0.5𝑥
2

≤ 4,

𝑥
1
, 𝑥
2

≥ 0.

(21)

Table 2:Theprojections of several feasible solutions of (21) and their
efficiency statuses.

Row Feasible point (𝑥
0

)

Efficiency status of
𝑥
0 Projection

1 𝐴 = (0.0000, 0.0000) Efficient (0.0000, 0.0000)
2 𝐶 = (4.5714, 1.1429) Efficient (4.5714, 1.1429)
3 (4.0000, 1.0000) Efficient (4.0000, 1.0000)
4 (1.5558, 0.0000) Efficient (1.5558, 0.0000)

5 𝐵 = (4.0000, 0.0000) Inefficient
(Weakly efficient) (4.0000, 0.0706)

6 𝐷 = (1.3000, 0.3000) Inefficient
(Weakly efficient) (1.0000, 0.0000)

7 (0.5000, 0.0625) Inefficient (0.4255, 0.0000)
8 (0.7690, 0.1168) Inefficient (0.6381, 0.0000)

x1

x2

D

A B

C

A = (0, 0)

B = (4, 0)

C = (4.5714, 1.1429)

D = (1.3, 0.3)

Figure 2: Feasible and efficient regions of problem (21).

The feasible set of the aboveMOLFP problemhas been shown
in Figure 2. The feasible set is a triangle with vertices 𝐴, 𝐵,
and 𝐶. All the bold segments are efficient except points 𝐵 and
𝐷 which are weakly efficient. The other points in the feasible
set are inefficient. For more illustration, see Kornbluth and
Steuer [10].

Regarding (6), (13), and (14) for 𝑗 = 2, MOLFP problem
(21) is transformed to the following linear programming
problem:

Min 𝑦
1

− 4𝑡,

s.t. −𝑦
1

+ 4𝑡 ≤ 𝑓
1

(𝑥
0

) (−𝑦
2

+ 3𝑡) ,

𝑦
1

− 𝑦
2

≤ 𝑓
3

(𝑥
0

) 𝑡,

𝑦
2

+ 𝑡 = 1,

−𝑦
1

+ 4𝑦
2

≤ 0,

𝑦
1

− 0.5𝑦
2

− 4𝑡 ≤ 0,

𝑦
1
, 𝑦
2
, 𝑡 ≥ 0,

(22)

where 𝑥
0 is a feasible solution of problem (21).

By solving linear programming problem (22) for each
arbitrary feasible solution of (21), we can obtain a projection
of 𝑥
0 on the weakly efficient space of (21). The results of

solving problem (21) for several feasible solutions have been
listed in Table 2. In Table 2, we see that columns 2 and 4
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corresponding to rows 1 to 4 are the same. In other words,
the projections of the under-assessment feasible solutions in
rows 1 to 4 are themselves and they are efficient using problem
(9) corresponding to (21). Furthermore, all other feasible
solutions in rows 5 to 8 are inefficient and their projections,
obtained from (22), are efficient.

5. Conclusion

In real world, many of events and problems are modeled as
multiobjective programming problems. Multiobjective linear
fractional programming (MOLFP) problems have special
structures among multiobjective programming problems.
The feasible sets of them are polyhedron and also their objec-
tive functions are fractional whose nominators and denomi-
nators are affine functions.

Because of the special structure of the MOLFP problems,
in this paper we suggest a linear programming technique to
find the efficiency status of a feasible solution of an MOLFP
problem, and if it is not efficient, then we project it on the
efficient space of the MOLFP problem. For this purpose,
we propose two linear programming problems. One of the
proposed linear programming problems attempts to find a
feasible solution of theMOLFP problemwhich dominates the
under-assessment feasible solution. If there does not exist any
optimal solution of the proposed linear programming prob-
lem which equals the under-assessment feasible solution,
then the under-assessment feasible solution is inefficient. In
this case the optimal solution is a projection of the under-
assessment feasible solution on the weakly efficient set of
the MOLFP problems. Otherwise, if the optimal solution of
the proposed problem is the same as the under-assessment
feasible solution, then the feasible solution is weakly efficient.
Another proposed linear programming problem identifies
the efficiency statuses of the feasible solutions. We can check
the efficiency status of an arbitrary feasible solution or a
projection point, obtained by another problem, by this linear
programming problem.
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[7] T. Illés, Á. Szirmai, andT. Terlaky, “Thefinite criss-crossmethod
for hyperbolic programming,” European Journal of Operational
Research, vol. 114, no. 1, pp. 198–214, 1999.

[8] S. F. Tantawy, “A new procedure for solving linear fractional
programming problems,” Mathematical and Computer Mod-
elling, vol. 48, no. 5-6, pp. 969–973, 2008.

[9] A. O. Odior, “An approach for solving linear fractional pro-
gramming problems,” International Journal of Engineering &
Technology, vol. 1, pp. 298–304, 2012.

[10] J. S. H. Kornbluth and R. E. Steuer, “Multiple objective linear
fractional programming,” Management Sciences, vol. 27, no. 9,
pp. 1024–1039, 1981.

[11] B. Metev and D. Gueorguieva, “A simple method for obtain-
ing weakly efficient points in multiobjective linear fractional
programming problems,” European Journal of Operational
Research, vol. 126, no. 2, pp. 386–390, 2000.

[12] R. Caballero and M. Hernández, “The controlled estimation
method in the multiobjective linear fractional problem,” Com-
puters &Operations Research, vol. 31, no. 11, pp. 1821–1832, 2004.

[13] W. Dinkelbach, “On nonlinear fractional programming,”Man-
agement Science, vol. 13, pp. 492–498, 1967.

[14] Y. Almogy and O. Levin, “A class of fractional programming
problems,” Operations Research, vol. 19, pp. 57–67, 1971.

[15] J.-P. Crouzeix, J. A. Ferland, and S. Schaible, “An algorithm for
generalized fractional programs,” Journal of Optimization The-
ory and Applications, vol. 47, no. 1, pp. 35–49, 1985.

[16] J. E. Falk and S. W. Palocsay, “Image space analysis of general-
ized fractional programs,” Journal of Global Optimization, vol.
4, no. 1, pp. 63–88, 1994.

[17] K. Tammer, C. Tammer, and E. Ohlenderf, “Multicriterial frac-
tional optimization,” in Parametric Optimization and Related
Topics IV, J. Guddat, H. T. Jongen, F. Nozicka, G. Still, and F.
Twilt, Eds., pp. 359–370, Peter Lang, Berlin, Germany, 1997.

[18] C. C. Skiscim and S. W. Palocsay, “Minimum spanning trees
with sums of ratios,” Journal of Global Optimization, vol. 19, no.
2, pp. 103–120, 2001.

[19] S. Schaible and J. Shi, “Recent developments in fractional pro-
gramming: single ratio and maxmin case,” in Proceedings of the
3rd International Conference in Nonlinear Analysis, W. Taka-
hashi and T. Tanaka, Eds., pp. 493–506, Yokohama Publisher,
Yokohama, Japan, 2004.

[20] J. P. Costa, “Computing non-dominated solutions in MOLFP,”
European Journal of Operational Research, vol. 181, no. 3, pp.
1464–1475, 2007.

[21] T. Kuno, “A branch-and-bound algorithm for maximizing the
sum of several linear ratios,” Journal of Global Optimization, vol.
22, no. 1–4, pp. 155–174, 2002.

[22] N. T. H. Phuong and H. Tuy, “A unified monotonic approach to
generalized linear fractional programming,” Journal of Global
Optimization, vol. 26, no. 3, pp. 229–259, 2003.

[23] Y. Dai, J. Shi, and S. Wang, “Conical partition algorithm for
maximizing the sum of DC ratios,” Journal of Global Optimiza-
tion, vol. 31, no. 2, pp. 253–270, 2005.

[24] J. P. Costa and J. M. Alves, “A reference point technique to
compute nondominated solutions in MOLFP,” Journal of Math-
ematical Sciences, vol. 161, no. 6, pp. 820–831, 2009.



8 Journal of Optimization
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