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The problem of allocating different types of vehicles for transporting a set of products from a manufacturer to its depots/cross
docks, in an existing transportation network, to minimize the total transportation costs, is considered. The distribution network
involves a heterogeneous fleet of vehicles, with a variable transportation cost and a fixed cost in which a discount mechanism is
applied on the fixed part of the transportation costs. It is assumed that the number of available vehicles is limited for some types.
A mathematical programming model in the form of the discrete nonlinear optimization model is proposed. A hybrid dynamic
programming algorithm is developed for finding the optimal solution. To increase the computational efficiency of the solution
algorithm, several concepts and routines, such as the imbedded state routine, surrogate constraint concept, and bounding schemes,
are incorporated in the dynamic programming algorithm. A real world case problem is selected and solved by the proposed solution
algorithm, and the optimal solution is obtained.

1. Introduction

Transportation is a critical part of global logistics systems,
because of the long distances that can separate a firm from
its customers. Among five primary modes of transportation,
rail, road, pipeline, water, and air, trucks carry the highest
percentage of the weight and value of goods in the United
States [1]. Since logistics is often insensitive to transport costs,
the total costs of transportmust be analyzedmore thoroughly.

In this paper the problem of designing a cost efficient
road transportationmodel is considered.Theproposed trans-
portation model is motivated by a vehicle-depots assignment
in the transportation model of Solico Industrial Group
(SIG) in a developing country with an existing distribu-
tion network. While considering this real world problem
a more generalized version of this transportation model
is explored. A thorough investigation reveals that most
of developing countries, such as Afghanistan, India, Iraq,
Pakistan, Turkey, all the Gulf Corporation Council countries,
and the Commonwealth of Independent State countries, have
the transportation models very similar to the scope of SIG.

Therefore our approach may later be adapted by the similar
manufacturers in developing countries.

Based on these assumptions the problem is defined as a
distribution system for delivering a set of products from a
manufacturing firm to a set of distinct depots/cross docks
and allocating the appropriate vehicles to the distribution
branches to minimize the total transportation costs. A
mathematical model in the form of the nonlinear integer
programming is employed to formulate the problem.Then an
exact solution approach for solving the proposed problem is
developed. The proposed solution approach is employed for
solving a case problem and the result is reported.

2. Literature Review

Recently, by the use of e-commerce most of the logistics
activities have been changed. However physical delivery still
relies on the transportation system to finish the operations.
Many mathematical models and quantitative methods have
been developed for optimizing the operation of transport
systems in order to serve the customers demand. Logistics
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adds value to the supply chain process. According to the
26th annual “State Logistics Report” by the Council of Supply
Chain Management Professionals published in 2015, United
States business logistics costs are $1.45 trillion US dollars in
2014, and the transportation costs for the same year run to
nearly one trillion US dollars that constitute over 65% of the
total logistics costs [1]. As these statistics indicate the largest
contribution to logistic costs is transportation. Logistics
optimization has significantly grown in popularity over the
last few decades [2]. Changes over the last 3 decades have
given companies increased flexibility and control over their
logistics activities [3]. Design of large-scale distribution net-
works which involves decision making on a large number of
issues makes it difficult to develop a competitive distribution
strategy [4]. Recent technological developments could enable
the trading of formalized options around transportation
and logistics services. The modeling of logistics systems is
performed to seek the best possible system configuration
to minimize costs or maximize operational performance, in
order to meet or exceed customer expectations [5].The study
of the cost concept of logistics is due to work of Waller and
Fawcett [6] and Kowalski et al. [7].

Transportation is also considered as an important ele-
ment of logistics and supply chain process. Goossens and
Spieksma [8] considered a generalization of the ordinary
transportation problem with some exclusionary side con-
straints. In their work they confirmed that their proposed
model is NP-hard. Then Waldherr et al. [9] presented a
new extension of the bottleneck transportation problem with
additionally auxiliary resources for supporting the transports.
A transportation system with a single commodity for satis-
fying the total demand is presented. Adlakha and Kowalski
[10] proposed a solution algorithm for certain transportation
problems. The concept of absolute points developed in [11]
is employed and a direct analytical algorithm for transporta-
tion problems with quadratic function cost coefficients is
explored.

Other research attempts are those considering the dis-
counting mechanisms and their impacts on the overall
transportation costs. Discounted fixed cost transportation
can be considered as a version of fixed cost transportation
problem.This is considered to be NP-hard problem since the
cost structure causes the value of the objective function to
behave like a step function [12]. Numerous models have been
developed to overcome this issue. For models considering
discounted price according to the variation of quantities refer
to Das et al. [13], Acharya et al. [14], Blazewicz et al. [15], and
Osuji et al. [16].

Design of a cost efficient distribution network and a
better utilization of vehicles for transporting goods have been
studied and implemented in several real world instances. One
of these studies is an experiment conducted byDonselaar and
Sharman [17].This experiment focused on the transportation
and distribution sector in a province in the Netherlands.
Bhadury et al. [18] developed a comprehensive methodology
to optimize the planning of acquiring motor carriers in
transportation companies. An infrastructure development
program is conducted inHong Kong formodernizing its out-
dated and inadequate transportation systems. On completion

of this project, the strategic position of Hong Kong as a port
of Southern China was enhanced [19]. Another attempt is the
study of the Brazilian motor carrier industry for evaluating
the impact of different types of cargoes and geographic
regions serviced on truckingmanagerial efficiency levels [20].
A systematic review of the literature on the design of global
production and distribution networks is due to work of
Olhager et al. [21].

The other attempt is the work of Reimann et al. [22]
that reviewed existing literature on integrated production
and distribution decisions at the tactical and operational
level. The focus was thereby on problems that explicitly
consider deliveries tomultiple clients in a less-than-truckload
fashion. They distinguished between tactical and operational
production problems by considering lot-sizing/capacity allo-
cation and scheduling models, respectively. The trends of
the mathematical models and the solution algorithms for
handling the fleet management systems were presented in the
research work of Biellia et al. [23]. They identified the most
relevant problems in fleet management according to different
transport modes, each one with specific characteristics, and
presented an overview of recent contributions both in the
development of mathematical models and in the design
of computation algorithms. There are some attempts using
simulation for fleet management problems. Those who are
interested are referred to Kiani et al. [24], Netto and Botter
[25], and Sebbah et al. [26].

To solve the proposed mathematical programming
model a dynamic programming approach can be employed.
Dynamic programming is a powerful approach through
which the global optimal solution can be obtained even
in the case of discrete solution space. The use of this
powerful approach however is limited since the growth
of the number of decision variables and state variables
requires an extensive computer memory storage and com-
putational time. Considerable research has been devoted to
overcoming the problem of state variables dimensionality
in the dynamic programming techniques. Earlier attempts
were made through employing the concept of Lagrangian
multipliers [27]. Another attempt was the use of surrogate
constraint [28]. Both Lagrangian and surrogate constraint
framework suffer from existence of the duality gap. Although
Glover [29], Greenberg [30], and Mizukami and Sikrorski
[31] have shown that the occurrence and the size of the
gap in surrogate approach are usually less compared to the
Lagrangian method, however a unified theory to provide a
basis for an algorithmic procedure using the surrogate con-
straint method has not emerged and general computational
difficulties are waiting for a unified theory. The third attempt
is the approach of Morin and Esogbue [32] who proposed
a dynamic programming algorithm which is searching over
the imbedded state for obtaining an optimal solution. Latter
attempt provides a powerful solution procedure for solving
a general class of the dynamic programming models. Since
then a set of research works have been devoted to the
reduction of state space solution [33], Righini and Salani [34],
Fang et al. [35], Russo et al. [36], and Chebil and Khemakhem
[37].
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Theproposed problem actually is an extension of the fixed
charge transportation problems.The fixed charge transporta-
tion problem is classified as a NP-hard combinatorial opti-
mization problem [38]. Due to the computational complexity
of the proposed problem, a hybrid dynamic programming
(DP) solution algorithm is developed. To increase the compu-
tational efficiency of the solution approach, several concepts
and routines such as the imbedded state routine, surrogate
constraint concept, and bounding schemes are incorporated
in the powerful enumerating approach of the DP algorithm.
In Section 3 the development of the mathematical program-
mingwill be presented. In Section 4, the process of developing
the hybrid DP will be described. Section 5 is devoted to the
computational experiments. Finally the paper is concluded in
Section 6.

3. Development of the Mathematical Models

In order to obtain the optimal allocation of vehicles for deliv-
ering the products to depots/cross docks we need to formu-
late the problem in the form of a mathematical programming
model. As we will see later the mathematical models for
handling such problems are in the form of the nonlinear
discrete optimizationmodels.Due to the computational com-
plexity of such problems a need for developing an efficient
solution approach is required. In the following sections we
will describe the development of the mathematical models
and the solution approach.

3.1. Problem Description. Consider a directed graph 𝐺 =

(𝑁,𝐴) with the set 𝐴 of directed arcs and the set𝑁 of nodes
representing a manufacture and depots/cross docks. The
manufacture is indexed 0 and depots/cross docks (branches)
are indexed from 1 to 𝑛. Branch 𝑗 has a known demand with
the total goods weight of 𝑊𝑗, 𝑗 ∈ 𝑁 \ {0}. There are 𝑚
types of vehicles, and the total number of vehicles for type
𝑖 is 𝑇𝑖 (there is no limitation on the number of vehicles for
most of the vehicle’s types, but in our case problem only two
types of the vehicles are limited). The capacity of the vehicle
type 𝑖 in terms of weight it can deliver is designated by 𝐶𝑖,
and the transpiration charge of vehicle type 𝑖 for the route
ending to depot/cross dock 𝑗 is 𝐾𝑖𝑗. We want to allocate the
proper vehicle’s type for delivering the total demand of a
depot/cross dock tominimize the total transportation costs of
distributing products to all the depots/cross docks. It is also
assumed that there exists a discount policy for the vehicles
to be rented. This discount varies according to the number
of rented vehicles and is applied on their fixed cost. By this
discount policy, if the number of rented type 𝑖 vehicles is less
than 𝑛1𝑖 , the renting companies ask for the fixed cost of 𝐹1𝑖 .
If the number of type 𝑖 vehicles is greater than or equal to
𝑛
1
𝑖 , but less than 𝑛

2
𝑖 , when 𝑛

1
𝑖 < 𝑛

2
𝑖 , the renting companies

charge a discounted value of 𝐹2𝑖 as the fixed charge. Let us
consider 𝑥𝑖𝑗 as the number of type 𝑖 vehicles for transporting
the products to depot/cross dock 𝑗. Assuming there are as

many as V number of discount intervals, the general formula
for determining the fix cost can be written as follows:

𝐹𝑖 =
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{{{{{{{{{{{{{{{{{{{

{
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(1)

where 𝐹1𝑖 > 𝐹
2
𝑖 > ⋅ ⋅ ⋅ > 𝐹

V
𝑖 .

Due to existing distribution network, the distances from
the manufacturing firm to depots/cross docks are fixed and
are given. The objective is assigning a set of vehicles to each
branch leading to depot/cross dock, to minimize the total
transporting costs.Themathematicalmodel is developed and
will be presented in the following section.

3.2. Mathematical Model. Some parameters used in the
proposed mathematical models are listed as follows:

𝑥𝑖𝑗: number of vehicles of type 𝑖 allocated for trans-
porting products to depot/cross dock 𝑗.
𝐶𝑖: weight capacity of vehicle type 𝑖.
𝑐𝑖𝑗: variable transportation costs of vehicle type 𝑖 to
depot/cross dock 𝑗.
𝑇𝑖: total number of vehicles of type 𝑖.
𝑊𝑗: total weight of products ordered by depot/cross
dock 𝑗.
tc𝑗(𝑥𝑖𝑗): a step function denoting the total transporta-
tion costs of branch 𝑗 (leading to depot/cross dock 𝑗)
of the distribution network.
𝐹𝑖: fixed cost of using vehicle type 𝑖, (𝑖 = 1, 2, . . . , 𝑚).
𝑛: total number of the depots/cross docks.
𝑚: total number of the vehicles types.
𝑋0: total transportation costs.
UB: the upper bound of the objective function value.
𝜆𝑖: weighting factor of the 𝑖th constraint for defining
the surrogate constraint.
UBB: the upper bound of the objective function value,
obtained by the subroutine bound.
UBS: the upper bound of the objective function value,
obtained by the optimal solution of the surrogate
problem.
SO: a matrix for recording the imbedded state vari-
ables, in each stage of the DP solution process, of the
original problem.
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SR: a vector for recording the return values of the
imbedded state variables, in each stage of the DP
solution process, of the original problem.

SOS: a matrix for recording the imbedded state
variables, in each stage of DP solution process, of the
surrogate problem.

SRS: a vector for recording the return values of the
imbedded state variables, in each stage of the DP
solution process, of the surrogate problem.

The objective function for the proposed problem can be
written as

Min 𝑋0 =

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝐹𝑖𝑥𝑖𝑗 +

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗, (2)

where 𝐹𝑖 is a step function denoting the fixed part of
the transportation costs and 𝑐𝑖𝑗 is the variable part of the
transportation costs. Let us define the total transportation
costs of each depot/cross dock (branch) as follows.

Then we will have

tc𝑗 (𝑥𝑖𝑗) =
𝑚

∑
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(3)

As it can be realized, the above mathematical model can be
decomposed according to branches as follows:

Min 𝑋0

=

𝑚
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𝑚

∑
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(4)

Due to the decomposed mathematical model, the dynamic
programming (DP) solution approach seems to be the best
candidate for solving the proposed problem. Considering this
approach the recursive equations for forward computations
of the DP approach can be developed as follows.

Let 𝑌𝑗 = (𝑦1𝑗, 𝑦2𝑗, . . . , 𝑦𝑚𝑗) beThe state variable of the 𝑗th
stage indicating the vehicle type 1, 2, . . . , 𝑚, allocated to the
1, 2, . . . , 𝑗th depot/cross dock.

𝑓𝑗(𝑌𝑗) = 𝑓𝑗(𝑦1𝑗, 𝑦2𝑗, . . . , 𝑦𝑚𝑗) is The total transportation
costs of the 1, 2, . . . , 𝑗th depot/cross dock.

The recursive equations of the stages can be formulated as

𝑓1 (𝑌1) = 𝑓1 (𝑦11, 𝑦21, . . . , 𝑦𝑚1)

= Min
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11
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1
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𝑚
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,𝑥
2𝑗
,...,𝑥
𝑚𝑗
)≤(𝑦
1𝑗
,𝑦
2𝑗
,...,𝑦
𝑚𝑗
)

∑
𝑚

𝑖=1
𝐶
𝑖
𝑥
𝑗𝑖
≤𝑊𝑗

{

𝑚
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tc𝑗 (𝑥𝑖𝑗) + 𝑓𝑗−1 (𝑦1𝑗

− 𝑥1𝑗, 𝑦2𝑗 − 𝑥2𝑗, . . . , 𝑦𝑚𝑗 − 𝑥𝑚𝑗)} ∀𝑗 = 2, 3, . . . , 𝑛.

(5)

The DP solution algorithm is an efficient solution approach
for the cases that the dimensions of the state variables are
small. Therefore the selection of the DP approach is actually
based on the practical conditions of the case problem which
provides some considerations for reducing the state variable
dimensions. In addition practical conditions of the case
problem provide some other computational aspects which
enabled us to find the optimal solution for the relatively
large mathematical model of the case problem. In following
sections we will present the development of an exact solution
algorithm for the proposed problem.

4. Development of the Solution Algorithm

The proposed solution algorithm is basically a DP approach.
As we know the state space solution of the DP algorithm
grows exponentially when solution is progressed in the
consecutive stages of the solution process. This exponential
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growth requires the extensive enumeration efforts in each
stage and hence requires unreasonable computational time.
We therefore proposed several state reduction mechanisms
and integrated them to the DP algorithm for developing an
efficient solution algorithm.We also incorporated a powerful
bounding mechanism for limiting the growth of the state
space solutions in the consecutive stages of the DP algorithm.
Before stating the steps of the proposed algorithm, we
describe these mechanisms.

4.1. The State Space Reduction Mechanisms. To develop an
efficient hybrid DP solution algorithm we used the concept
of imbedded state solution space. By use of the imbedded
state we employed a matrix for recording the state space
solutions in which the state variables are enumerated only
when the objective function value is varied.We also employed
the surrogate constraints concept for reducing the dimension
of the state space solutions of the problem. As we know the
computational efficiency of the DP approach decreases as
the dimensionality of the state variable increases. Therefore
if we reduce the state variables dimensionality to a single
dimension we can increase the efficiency of the DP solution
algorithm substantially. By use of the surrogate constraint
we can substitute all the constraints by a single constraint.
Through this transformationwe reduce themultidimensional
state variables of the dynamic programming approach to a
single dimension.Through the transformation of the original
problem to a surrogate problem, none of the solution points
of the original problem are discarded.

Therefore we can solve the surrogate problem instead of
the original problem and we are assured that by searching
through the feasible space of the surrogate problem to
obtain the optimal solution of the original problem we are
considering all the solution points without losing even a
single point. However the surrogated problem may contain
solution points which are not feasible to the original problem.
But by solving the surrogated problem we can either find
the optimal solution of the original problem in case that it
is feasible for the original problem or find a very close upper
bound to the optimal solution of the original problem.

It is very interesting to note that, by solving the surrogate
constraint problem, we obtain the optimal return values for
the whole range of the state variable values. By recording the
return values of the state variables in a matrix, we only need
to solve the surrogate problem once. At any stage of the DP
solution progress we can use thismatrix to obtain the updated
upper bound of the optimal solution of the original problem
and reduce the growth of the state variables in the succeeding
stages of the DP algorithm substantially.

4.2. Bounding the State Space Solutions. Bounding is another
attempt to reduce the computational requirements for obtain-
ing the optimal solution. A strong upper bound can be
obtained through the allocation of vehicles when we consider
that there is no limited number in the vehicle’s types. There-
fore we incorporated a subroutine in the solution algorithm
for finding a strong upper bound in the successive stages of
the solution process. The developed subroutine was written
such that it can be updated throughout each stage. For

initializing this subroutine, we let depot = 1. The steps of this
subroutine are described as follows.

Subroutine Bound

Step 1. Sort vehicles according to their capacity in decreasing
order and assign index 𝑖 = 1, 2, . . . , 𝑚 to the largest vehicle
capacity up to the smallest capacity, respectively, and let 𝑖 = 1.
Let 𝑌0 = 0.

Step 2. Let 𝑗 = depot. If 𝑊𝑗 < 𝐶𝑖, go to Step 4. Otherwise
fully load the vehicle type 𝑖. Let 𝑌0 = 𝑌0 + tc𝑗(𝑥𝑖𝑗).

Step 3. Let𝑊𝑗 = 𝑊𝑗 − 𝐶𝑖; go to Step 2.

Step 4. Let 𝑖 = 𝑖 + 1. If 𝑖 = 𝑚, load vehicle type 𝑚 and 𝑌0 =
𝑌0 + tc𝑗(𝑥𝑖𝑗); go to Step 5; otherwise go to Step 2.

Step 5. If 𝑗 < 𝑛, let 𝑗 = 𝑗 + 1; go to Step 2; otherwise let
UBB = 𝑌0 and stop.

4.3. The Solution Algorithm. The solution algorithm is basi-
cally DP approach in which the surrogate constraint and
bounding routines are incorporated in it for increasing its
computational efficiency. To develop the surrogate problem
we can either simply use the summation of the constraints or
use weighted summation of the constraints. It is obvious that
if we can define the proper weighting factors for obtaining
the weighted summation of the constraint, we will have
a much better surrogated problem with the closer upper
bound value. Referring to the fleet vehicle allocation problem,
the constraints which define the DP state variables of the
recursive equations are those which impose the limitation
on the number of vehicles. Considering the capacity of the
different vehicles, we can find some proper weighting factors
which smoothly balance these capacities and therefore define
a single constraint much closer to the actual limitation of
the different vehicle’s capacities. For example, if vehicle type
1 has the capacity of carrying 20 tons of products, vehicle
2 has the capacity of carrying 10 tons of products, and
vehicle 3 has the capacity of carrying 5 tons of products,
we can define the weight factors of 1, 2, and 4, which are
assigned according to their capacity ratio, for these vehicles,
respectively. Using these weight factors for obtaining the
surrogate constraint provides a single constraint which is very
closer representative of the original constraints and hence
provides a solution which has a smaller duality gap for the
original problem.

The Steps of the Solution Algorithm

(1) Determine the proper 𝜆𝑖 ∀𝑖 = 1, 2, . . . , 𝑚 and convert
the original problem to a surrogate problem, using 𝜆𝑖.

(2) Let 𝑗 = 1 and DEPOT = 1.

(3) Calculate the optimal solution of the surrogate prob-
lem.

(4) If the optimal solution of the surrogate problem is
feasible to the original problem, go to Step (10);
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otherwise, let UBS be the optimal objective function
value of the surrogate problem.

(5) Record the state variables and their associated optimal
objective function values, obtained by the surrogated
problem, in a matrix “SOS” and vector “SRS,” respec-
tively.

(6) Call subroutine bound.
(7) Construct the imbedded state and calculate its asso-

ciated return values, using the recursive equations of
the DP algorithm of the original problem.

(8) For each state variable calculate the worst case sce-
nario by adding the transportation costs of the cheap-
est vehicles of depots/cross docks 𝑗 + 1 to 𝑛. Also for
each state variable find its associated optimal return
value from SRS and assign it to UBS. Find the state
variables associated with the optimal solution of sur-
rogate problem from the imbedded state. If the state
variables are feasible to the original problem, then go
to Step (10); otherwise, let UB = Max {UBB,UBS}.
Discard those state variables at which their associated
worst scenario is greater than or equal to the UB; then
go to (9).

(9) If 𝑗 ≤ 𝑛, let 𝑗 = 𝑗 + 1 and DEPOT = 𝑗; go to Step (6);
otherwise go to Step (9).

(10) Record the optimal solution and stop.

5. Case Problem

As we noted earlier, the motivation of the proposed problem
comes from a real world case problem. In the following
sections, we first describe the scope of the real world case
problem. In our case problem, there are some practical
aspects by which the proposed mathematical model and its
solution algorithm can be adapted more straightly. We then
explore these aspects and their benefits we gained for solving
our case problem more efficiently.

5.1. Case Problem Description. SIG has several food man-
ufacturing plants one of which is a dairy manufacturing
plant, named Kalleh Co., producing a vast variety of the
dairy products. Products of this manufacturing plant are
distributed to its depots/cross docks and cross docks, from
which they are distributed to the surrounding retail stores
(2154). In SIG’s country host there are few large supermarkets;
instead there are a large number of small retailers which
are very similar to the western type convenience stores.
Therefore distribution of products directly to the retailers is
not economically justified. There are 194 depots and cross
docks scattered in a vast area throughout the country with
a total area of 1,600,000 square kilometers. The vehicles for
this distribution system are rented from several firms outside
the group. The renting costs of each vehicle are the sum of
a fixed cost, depending on the vehicle type with a discount
mechanism, and a variable cost depending on the traveling
distance. The discount mechanism is applied according to
the number of vehicles to be rented. There is a limitation
on the number of the vehicles, especially on the larger sized

vehicles with the refrigeration room. We found this problem
as a challenging one and defined a more general form of the
problem in way that may be used for similar manufacturers
in the developing countries.

Currently the dairy manufacturing plant of this group
produces over 2300 tons/day of different dairy products and
is planning to increase the production rate to 2700 tons/day.
This group has another sales and distribution firm (SDF)
which distributes the products of the manufacturing firm
throughout thewhole nation.The SDFhas 85 storage facilities
(depots) and 109 cross docks located in major cities of the
nation, through which their products are distributed to the
designated shops in the same city and to their nearby minor
cities. These facilities are acting as sales branches of the SDF
and each contains a sales office. As mentioned before, in this
nation the majority of shops are small shops which are more
similar to the convenience stores of the developed countries.
Therefore the need of having these depots/cross docks is
realized because their products cannot directly be shipped
from the production facility to the designated shops.

Although the PF produces massive commodity products,
its production systemworks by ordering system.More specif-
ically every week the sales office of each branch gathers the
next week demands of their designated shops and passes the
order to the central sales office of the SDF. The central office
sums up this order and sends it to the planning department of
the production company.Theplanning department schedules
the production plans and executes them to themanufacturing
plants. Based on these schedules, products are produced
and sent to the storage facilities of the sales supporting
department. This department then ships the products to the
depots/cross docks throughout the nation.

The existing transportation planning, executed by the
sales supporting department, suffers from two major defi-
ciencies. First the transportation plan is conducted based
on the previous experiences rather than use of any system-
atic approaches. Second the planning process is conducted
based on the daily available vehicles and products rather
than weekly basis. Because of these deficiencies the vehicle
types are not selected properly and hence they are loaded
inefficiently. To demonstrate the inefficiency of the vehicle’s
loading, we gathered the data of the past 12 months. Table 1
illustrates the usage of the vehicles capacity. In this table the
types and number of available vehicles and their nominal
capacities are also demonstrated. As it is seen we have
limitation on the number of available type 1 and type 2
vehicles. Practically there is no limitation on the number of
vehicles of type 3 to type 6.

According to the policy of this group, the weekly order is
delivered through two shipments. Actually the great distance
of more than 1400 kilometers between the manufacturing
firm and several depots/cross docks and cross docks practi-
cally justifies this policy.

Considering this policy, we therefore face the limitation in
the number of vehicles of type one and type two as 2 ∗ 281 =
562 and 2 ∗ 302 = 604 per week, respectively. Assuming
that the products weekly order is directly sent to the sales
supporting department, we now need to develop a systematic
approach for the weekly transportation plan.
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Table 1: The capacity usage of the vehicles.

Vehicle type Available number of vehicles Nominal capacity (ton) Average capacity usage (ton) Capacity usage %
Vehicle type 1 281 20 15.120 75.6
Vehicle type 2 302 16 12.288 76.8
Vehicle type 3 — 12 9.228 76.9
Vehicle type 4 — 9 6.516 72.4
Vehicle type 5 — 7 5.607 80.1
Vehicle type 6 — 6 4.176 69.6

Referring to Table 1, it can be noticed that the capac-
ity usage of the vehicles is not in a satisfactory level.
The fact that there are different types of products (milk,
cheese, yogurt, ice cream, etc.) with different container and
packaging types (bottle, cylindrical shape plastic container,
cubic papers, irregular shaped vacuum packing, etc.) and
with different densities may justify some percentages of
the deficiencies in the capacity usage. However there are
some other unjustifiable deficiencies which are due to the
improper allocation of product to the vehicle types. Since the
transportation charges are according to vehicle’s type and the
shipping distances, inefficient loading causes more payment
for the total transportation costs. We therefore proposed a
mathematical model and a solution algorithm for improving
this logistic process. The mathematical programming model
was developed to obtain a transportation plan for distributing
products to the nationwide depots/cross docks of the sales
branches. The measure of performance of this mathematical
model is defined as transportation costs which we want to
minimize.

5.2. Solution of the Case Problem. To solve the case problem,
we gathered the required data and information concerning
the transportation costs and order volume of the depots/cross
docks. We then adjusted the order volume for the production
increases by a simple linear extrapolation. For obtaining
the surrogate problem we can use equal weight of 𝜆𝑖 =
1/𝑚. However for obtaining a closer upper bound we need
to determine the proper weight by which the surrogated
constraint becomes a better representative of vehicles type.
To obtain these weights we used the nominal capacities of
the vehicles. The original constraints which represent the
limitation of the vehicles types are as follows:

𝑥i1 + 𝑥𝑖2 + ⋅ ⋅ ⋅ + 𝑥𝑖𝑛 ≤ 𝑇𝑖 ∀𝑖 = 1, 2, . . . , 𝑚. (6)

The limitations on the number of vehicles are imposed on
two types of vehicles, namely, type 1 and type 2, with the
nominal capacities of 20 tons and 16 tons, respectively. Based
on these nominal capacities, we determined the values for
the weights as 𝜆1 = 3 and 𝜆2 = 5 for vehicles type 1 and
type 2, respectively. The nominal capacities of the vehicles
are based on the weight they can carry. However, because the
products have different shapes and hence different densities,
we modified the nominal capacity by factors shown in Table 1
to obtain a more realistic figure for the weight they can carry.

The constraints representing these limitations aremodified as
follows:

𝑥11 + 𝑥12 + ⋅ ⋅ ⋅ + 𝑥1,24 ≤ 562 ∗ .756 ≤ 425

𝑥21 + 𝑥22 + ⋅ ⋅ ⋅ + 𝑥2,24 ≤ 604 ∗ .768 ≤ 464.

(7)

Using the solution algorithm we obtained the optimal allo-
cation of the vehicles for delivering the weekly products
order. Comparing the solution obtained through use of the
proposed method with the actual costs of the previous year
showed a saving of over 8.338 million dollars in one-year
transportation costs.

6. Conclusions

In this paper we considered the heterogeneous fleet vehi-
cle allocation problems in which the number of some
vehicles types is limited. The problem is formulated as a
discrete nonlinear optimization mathematical programming
model.The decomposition nature of themathematical model
encouraged us to select the dynamic programming solution
algorithm for solving this optimization problem. Due to
the computational complexity of the mathematical program,
the computational time grows exponentially as the num-
bers of decision variables and state variables are increasing.
Therefore the proposed problem is categorized as a NP-
hard problem. Due to this fact, we developed an efficient
solution approach by incorporating several routines in the
DP solution algorithm. We incorporated a bounding routine
for finding an upper bound for the optimal solution value
through relaxing the limitations on the number of vehicles
types. We also employed the concept of imbedded state for
limiting the enumeration of the objective function values,
throughout solution stages of the DP, only on the jumps
of the objective function values. We also incorporated the
concept of the surrogate constraint and proposed a routine
for obtaining another upper bound for the optimal objective
function value of the proposed problem. Through use of
these upper bounds and by updating mechanism for these
bounds we tightened the growth of the state variables in the
consecutive stages of the DP solution progress.

We then applied the proposed mathematical model and
developed solution algorithm for solving a real world case
problem. The case problem presents a manufacturer pro-
ducing a vast variety of dairy products with an existing
distribution system consisting of 194 depots and cross docks
and 6 types of vehicles for delivering its products. The
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required vehicles are rented from outside companies. There
is a limitation on the number of some larger capacity vehicles
to be rented.The transportation costs of a vehicle are the sum
of its fixed cost and a variable cost incurred proportionately
to the travel distance. A discount mechanism is applied to
the fixed cost according to the daily number of vehicles to be
rented. The discount is varied by the number of vehicles by
means of a step function.Theweekly demands of products are
known and are determined by an order picking system aweek
before they must be delivered. It is anticipated to allocate the
vehicles to the depots/cross docks route to minimize the total
transportation costs. A mathematical programming model
in the form of the discrete nonlinear optimization model
was proposed for the case problem.The mathematical model
was then converted to the recursive equations of a discrete
dynamic programming model and solved by a developed
solution algorithm. To increase the computational efficiency
of the solution algorithm, several concepts and routines,
such as the imbedded state routine, surrogate constraint
concept, and a bounding mechanism, were incorporated in
the dynamic programming solution algorithm.We employed
the last 12 months of the transportation costs data for
evaluating the solution of the proposed model. The results
revealed that the use of the proposed model can provide a
considerable saving on the transportation costs.
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