Hindawi Publishing Corporation

Journal of Optimization

Volume 2016, Article ID 7319036, 13 pages
http://dx.doi.org/10.1155/2016/7319036

Research Article

Hindawi

A Hybrid Genetic Algorithm with a Knowledge-Based Operator
for Solving the Job Shop Scheduling Problems

Hamed Piroozfard, Kuan Yew Wong, and Adnan Hassan

Department of Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM),

81310 Skudai, Johor, Malaysia

Correspondence should be addressed to Hamed Piroozfard; phamed2@live.utm.my

Received 4 December 2015; Accepted 7 March 2016

Academic Editor: Jein-Shan Chen

Copyright © 2016 Hamed Piroozfard et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Scheduling is considered as an important topic in production management and combinatorial optimization in which it ubiquitously
exists in most of the real-world applications. The attempts of finding optimal or near optimal solutions for the job shop scheduling
problems are deemed important, because they are characterized as highly complex and NP-hard problems. This paper describes
the development of a hybrid genetic algorithm for solving the nonpreemptive job shop scheduling problems with the objective of
minimizing makespan. In order to solve the presented problem more effectively, an operation-based representation was used to
enable the construction of feasible schedules. In addition, a new knowledge-based operator was designed based on the problem’s
characteristics in order to use machines’ idle times to improve the solution quality, and it was developed in the context of function
evaluation. A machine based precedence preserving order-based crossover was proposed to generate the offspring. Furthermore,
a simulated annealing based neighborhood search technique was used to improve the local exploitation ability of the algorithm
and to increase its population diversity. In order to prove the efficiency and effectiveness of the proposed algorithm, numerous
benchmarked instances were collected from the Operations Research Library. Computational results of the proposed hybrid genetic

algorithm demonstrate its effectiveness.

1. Introduction

Scheduling is one of the most important topics that ubiq-
uitously exist in many real-world applications. Scheduling
is assigning a set of tasks on resources to be performed
during a time period, considering the time, capability, and
capacity constraints [1]. The main focus is to improve the
production efficiency and utilization of resources in order to
maximize profit. In manufacturing, many of the scheduling
problems are considered to be exceedingly complex in which
they are difficult to be solved with exact methods and
conventional algorithms. Scheduling problems have been the
research interest of many researchers and a great deal of
research efforts can be found in different fields of engineering
and science, such as operations research, computer science,
industrial engineering, mathematics, and management sci-
ence since 1950.

The job shop scheduling problems (JSSPs) are well-
known, important, and complex problems in production
management and combinatorial optimization fields which
are characterized as NP-hard. Complexity of JSSPs can be
calculated by (n!)" in terms of all possible schedules, in which
their complexity is exceedingly increasing as the problem size
gets bigger. Garey et al. [2] and Ullman [3] have proved that
the JSSPs are amongst the NP-hard problems; thus they can-
not be solved with polynomial-time algorithms (unless P =
NP). The JSSPs have tended to be treated with conventional
techniques and exact methods, such as Lagrangian relaxation,
branch and bound, heuristic rules, shifting bottleneck (e.g.,
Carlier and Pinson [4], Adams et al. [5], Vancheeswaran and
Townsend [6], Brucker et al. [7], and Lageweg et al. [8]),
since job shop instances have been presented by Fisher and
Thompson [9]. Exact methods like branch and bound could
guarantee global optima; however, computational time could



be significantly increased with growing problem size. Over
the preceding decade, many different methodologies have
been inspired from nature, biology, and physical processing.
These techniques have been successfully applied on numer-
ous optimization problems, especially the JSSPs. Among
these metaheuristics are genetic algorithm [10, 11], ant colony
optimization [12], imperialist competitive algorithm [13, 14],
tabu search [15], simulated annealing (SA) [16, 17], particle
swarm optimization [18], and immune system [19]. Jain and
Meeran [20] and Calis and Bulkan [21] have performed
comprehensive reviews on JSSP techniques which can be
referred to for more detail.

Genetic algorithm (GA) as a powerful search technique
imitates the biological evolution and natural selection pro-
cess. GA was first proposed by Holland [22] and further
developed by David Goldberg. This metaheuristic approach
is widely employed to find optimal or near optimal solutions
for different optimization problems in comparison to other
algorithms. GA was first applied on JSSPs by Davis [23] and
since then many GA-based algorithms have been presented
for solving JSSPs. Croce et al. [11] presented a GA for solving
JSSPs with an encoding scheme that was based on preference
rules. Yamada and Nakano [24] proposed a GA with a
new representation scheme that was based on operation
completion time and its crossover was able to generate active
schedules. Lee et al. [25] presented a GA with an operation-
based representation and a precedence preserving order-
based crossover for the JSSPs. Sun et al. [26] developed a
modified GA with a clonal selection and a life span strategy
for the JSSPs, and the developed algorithm was able to find 21
best known solutions out of 23 benchmarked instances. GA is
a powerful search technique in which its global search ability
is conspicuous from the literature; however, this metaheuris-
tic algorithm suffers in terms of premature convergence and
local search ability.

Hybridization strategy is mainly employed to overcome
the drawbacks of GA in terms of local search ability and
premature convergence in order to make the algorithm more
efficient and powerful. Wang and Zheng [27] proposed a
hybrid optimization strategy that was a combination of GA
and local search. In this approach, local search algorithm
decreased the probability of GA from getting trapped in local
optima and this hybrid framework relaxed the parameter
dependency of both algorithms. Zhou et al. [28] developed
a hybrid heuristic-GA for solving the JSSPs with an adaptive
mutation operator for preventing premature convergence. In
this framework, GA was applied on the first operations of
the machines, and heuristics were used to determine the
remaining operations in the restricted solution space. In addi-
tion, a neighborhood search technique was applied to further
improve the solution quality obtained from the hybrid
heuristic-GA. Ombuki and Ventresca [29] presented a dead
lock free local search GA with an operation-based represen-
tation and UOX crossover that was able to generate feasible
solutions. In this algorithm, GA was employed to perform
global search and a local search operator was applied for local
exploitation. They have also developed another genetic-based
hybrid algorithm with tabu search, and based on computa-
tional results, the hybrid GA with tabu search outperformed

Journal of Optimization

the local search GA. Gongalves et al. [30] developed a hybrid
GA for the JSSPs by combining GA, schedule builder, and a
local search operator. In this algorithm, schedule builder was
applied to generate schedules using a priority rule, and GA
was used to determine priorities. Then, alocal search operator
further improved the solution quality. Lin and Yugeng [31]
developed a hybrid algorithm with a new representation
scheme called random keys encoding. In this algorithm, GA
was used to obtain an optimal schedule, and then a neigh-
borhood search was introduced to perform local exploitation
and increase the solution quality obtained from GA. Zhou et
al. [32] proposed a hybrid GA to minimize weighted tardiness
in job shop scheduling. In this algorithm, GA and a heuristic
were employed for obtaining optimal solutions, in which
GA was applied for determining the first operations and the
heuristic was used for assigning the remaining operations.
Results showed that the hybrid framework performed better
than GA and heuristic alone. Asadzadeh and Zamanifar [33]
proposed a GA that was implemented in parallel using agents,
and agents were also used to create initial populations. Zhang
and Wu [17] introduced a hybrid-SA immune system algo-
rithm for minimizing the total weighted tardiness of job shop
scheduling. Yusof et al. [34] developed a hybrid micro-GA
that was implemented in parallel for the JSSPs. This algorithm
was a combination of asynchronous colony GA that con-
sisted of colonies with a small number of populations and
autonomous immigration GA with subpopulations.

In this paper, an effective hybrid GA is presented for solv-
ing the nonpreemptive JSSPs. In order to solve the presented
problem more effectively, an operation-based representation
is used. In addition, a new knowledge-based operator is
designed and adopted within the context of function evalua-
tion. This knowledge-based operator imitates the JSSP’s char-
acteristics in order to use the machines’ idle times in assigning
the operations to the machines. In the reproduction phase
of GA, a machine based precedence preserving order-based
crossover and two types of mutation operators are developed
in order to produce the offspring and mutants. Moreover, SA
is employed to increase the solution quality of the schedules
obtained from GA and to increase the population diversity
in GA to some extent. Having highlighted the important fea-
tures of the proposed algorithm, it is developed to minimize
the makespan of schedules. Finally, computational results of
benchmarked problems are used to prove the efficiency of
the proposed algorithm.

The rest of this paper is organized as follows. In Section 2,
the problem formulation of the JSSP is presented. The
proposed hybrid GA is discussed in Section 3. Computational
results of benchmarked instances are presented in Section 4,
which is followed by a discussion. Finally, conclusions and
future work are provided in Section 5.

2. Problem Formulation

The JSSP is a general form of classical scheduling prob-
lems which can be defined as follows: given n jobs N =
{ji>j2»--->jut and each job consists of s operations S =
{0j1,0j,...,0;,} that must be processed on m machines
in a given technological sequence. The notation O; ; denotes



Journal of Optimization

the sth operation of job j with a known processing time, P; ,
which has to be processed on one of the machines M =
{M,, M,,M,,...,M,}. In this environment, each machine
can process at most one operation at a time, and an operation
of a given job cannot be processed on two machines at the
same time. Once operation O]-’s starts to be processed on one
of the predetermined machines, it must be completed without
any preemption. In addition, a job cannot visit the same
machine twice, and there are no precedence requirements for
different operations of the jobs. It is also assumed that the
machines are continuously available, and the traveling times

of operations are negligible. Unlike flow shop scheduling,
in JSSPs, each job has its unique predetermined route. The
sequencing of all operations on all machines is scheduled to
minimize C,,,, that is, the maximum completion time of the
jobs (max {C}, Cy,...,C ).

The mathematical model of a JSSP with the objective of
minimizing makespan is given in (1)-(9) [35, 36]. In this
model, B is assumed as a big number, ¢;; denotes the start
time of operation O, Sm;; is the start time of machine i
in the priority of /, and h; ; ; is assigned 1 if operation O, is
executed on machine i and 0 otherwise:

min Z:max{Cl,Cz,...,Cj} j=12,...,n (1)

Sttt +P<tjy J=L2..oms=12,..,8-1 ()
Sy + P X i <Smyy  i=L2my j=12,.m =12, -1 s=1,2,...,5 (3)
Smy <t +(1-X,;)B i=L2..om j=12. . .m =12 0 s=12. .5 (4)
Xi’j)s)lghi’j)s i=1,2,...,m j=12,...,m [=12,...,[; s=1,2,...,5; (5)
;ZX"’]"S”ﬂ i=1,2,...,m [=1,2,...,1 ©)
Z;XU)SJ:l J=12.,m s=1,2,...,5, )
i
tis20 j=12,...,m s=12,...,5; (8)
Xijs €101} i=12....m j=12,...,m I=12,....1; s=12,...,s; 9)

In this model, constraint (2) is concerned with the opera-
tions’ sequences in which they should follow a specified order.
Constraint (3) prevents machines overlapping and enforces
each machine to process not more than one operation at the
same time. Constraint (4) prevents operations overlapping,
so that an operation is assigned to a specified idle machine in
a condition such that its previous operation is executed and
finished. In addition, for each of the operations, a machine
is determined in constraint (5). In constraint (6), operations
are assigned to the machines and they are sequenced on the
machines. Constraint (7) limits the number of operations to
be performed on one machine according to the machine’s
priority.

3. The Proposed Hybrid Genetic Algorithm

The proposed hybrid algorithm is a combination of two
algorithms, namely, GA and SA. The advantages of both
algorithms are employed in the proposed framework in order
to find the optimum solutions for the JSSPs. In Figure 1, a
flowchart of the proposed hybrid genetic algorithm (HGA)
is presented. It starts with the initialization of the population
at random. The created population is evaluated based on
the fitness function, and a new knowledge-based operator

is applied in this step to improve the solution quality of the
individuals. In addition, this knowledge-based operator is
merged with the function evaluation phase, and it works with
machines’ idle times. This operator is presented in Section 3.2.
In the reproduction phase, a selection operator is applied to
select the parents for the mating pool, and then a crossover
operator is performed to produce the offspring. In addition,
a mutation operator is carried out on randomly selected
individuals to create the mutants. The created offspring and
mutants are evaluated, and then termination conditions are
considered in order to guide the algorithm to be on the right
path. The termination conditions are described in Section 3.7.

In a situation when the algorithm continues through ter-
mination condition 2, that is, termination of GA’s generations,
SA will be started with the best individual of GA. In SA, a
neighborhood search structure is employed with three differ-
ent operators, namely, swapping, insertion, and reversion as
a proposal mechanism. In addition, beta percent of accepted
solutions are kept in a pool of individuals as each cooling
condition of SA is reached. The SA algorithm is presented
in depth in Section 3.6. In this phase of the algorithm, three
conditions are set, either to stop the algorithm or to continue
with new parameters. If the latest condition or condition
4, that is, termination of SA’s outer loop, is reached the SA



Start
=0

Journal of Optimization

Apply new parameters of

|

Initialize population

[

Evaluate fitness and apply new
knowledge-based operator

Apply selection operator

GA, and reset SA
parameters

T

Migrate zeta percent of S to

GA from the created pool of
individuals

/]\

Condition 4 is reached (termination of SA)
|

Stopping conditions
1, 3, 4 satisfied?

1
1
|
I
|
1
| Condition 1 or 3 T
! is reached (BKS
LT Crossover ! is obtaingd or Create a pool of ' with a rate of
No 1i g! I HC_}A 1S beta, and decrease the temperature
e ! terminated)
IR |
2 | .
. = 1 . o
| : E‘ ; Mutation i Evaluate fitness and apply new
[
\ |

Stopping conditions

1, 2 satisfied?

[
Condition 1 is reached (BKS is obtained)

([ D

Stop algorithm and
report best solution

knowledge-based operator for each &’

I

Apply neighborhood search to

/!
create S

1

Initialize SA with the
best solution of GA

T

Condition 2 is reached (termination of GAs generations)
]

FIGURE 1: Flowchart of the proposed hybrid genetic algorithm.

parameters are reset and new parameters of GA are applied.
Moreover, zeta percent of unique individuals are migrated to
GA from the migration pool of SA.

3.1. Encoding and Decoding. In any algorithm, the first and
the most important step is to find appropriate encoding and
decoding procedures in order to represent the problem. In
this paper, an operation-based representation is adopted to
represent the permutation of operations of different jobs
[34, 37]. Based on this representation approach, the schedule
could be constructed if the technological constraints are
satisfied. In this approach, a chromosome consists of 1 x m
genes in which each of the genes represents the sequence
of the operations that should be executed on the machines.
Each of the operations is denoted with a positive integer
value that is starting from 1 to n. The number of occurrences
for each of the integer values is equal to the number of
operations. In other words, the kth occurrence of an integer
value in the chromosome represents the kth operation of the
job with respect to the technological sequences. Consider a
JSSP that is given in Table 1. In this table, operation routing,
machine, and processing time of a small problem with 4 jobs
and 3 machines are tabulated. Suppose a randomly generated

TABLE 1: An example of a job shop problem with 4 jobs and 3
machines.

Job Processing time, machine number

Ji L1 3,2 2,3
Ja 8,2 5,1 10,3
Js 51 4,3 8,2
Ja 4,3 10,1 6,2

chromosomeisgivenas{3 2 4 1 312 3 2 4 1 4}.In
this chromosome, each job consists of three operations, and
due to this reason each job occurs three times within the
length of the chromosome. For instance, the sixth and ninth
genes of this chromosome represent the second operation
of job one and third operation of job two, respectively.
In addition, each chromosome is composed of additional
information such as machine number, processing time, start
time, and finish time that are attached to the chromosome.
In order to decode the chromosome and construct the
schedule, we start from the most left to the most right
of the chromosome; that is, the first gene in the left side
of the chromosome should be scheduled first, followed by



Journal of Optimization

Cinax = 29
M, 3 2 1
L
g
F§ Mz i : i - -
= i
0 5 10 15 20 25 30

Time (min)

FIGURE 2: The schedule of 4 x 3 job shop scheduling problem.

the second gene, until the last gene of the chromosome. Based
on Table 1, the first machine should process O, O,,, O3, Oy,
the second machine should process Oy,, O,;, Os;, O3, and
the last machine should process O, 5, O,3, Os,, Oy, . According
to the chromosome {3 2 4 1 3 12 3 2 4 1 4} and
considering the process constraints to be met, the operation
sequences of the jobs to be performed on machines 1, 2, and
3 are as follows. These sequences for the first, second, and
third machines are [O;;, 0,045,041, [0,1,03, 053, 043],
and [O,;,05,,0,3,0;5], respectively. According to these
sequences, the first operation of each machine should be
scheduled by considering the process and time constraints.
Therefore, operations O;;, O,;, and O,; must be sched-
uled on machines 1, 2, and 3 at the permissible time
one after another, respectively. Then, the second operations
[O11,0,,, O5,], third operations [O,,, 053, 0,5], and fourth
operations [O,,, O3, O3] of each machine must be scheduled
by considering the process and time constraints. In addition,
each set of them must be scheduled separately one after
another on machines 1, 2, and 3, respectively, at the permis-
sible time. The procedures that are applied in this encoding
and decoding can guarantee feasible schedules. In Figure 2,
the schedule of the considered chromosome is shown.

3.2. Fitness Function and the Knowledge-Based Operator.
The fitness function in an optimization problem usually
determines the probability of a solution that can be passed
to the next generation. In other words, the solution quality is
determined by applying this operator and the chromosomes
with higher quality will have a higher chance of surviving;
however, the less fitted chromosomes must be discarded from
the population. In the JSSPs, many different performance
evaluators exist for defining the fitness function. In this
research, we use makespan or C_ ., as the fitness function in
order to evaluate each of the chromosomes.

In this algorithm and in the context of the fitness function,
a new knowledge-based operator is designed based on the
problem characteristics. This operator is designed based on
the machines’ idle times that exist in the job shop environ-
ments. In addition, this knowledge-based operator is applied
during the function evaluation phase in order to decrease
the computational time of the algorithm and to cover all

the chromosomes that need to be evaluated. To design this
operator more efficiently, the following steps are applied.

Step 1. 'The idle points of each machine must be found. Then,
for each of these idle points, the idle start time, idle finish
time, and length of idle time must be calculated.

Step 2. Based on the position of the idle point on the machine
sequence list, a candidate operation is chosen from the right
side of the machine sequence list in order to be shifted to the
idle position by considering the duration of idle time and the
processing time of the candidate operation.

Step 3. If the length of idle time is bigger than or equal to
the processing time of the candidate operation, it will be
accepted conditionally. Otherwise, it will be rejected.

Step 4. If the candidate operation is rejected for transfer,
the operator goes back to the second step and chooses the
subsequent operation.

Step 5. For the conditionally accepted candidate operation,
all of the processing constraints must be considered in order
to reject the shift or accept it. For instance, the previous
operation of the candidate operation must be completed.

Step 6. If all of the constraints are satisfied, the candidate
operation will be transferred to its new position. Otherwise,
the candidate operation will remain in its own position.

Step 7. For each of the machines, Steps 2-6 should be contin-
ued until the last operation on the machine sequence list.

Consider the 4 jobs 3 machines job shop problem that
is given in Table 1. Suppose the chromosome is given as
32413123241 4}, in which its schedule is
depicted in Figure 2. The new knowledge-based operator
with the mentioned procedures, 1 to 7, is applied to the third
machine of this chromosome as follows. In the third machine,
there are two idle points in which the first one starts at 4 and
finishes at 5, and the second one starts at 9 and finishes at 13.
Based on the machine sequence list [O,;, Os,, 0,3, 053] and
Figure 2, the candidate operations for the first and second
idle points can be [Os,, 0,3, O3] and [O,3, O3], respectively.
Consider the candidate operations for the first idle point with
the duration of 1 minute, the processing time for any of the
given candidate operations [O;, = 4,0,; = 10,0,; = 2] is
more than 1 minute. Therefore, the first idle point will remain
untouched. However, the candidate operations for the second
idle point with the processing time of [O,; = 10,0,; = 2]
and its idle duration of 4 minutes lead to a possibility of a
shift. The second candidate operation in the list, O3, has a
processing time less than the length of the second idle point.
Then, for this operation, the fifth step (i.e., considering all of
the constraints) must be executed in order to have a feasible
schedule. It is clear that if operation O,; is transferred to
the second idle position, none of the constraints is violated.
Therefore, operation O, is transferred to its new position and
the finish time of the third machine is decreased to 23 minutes
as depicted in Figure 3.



M

Machine
S

Time (min)

FIGURE 3: The schedule of a 4 x 3 job shop scheduling problem after
applying the new knowledge-based operator on machine 3.

3.3. Selection Operator. A good selection technique can
increase GA’s performance in terms of reaching faster to the
optimal solutions. In this paper, the Roulette Wheel selection
technique which is the most commonly used operator is
employed for the selection of parents [34]. In addition, the
elitism approach is applied in this selection technique in order
to retain the fittest chromosomes for the next generation and
to prevent the solution from getting worse from one genera-
tion to another. In the Roulette Wheel selection, we used the
Boltzmann Probability P(x) = exp(—ﬁ' x f(x)/f "(x) to
calculate the probability of each chromosome. In this equa-
tion, P(x) is the probability of each chromosome, 8’ is the
selection pressure, f(x) is the fitness of each individual, and
f '(x) is the fitness of the worst individual in the generation. It
should be noted that we added f’(x) to the original equation
of Boltzmann Probability in order to make the selection
pressure independent of the problem scale. In addition, the
normalized probability of each selected individual is given as
P(X) porm = P(x)] Y o2PP P(x).

x=1

3.4. Crossover. In GA, crossover is the most important
operator in comparison to other operators and, in fact, it
is the backbone of the algorithm. The crossover operator is
performed by combining the information of the first and
second parents and the produced offspring with the features
of both parents can be either better or worse than their par-
ents. In addition, the main goal of this operator is to produce
better and feasible offspring from the parental information.
In this paper, a machine based precedence preserving order-
based crossover (POX) is proposed for generating the feasible
offspring [25]. The following detailed steps are taken in order
to implement the POX operator.

Step 1. First, two individuals are selected as parents (P, P,)
by applying the Roulette Wheel selection.

Step 2. Then, two sets of subjobs are selected and called sj,
and sj,. One of the subjobs is selected from the bottleneck
machines and the other one is selected randomly amongst the
n remaining jobs.

Step 3. In this step, the elements of the first subjob (sj,) are
copied from the first parent (P)) to the exact positions in

Journal of Optimization

Subjob 2 (sj,) = [3, 4]

FIGURE 4: The procedures of a POX crossover in generating the
offspring.

the first child (O, ), and the same goes for the second subjob;
that is, the elements of the second subjob (sj,) are copied

from the second parent (P,) to the exact alleles in the second
child (O,).

Step 4. All of the alleles in the first subjob (sj,) are deleted
in the second parent (P,), and the same goes for the second
subjob; that is, all of the alleles in the second subjob (sj,) are
deleted in the first parent (P,).

Step 5. The remaining alleles in the first and second parents
(P, P,) are transferred to the second and first offspring
(0,,0,) from the most left to the most right, respectively.

The procedures that are used in implementing the pro-
posed POX operator lead to the feasible solutions in which
it does not need a repairing mechanism. Figure 4 shows
the procedures of producing offspring from the parental
information by applying the POX operator on a 4 x 3 JSSP.

3.5. Mutation. In the reproduction phase, mutation is the
second way of exploring the solution space. Mutation oper-
ator can prevent the algorithm from being trapped in the
local optima, and it makes the algorithm faster in achieving
better solutions. In addition, it could make perturbation in
the chromosome in order to increase the population diversity.
In this algorithm, two types of mutation operators, namely,
swapping and insertion, are employed. Not only can these
mutation operators increase the diversity of the population,
but the insertion operator could carry out intensive search. It
should be noted that one of these mutation operators should
be selected randomly in order to create an offspring, and they
are described as follows.

(1) Swapping operator: To apply the swapping operator,
first, two random numbers are generated which are
the positions of two alleles in the chromosome (e.g.,
R = {2,5}). Then, all of the parental information
is copied to the exact positions in the offspring,
except the randomly selected alleles which must be



Journal of Optimization

exchanged or swapped in the offspring. For instance,
consider the parent as {2, 1,1, 3,2,3} which is ran-
domly selected from the population. The offspring of
this chromosome, by applying the swapping operator,
would be {2,2,1,3,1, 3}.

(2) Insertion operator: To apply the insertion operator,
first, two random numbers are generated to be the
positions of two alleles in the chromosome (e.g.,
R = {6,4}). Then, all of the parental information
is copied to the exact positions in the offspring,
except the randomly selected alleles. The randomly
selected allele with a smaller job-value is positioned
on the left of the other random allele with a bigger
job-value. For instance, given the randomly selected
parentas {3, 1,2, 3, 1, 2}, the offspring of this chromo-
some, by applying the insertion operator, would be
{3,1,2,2,3,1}.

3.6. Simulated Annealing. The SA approach was inspired by
the physical annealing process of solid materials, and it is
characterized as a stochastic local search approach [38]. The
search operator in SA is occasionally permitted to go through
any unfavorable direction, and it enables the algorithm to
escape from the local solutions and get towards the global
solutions. In SA, this characteristic could be attained through
probabilistically accepting the worse solutions.

In the proposed HGA, SA starts with the best solution
of GA. Then, a proposal mechanism that consists of three
operators, namely, swapping, insertion, and reversion, is
applied in order to generate a new neighborhood solution (S')
based on the current solution (S). The new knowledge-based
operator is applied on the newly generated solution (S'), and
then it is evaluated based on the objective function. If the
newly evaluated neighborhood solution is equal to or better
than the current solution, the new neighborhood solution
will be accepted (f S < f(8)). Otherwise, the algorithm
will continue the search process with a solution (S’ or S) that
is decided through a probabilistic acceptance function. In
addition, acceptance of a solution is based on the individual’s
objective function value and the current temperature (T) of

the algorithm (el/®)~/ )/ ™. In each inner loop of SA, an
accepted solution is kept in a new pool of individuals. As the
inner loops of the algorithm are terminated, the initial value
of the temperature should be modified based on the annealing
schedule. In addition, beta percent of unique individuals are
kept and the remaining individuals are discarded from the
new pool of individuals in each outer loop of SA. Moreover,
with the termination of the outer loop, zeta percent of
unique individuals are kept for the migration purpose and
the remainders are discarded. It should be noted that the
migration rate must be low, and it is used to increase the
population diversity of GA to some extent.

In the proposal mechanism of SA, three operators,
namely, swapping, insertion, and reversion, are used, in
which one of them is randomly selected and applied in order
to create the neighborhood solution. Among these operators,
swapping and insertion were explained in Section 3.5, and the
reversion operator is described as follows. First, two random

positions are selected within the length of the individual
(e.g, R = {1,4}), and then the substrings between them
are inverted. For instance, given the current solution as
{2,1,3,1,2,3}, by applying the reversion operator, the new
neighborhood solution would be {1, 3,1, 2, 2, 3}.

3.7. Ending Conditions. In the proposed HGA, four different
conditions are provided in order to terminate the algorithm
entirely or partially. The first termination condition is the
achievement of the best known solution and the third termi-
nation condition is set as the maximum number of genera-
tions in the main loop of HGA. If the algorithm reaches
either the first or third condition, the whole algorithm will be
terminated at once. The second and fourth partial conditions
are defined as the maximum number of generations in GA
and the maximum number of outer loops in SA, respectively.

4. Computational Experiments and Discussion

4.1. Basic Data. The main aim of this section is to evaluate the
performance and validate the efficiency of the proposed HGA
based on the well-studied job shop instances. For this reason,
two classes of the job shop instances were used in which the
first class was presented by Lawrence [39], LA01 to LA40, and
the second class was introduced by Fisher and Thompson [9],
FT06 and FT20. Different dimensions of instances in terms
of jobs and machines were used, including 6 x 6, 10 x 5, 15 x
5,20 x 5, 10 x 10, 15 x 10, 20 x 10, 30 x 10, and 15 x 15
which were collected from the Operations Research Library.
In addition, some of the reported algorithms in the literature
(16, 19, 27, 29-31, 33, 40-45] were used in order to compare
with the proposed HGA.

4.2. Computational Results. To develop the proposed HGA,
MATLAB R2010a was used, and the algorithm was run on
a computer which was functioning with Windows XP, Intel®
Core™ Duo CPU T2450 at 2 GHz, and 2.49 GB of RAM. Each
of the benchmarked instances was tested 10 times indepen-
dently with the following tuned parameters: population size
Ny, = 200, crossover probability on a population P, =
0.5, mutation probability on a population P, = 0.8, initial
temperature of SA, T, = 30, cooling rate of temperature in
SA, a = 0.9, keeping rate of individuals 8 = 0.05, migration
rate of individuals { = 0.002, and updated value of P, =
0.9. In addition, the selection pressure of the Roulette Wheel
operator is set at ' = 7 for all benchmarked instances.

The computational experiments of the 42 well-studied
job shop instances with the above tuned parameters and
10 replications per each benchmarked instance have been
carried out, and the results are depicted in Table 2. Table 2
consists of the instance name, dimension of the problem
(jobs x machines), best known solution (BKS), and results of
our proposed HGA which consist of four columns including
the best solution of the replications, relative deviation (RD),
and average solution and worst solution of the algorithm in 10
runs. These are the most important indexes in the comparison
process of the algorithm in order to check its effectiveness
and consistency. The remaining columns of Table 2 are
the obtained results of the compared algorithms, including



Journal of Optimization

TP €0<I — LSV1 — Y6yl LIS S0¥1 11§41 - - — - S0%1 I%4! (541 09’1 SI¥1 L6€T  SIX QI LEV'T
T6TT  TOVT  T6TT el €TEl LSET 8SET 6L T6TLT — — — — 671 LOST  00ST  SOT  ¥6TI 8971 SIXSI 9¢VT
8887 8881 — 8881 €0GT S88T  8S61 8881 8881  — — — — G681 888T 8881 000  .888T 8SST OI X 0€ SEVT
121 0841 — €S/ —  8S/1 w84 T4l Tl — — — — ST/l Tesl T4l 000 LITl 1241 01X 0€ ¥EVT
61 6L — 611  — 6l SWA 6I 6l — — — — 611 611 611 000  ,6IZ1 6IZ1 OIXO0€ €ev1
0S8T 0S8T — 0S8 —  0S8T 0SS 0S8 0S8  — — — L061 0981 0S8T  0S8T 000  ,0SST 0S8T  OI X O€ €V
Y81 ¥SL1 ¥SLT ¥SLI  —  ¥SL1 WS ¥SLT ¥SLA — — ¥8LT  FFSI 06T ¥8/1  ¥8.1 000  L¥SLI FSLI 0T X 0€ 1€V
GGl GePl — 89T —  90FI  ISPT  SSET Ssel — — — LEFT GSeT GGl GSET 000 LSSET SSET 0T X 0 0EVT
80CT ¢STI  — €61 8FTI 08T TSl 961 T8I — — — TeTel — ¥OTI 68T ¥ET 611  TSII 0T X0 6TV
orZT €461 —  €6C1  LLTT TOST  TIET  T€Tl €€ — — — 69€T — 67l Tgel 80°0  LITT 9Tl 01X 0T 8TV
68T 91T —  0ZEl —  90€I  OSEI  9STI 97T — — — 6S€T — 1971 /sal 91 GSTI  S€TT 01X 0T LTV
8IZT 6971  — 1Ll —  S6TT LOST 8Tl sTeal — — — €zeT — 8IZT  8IZT 000  ,8TCT  SIZT  OIXO0C 9TV
186 €00 — 8201 ¢T0l TI€0L  ZFOT 986 €66  — — — £901 — 0001 €766  TLO ¥86  LL6 O XSI STV
w6 W66 @ — 8.6 — 1001 TEOT €56 /S6 — — — 7101 — 956  S0S6 980 6 S€6  OIXSI ZAM|
T€0T 1SO0T —  TE€OI  —  TEOT  GEOT  <TEOT  ¢TEOT  — — — €€0T — TEOT  TEOT 000  ,TEOT TEOT O XSl €TV
56 <86  — 096 — 086 686 g6 76 — — — L00T — %6 1.6 000 L6 LT6 OIXGI fAM|
690T FSIT 80T 1601  —  £60T  ¥IIT  9%0T  £90T  — — 8801  9FII — T90T  SSOT  8€0  0SOT  9F0T OT X ST 1TV
06 8¥6  — 06  L06  L06  L06 06  L06  —  L06 — 76 — L06  L06 S50 L06 706 OIXOI 0TvV'1
8¥8 88  — %8 8F8 098 098 w8 158 — 8 LS8 €/8 — 0s8 ¥¥¥8 000  ,T¥8 THS OIXOI 61V
8F8 188  — 88  8F8 /S8 /S8 8¥8  8¥8  —  8¥8 — 098 — 78 8'8¥8 000  .8¥S 8FS OIXOI 8TV'T
¥8L L8  — ¥8,L  S8L 6L  T6L ¥8L  ¥8L  —  ¥8L V8L  €6L — /8L ¥'98L 000  .¥SL V8L OIXOl LIV
S¥6 886 S¥6  9F6  S¥6 656 656 %6 S¥6  —  S¥6 — 766 — [F6  TOV6  TI0 96  S¥6 0T X0l 9TV
L0T1  L0T1  —  L0TT  — — — L0T1  L0T1  —  L0T1  LOTD  LOTI — L0T1  L0T 000  ,Z0TL 0TI SX0T SIvVT
6Tl TeTtl — 6Ll — — — T6TT  T6TT 6T T6TT — 7671 — 7671 T6Zl 000  LT6TT  T6TT S X 0T YV
0SIT  0STT  — oIt — — — 0SIT  OSTT  OSIT  OSTT  OSII  OSII — 0SIT  0SIT 000  LOSIT OSII SXO0¢ €IV
6€0T 6501 —  6€01  — — — 601 6501 6€01  6£0T — 6€01 — 601 6€0I 000 6601 6£0I S X 0T v
T T el e — — — o R o G 4 R o RO 4 R 4 — el Teel 000 LTTTl T S X 0T V1
866 856  — 866 86  — — 856 856 856 856 856 856 — 856 86 000  ,8G6 856 SXGI 0TvV'T
s6 156 — s6 156 — — 156 1S6 156 156 156 156 — 156 156 000 JS6 156 S X ST 60VT
€98 €98  — €98 €98  — — €98 €98 €98 €98 €98 €98 . €98 €98 000  ,£98 €98 SXGI 80V'T
068 068 — 068 068 — — 068 068  L68 068 068 068 — 068 068 000  ,068 068 SXGI LOV'T
9%6 976 976 96 916 = — — 926 976 96 96 976 976 — 976 976 000 .96 976 SXSI 90V'1
€6S €65 @ — %S €65 — — €65 €65 €65 €65 €65 €66 — €6S €65 000  ,665 €65 SXOI SOV
065 079 — 065 065 — — 065 065 909 065 065  L09 — 065 065 000  ,065 065 SXOI YOV
165 059  — ¥09  L6§  — — L6 €09 19 65  L6S L19 — Y09  LL6S 000  LL6S  L6S  SXOI OV
Gg9 70L — << () — - <s9 <s9 <9 <99 Gs9 Gs9 - 999 [VA) 000 999 Gs9 S X0l {0\t
999 999 999 999 999  — — 999 999 999 999 999 999 — 999 999 000  ,999 999  SxO0I 0V
GOl  — SO 6911  — ¢TIl 60Tl SO S — SOl — 9611 — 8/I1 %1 000 LS9 SO  SXO0C AR

& — SS Ss — Ss Ss Ss Ss — SS Ss Ss — o SS 000 L6 66 9x9 9014
9661 6661 100Z  000T £00T $00¢ S00Z 9007 £00T 800T 600T  010T 10T IO AV (%) @9 199g oyg  omg  owreu soueisu]
SOY sS4 VvOH dsein Sy VOH VOST wered VOH VOH VN VINW VDd VSIVOH VOH pasodoig

‘synsax eyuawLIadxy 7 a19V],



Journal of Optimization

"VOH 1no £q pasaryoe uonnjos fewndQ ,
‘suni juapuadapur ([ Jo aSeroAe oAy
"a8ejuaniad ur UOTIRIASD SATIE[AI (Y

"UOTINOS UMOWY J53q S

€9'0 €TY 8€0 81 197  L0¥ Iv's 70 S9'0 670 %00 €0 Ve L0 Se0 (%) UOTIEIASD dATIR[RI AFLIAY
LVCl  L¥el - 65Tl 8STI  TIEL €Cel el Pigd! - - - - el €L 8Tl 060 €eCl Tl ST XS 0vv'1
e€ecl  69¢€l - 06l 0LZ1  ¢¥eEl (33 igdt 1s¢1 - - - - igd! IS 09tl 0¢'T 6VCl ¢t SIX Sl 6¢V'1
8/T1 6Tl - L9C1  VLCT 8¢l 9¢l1 6I¢lL 1ect - - - - 6I¢lL 8¢Tl  0¢Tl LI'C CCCL 9611 ST XS 8¢Vl
9661 6661 100C  000C  €00C ¥00T §00C  900C £L00T 800T  600C  0OI0C c10¢ BIOM Ay (%) QY 159 g aZI  SWIRU S0URISU]
SOY  sd  VOH dseryp gy VOH VvOST werd YOH VOH VN VINN VOd VSIVOH VOH pasodoig

‘paNUIIUOY) 1 ATAV],



10 Journal of Optimization
TaBLE 3: Comparison of the results.
Reference CA NBPS NBKSO ARD (%) Improvement in the proposed HGA
CA Proposed HGA CA Proposed HGA (%)
Rakkiannan and Palanisamy [16] HGAPSA 11 2 6 0.7 0.7 0
Asadzadeh and Zamanifar [33] PGA 34 14 26 34 0.2 32
Luh and Chueh [40] MMIA 18 16 17 0.32 0.02 0.3
Yang et al. [41] MA 22 20 20 0.04 0.03 0.01
Hasan et al. [42] HGA 14 1 14 0.49 0.00 0.49
Lin and Yugeng [31] HGA 42 26 29 0.65 0.35 0.3
Gongalves et al. [30] Param 42 30 29 0.41 0.35 0.06
Ombuki and Ventresca [29] LSGA 27 3 14 5.41 0.54 4.87
HGA 27 6 14 4.07 0.54 3.53
Coello et al. [19] AIS 23 12 14 1.61 0.44 1.17
Binato et al. [43] Grasp 42 23 29 1.8 0.35 1.45
Wang and Zheng [27] HGA 9 7 6 0.38 0.28 0.1
Sabuncuoglu and Bayiz [44] BS 40 16 27 423 0.36 3.87
Nuijten and Aarts [45] RCS 42 30 29 0.63 0.35 0.28

NBPS: number of benchmarked problems solved.
NBKSO: number of best known solutions obtained.
ARD: average relative deviation in percentage.

CA: compared algorithms.

HGAPSA, PGA, MMIA, MA, HGA, HGA, Param, LSGA,
HGA, AIS, Grasp, HGA, BS, and RCS, which were presented
by Rakkiannan and Palanisamy [16], Asadzadeh and Zaman-
ifar [33], Luh and Chueh [40], Yang et al. [41], Hasan et al.
[42], Lin and Yugeng [31], Gongalves et al. [30], Ombuki
and Ventresca [29], Coello et al. [19], Binato et al. [43],
Wang and Zheng [27], Sabuncuoglu and Bayiz [44], and
Nuijten and Aarts [45], respectively. In order to calculate
the relative deviation for each of the benchmarked instances,
the formula RD = 100 x (BFM — BKS)/BKS was used. In
this formula, BFM is the best found makespan and BKS is
the best known solution. In addition, the average execution
times of 10 replications for the biggest benchmarked instances
LA31 to LA35 were recorded as 152.2, 252.1, 143.6, 373.8, and
248.4 seconds, respectively. The average execution times for
the other smaller benchmarked instances were shorter than
these. Overall, it can be said that the computational time of
our proposed HGA was reasonable.

4.3. Discussion. It is obvious that our proposed HGA was
able to find optimal or near optimal solutions for the
benchmarked problems. Table 2 presents that our HGA has
obtained the best known solutions for 69.05 percent of the
instances; that is, 29 out of 42 instances have reached the best
known solutions. In the small sized benchmarked instances
such as LAO1 to LAI5, FT06, and FT20, most of the reported
algorithms and the proposed HGA were able to achieve the
best known solutions. However, in the bigger sized bench-
marked instances, LA16-LA40, the proposed algorithm was
able to achieve equal or better solutions in comparison to
most of the reported algorithms. Moreover, the results of the
proposed HGA which were obtained without applying the
new knowledge-based operator on the big sized instances

(LA36-LA40) were 1300, 1428, 1232, 1251, and 1242, respec-
tively. It is clear that the obtained results using the new
knowledge-based operator in the proposed HGA are better in
comparison to those without the knowledge-based operator.
This implies that the new knowledge-based operator can
increase the solution quality of the proposed HGA.

Table 3 lists the compared algorithms (CA), number
of benchmarked problems solved (NBPS), number of best
known solutions obtained (NBKSO), and average relative
deviation (ARD) for the compared algorithms and the pro-
posed HGA. In addition, the last column shows the improve-
ment made in our HGA with respect to the other algorithms,
in which it is the subtraction between the average relative
deviation of the compared algorithms and the proposed
HGA. Based on Table 3, the average relative deviation of the
proposed HGA is only 0.35 percent for the 42 well-studied job
shop instances (average deviation of the best found solutions
by the proposed HGA from the best known solutions). It
is clear that the proposed HGA has made a considerable
improvement in the solution quality of the benchmarked
instances in comparison to those of the other algorithms.
For illustration purposes, the optimum schedule of LA22 and
near optimal schedule of LA40 that were obtained by the
proposed HGA are presented in Figures 5 and 6, respectively.

5. Conclusions

This paper has proposed a hybrid genetic algorithm that is
a combination of GA and SA for solving the nonpreemptive
JSSPs in order to minimize the makespan of schedules. In the
proposed algorithm, GA was applied for global exploration
among the chromosomes of a population, and SA was used
to carry out local exploitation around the individuals. An



Journal of Optimization

1

MlO

&
3
-
|
0 100 200 300 400 500 600 700 800 900 1000
Time (min)
F1GURE 5: The optimal schedule of LA22 obtained by our HGA.
My [5) BT e 1) ] e e ] ] e
M, - 5 O 7 W @0 [T ol (- I 2 4] 1
My 5] [T ) T T4 = T
My, - (o] 5 [¢] i | a
M, I [ [ B IENE 1
My, [0 R [ N L [+ ] é 1
¢ M ] N E I (1] T
§ My {TZ 1] B B OOk 100 s 2] T
= M, {7] BL<] [ B ; 1
- CHE CHE b ]
. b .
[ 0 E E= 1
[ > [5] : CfF B §
(2 I O I | N | A B ) Lol T
[ ST ] SIS ]
800 1000 1200 1400
Time (min)

FIGURE 6: The near optimal schedule of LA40 obtained by our HGA.

operation-based representation was used for the solution
encoding of the algorithm. In addition, a new knowledge-
based operator based on the problem characteristics was
designed, and it was able to increase the solution quality
of the schedules. To produce the offspring and mutants, a
machine based precedence preserving order-based crossover
and two types of mutation operators, namely, swapping and
insertion, were used in order to increase the population
diversity and intensify the search. Moreover, the SA approach
with its neighborhood search ability was applied to further
improve the solution quality which was obtained from GA.
The proposed HGA was tested on some of the well-studied
benchmarked instances which were collected from the Oper-
ations Research Library, and the results were compared with
other algorithms. Computational results show that generally
the proposed algorithm has an average relative deviation less

than those of the compared algorithms, and this proves the
effectiveness and efficiency of the proposed approach.

For future work, we suggest taking into account greenness
issue in scheduling problems as it is a new frontier that is
being extended in the manufacturing areas. In addition, new
developed algorithms like imperialist competitive algorithm
can be implemented in the proposed framework with the
suggested knowledge-based operator to see its performance.
Moreover, one could consider developing new operators to
further increase the population diversity of the algorithm
and even developing an operator to measure the population
diversity.

Competing Interests

The authors declare that they have no competing interests.



12

References

[1] M. L. Pinedo, “Introduction,” in Scheduling: Theory, Algorithms,
and Systems, pp. 1-10, Springer, New York, NY, USA, 2012.

[2] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of
flowshop and jobshop scheduling,” Mathematics of Operations
Research, vol. 1, no. 2, pp. 117-129, 1976.

[3] J. D. Ullman, “NP-complete scheduling problems,” Journal of
Computer and System Sciences, vol. 10, pp. 384-393, 1975.

[4] J. Carlier and E. Pinson, “An algorithm for solving the job-shop
problem,” Management Science, vol. 35, no. 2, pp. 164-176, 1989.

[5] J. Adams, E. Balas, and D. Zawack, “The shifting bottleneck
procedure for job shop scheduling,” Management Science, vol.
34, no. 3, pp. 391-401, 1988.

[6] R. Vancheeswaran and M. A. Townsend, “Two-stage heuristic
procedure for scheduling job shops,” Journal of Manufacturing
Systems, vol. 12, no. 4, pp. 315-325,1993.

[7] P.Brucker, B. Jurisch, and B. Sievers, “A branch and bound algo-
rithm for the job-shop scheduling problem,” Discrete Applied
Mathematics, vol. 49, no. 1-3, pp. 107-127, 1994.

[8] B.]. Lageweg, J. K. Lenstra, and A. H. Rinnooy Kan, “Job-shop
scheduling by implicit enumeration,” Management Science, vol.
24, no. 4, pp. 441-450, 1977/78.

[9] H. Fisher and G. L. Thompson, Probabilistic Learning Com-
binations of Local Job-Shop Scheduling Rules, Prentice-Hall,
Englewood Cliffs, NJ, USA, 1963.

[10] R. Qing-Dao-Er-Ji, Y. Wang, and X. Wang, “Inventory based
two-objective job shop scheduling model and its hybrid genetic
algorithm,” Applied Soft Computing, vol. 13, no. 3, pp. 1400-1406,
2013.

[11] E D. Croce, R. Tadei, and G. Volta, “A genetic algorithm for the
job shop problem,” Computers & Operations Research, vol. 22,
no. 1, pp. 15-24, 1995.

[12] J. Zhang, X. Hu, X. Tan, J. H. Zhong, and Q. Huang, “Imple-
mentation of an ant colony optimization technique for job
shop scheduling problem,” Transactions of the Institute of
Measurement and Control, vol. 28, no. 1, pp. 93-108, 2006.

(13] J. Zhang, P. Zhang, J. Yang, and Y. Huang, “Solving the Job
Shop Scheduling Problem using the imperialist competitive
algorithm,” Advanced Materials Research, vol. 845, pp. 737-740,
2012.

[14] H. Piroozfard and K. Y. Wong, “An imperialist competitive
algorithm for the job shop scheduling problems,” in Proceedings
of the IEEE International Conference on Industrial Engineering
and Engineering Management (IEEM ’14), pp. 69-73, IEEE,
Selangor, Malaysia, December 2014.

[15] V. A. Armentano and C. R. Scrich, “Tabu search for minimizing
total tardiness in a job shop,” International Journal of Production
Economics, vol. 63, no. 2, pp. 131-140, 2000.

[16] T. Rakkiannan and B. Palanisamy, “Hybridization of genetic
algorithm with parallel implementation of simulated annealing
for job shop scheduling,” American Journal of Applied Sciences,
vol. 9, no. 10, pp. 1694-1705, 2012.

[17] R. Zhang and C. Wu, “A hybrid immune simulated annealing
algorithm for the job shop scheduling problem,” Applied Soft
Computing Journal, vol. 10, no. 1, pp. 79-89, 2010.

[18] D. Lei, “A Pareto archive particle swarm optimization for
multi-objective job shop scheduling,” Computers and Industrial
Engineering, vol. 54, no. 4, pp. 960-971, 2008.

[19] C. A.C. Coello, D. C. Rivera, and N. Cortés, “Use of an artificial
immune system for job shop scheduling,” in Artificial Immune

Journal of Optimization

Systems, J. Timmis, P. Bentley, and E. Hart, Eds., pp. 1-10,
Springer, Berlin, Germany, 2003.

[20] A.S.Jain and S. Meeran, “Deterministic job-shop scheduling:
past, present and future] European Journal of Operational
Research, vol. 113, no. 2, pp. 390-434, 1999.

[21] B. Calis and S. Bulkan, “A research survey: review of Al solution
strategies of job shop scheduling problem,” Journal of Intelligent
Manufacturing, vol. 26, no. 5, pp. 961-973, 2015.

[22] J. H. Holland, “Genetic algorithms,” Scientific American, vol.
267, no. 1, pp. 66-72,1992.

[23] L. Davis, “Job shop scheduling with genetic algorithms,” in
Proceedings of the Ist International Conference on Genetic Algo-
rithms, pp. 136-140, Hillsdale, NJ, USA, 1985.

[24] T. Yamada and R. Nakano, “A genetic algorithm applicable to
large-scale job-shop problems,” in Proceedings of the Parallel
Problem Solving from Nature (PPSN-II *92), pp. 281-290, Else-
vier Science, Brussels, Belgium, 1992.

[25] K.-M. Lee, T. Yamakawa, and K.-M. Lee, “Genetic algorithm
for general machine scheduling problems,” in Proceedings of
the 2nd International Conference on knowledge-Based Intelligent
Electronic Systems, pp. 60-66, IEEE, Adelaide, Australia, April
1998.

[26] L. Sun, X. Cheng, and Y. Liang, “Solving job shop scheduling
problem using genetic algorithm with penalty function,” Inter-
national Journal of Intelligent Information Processing, vol. 1, no.
2, pp. 65-77, 2010.

[27] L. Wang and D.-Z. Zheng, “An effective hybrid optimization
strategy for job-shop scheduling problems,” Computers & Oper-
ations Research, vol. 28, no. 6, pp. 585-596, 2001.

[28] H. Zhou, Y. Feng, and L. Han, “The hybrid heuristic genetic
algorithm for job shop scheduling,” Computers & Industrial
Engineering, vol. 40, no. 3, pp. 191-200, 2001.

[29] B. M. Ombuki and M. Ventresca, “Local search genetic algo-
rithms for the job shop scheduling problem,” Applied Intelli-
gence, vol. 21, no. 1, pp. 99-109, 2004.

[30] J. E Gongalves, J. J. D. M. Mendes, and M. G. C. Resende, “A
hybrid genetic algorithm for the job shop scheduling problem,”
European Journal of Operational Research, vol. 167, no. 1, pp. 77—
95, 2005.

[31] L.Lin and X. Yugeng, “A hybrid genetic algorithm for job shop
scheduling problem to minimize makespan,” in Proceedings of
the 6th World Congress on Intelligent Control and Automation
(WCICA 06), pp. 3709-3713, IEEE, Dalian, China, June 2006.

[32] H. Zhou, W. Cheung, and L. C. Leung, “Minimizing weighted
tardiness of job-shop scheduling using a hybrid genetic algo-
rithm,” European Journal of Operational Research, vol. 194, no.
3, pp. 637-649, 2009.

[33] L. Asadzadeh and K. Zamanifar, “An agent-based parallel
approach for the job shop scheduling problem with genetic
algorithms,” Mathematical and Computer Modelling, vol. 52, no.
11-12, pp. 1957-1965, 2010.

[34] R. Yusof, M. Khalid, G. T. Hui, S. Md Yusof, and M. E Othman,
“Solving job shop scheduling problem using a hybrid parallel
micro genetic algorithm,” Applied Soft Computing Journal, vol.
11, no. 8, pp. 5782-5792, 2011.

[35] M. Seda, “Mathematical models of flow shop and job shop
scheduling problems,” International Journal of Applied Mathe-
matics & Computer Sciences, vol. 4, no. 4, pp. 122-127, 2008.

[36] K.-H.Kim and P. J. Egbelu, “A mathematical model for job shop
scheduling with multiple process plan consideration per job,
Production Planning and Control, vol. 9, no. 3, pp. 250-259,1998.



Journal of Optimization

(37]

(38]

(39]

[40]

[41]

[43

[45]

W. Cheung and H. Zhou, “Using genetic algorithms and
heuristics for job shop scheduling with sequence-dependent
setup times,” Annals of Operations Research, vol. 107, no. 1-4, pp.
65-81, 2001

S. Kirkpatrick, C . D. Gelatt Jr., and M. P. Vecchi, “Optimization

by simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680,
1983.

S. Lawrence, “Resource constrained project scheduling: an
experimental investigation of heuristic scheduling techniques,”
Tech. Rep., GSIA, Carnegie Mellon University, 1984.
G.-C.Luhand C.-H. Chueh, “A multi-modal immune algorithm
for the job-shop scheduling problem,” Information Sciences, vol.
179, no. 10, pp. 1516-1532, 2009.

J.-H. Yang, L. Sun, H. P. Lee, Y. Qian, and Y.-C. Liang, “Clonal
selection based memetic algorithm for job shop scheduling
problems,” Journal of Bionic Engineering, vol. 5, no. 2, pp. 111-
119, 2008.

S. M. K. Hasan, R. Sarker, and D. Cornforth, “Hybrid genetic
algorithm for solving job-shop scheduling problem,” in Pro-
ceedings of the 6th IEEE/ACIS International Conference on
Computer and Information Science (ICIS '07), pp. 519-524, IEEE,
Melbourne, Australia, July 2007.

S. Binato, W. J. Hery, D. M. Loewenstern, and M. G. Resende,
“A GRASP for job shop scheduling,” in Essays and Surveys on
Metaheuristics, pp. 59-79, 2002.

I. Sabuncuoglu and M. Bayiz, “Job shop scheduling with beam
search,” European Journal of Operational Research, vol. 118, no.
2, pp. 390-412, 1999.

W. P. M. Nuijten and E. H. L. Aarts, “A computational study
of constraint satisfaction for multiple capacitated job shop
scheduling,” European Journal of Operational Research, vol. 90,
no. 2, pp. 269-284, 1996.

13



Advances in Advances in Journal of Journal of

Operations Research Decision SCIenceS Applied Mathematics Algebra Probabilty and Statstics

W) ‘15' ‘
hE : i i

L
W
\ {4 2}

The Scientific
World Journal

Intfernationa\.Journa\ of )
Differential Equations

Hindawi
Submit your manuscripts at
http://www.hindawi.com

Advances in

Mathematical Physics

International Journal of

Combinatorics

Journal of : Journal of ; Mathematical Problems Abstract and ' Discrete Dynamics in
Complex Analysis Mathematics in Engineering Applied Analysis Nature and Society

International
Journal of Journal of

Mathematics and DISB[BIB M@Jhﬂmahﬂs

Mathematical
Sciences

Journal of nte urnal o Journal of

ction Spaces Stochastic Analysis Optimization




