
Research Article
Bidirectional Nonnegative Deep Model and
Its Optimization in Learning

Xianhua Zeng, Zhengyi He, Hong Yu, and Shengwei Qu

Chongqing Key Lab of Computational Intelligence, College of Computer Science and Technology,
Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Correspondence should be addressed to Xianhua Zeng; xianhuazeng2005@163.com

Received 18 August 2016; Accepted 17 October 2016

Academic Editor: Tongliang Liu

Copyright © 2016 Xianhua Zeng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nonnegative matrix factorization (NMF) has been successfully applied in signal processing as a simple two-layer nonnegative
neural network. Projective NMF (PNMF) with fewer parameters was proposed, which projects a high-dimensional nonnegative
data onto a lower-dimensional nonnegative subspace. Although PNMFovercomes the problemof out-of-sample ofNMF, it does not
consider the nonlinear characteristic of data and is only a kind of narrow signal decomposition method. In this paper, we combine
the PNMF with deep learning and nonlinear fitting to propose a bidirectional nonnegative deep learning (BNDL) model and its
optimization learning algorithm, which can obtain nonlinear multilayer deep nonnegative feature representation. Experiments
show that the proposed model can not only solve the problem of out-of-sample of NMF but also learn hierarchical nonnegative
feature representations with better clustering performance than classical NMF, PNMF, and Deep Semi-NMF algorithms.

1. Introduction

In the study of machine learning, pattern recognition,
computer vision, and image processing, it is an important
problem to find the effective representations of the input data
matrix with nonnegative elements and very high dimensions.
In 1999, Lee and Seung had proposed a classical feature rep-
resentation method, named nonnegative matrix factorization
(NMF) [1], which effectively solved the above problems. The
basic idea and analysis of the NMF algorithm may be simply
described as follows.

Given a nonnegative data matrix 𝑋 ∈ 𝑅𝑚×𝑛† , which is
a collection of 𝑛 samples as columns, and each sample is
nonnegative so that they allow only additive not subtractive
and linear combinations. To a degree, it can capture the
essence of intelligent data description. And the objective
function can be defined as

min
𝑊≥0,𝐻≥0

󵄩󵄩󵄩󵄩󵄩𝑋 −𝑊𝐻𝑇󵄩󵄩󵄩󵄩󵄩 . (1)

Although the NMF is optimal for learning the parts of
objects, it suffers from the out-of-sample problem [2, 3];
namely, it is indirect or repeats the factorization to obtain

the coefficients of any new coming examples. To overcome
the disadvantages of the NMF, after that, the researchers
put forward some improved methods based on the NMF
algorithm. For example, Yuan et al. proposed a Projective
NMF (PNMF) [4] in 2009. The PNMF is a modified form
of the traditional NMF, with strong sparseness and orthogo-
nality [4, 5] under the projection assumption. It only needs
to calculate a nonnegative matrix 𝑊, thereby reducing the
amount of computation at each iteration; that is, the PNMF
learns a nonnegative matrix to directly project 𝑋 onto the
lower-dimensional nonnegative subspace. If 𝑊 denotes the
basismatrix, the PNMF treats𝑌 = 𝑊𝑇𝑋 as the coefficient and
utilizes𝑊𝑊𝑇𝑋 to reconstruct 𝑋. So its objective function is

min
𝑊≥0

󵄩󵄩󵄩󵄩󵄩𝑋 −𝑊𝑊𝑇𝑋󵄩󵄩󵄩󵄩󵄩 . (2)

The PNMF has fewer parameters than the NMF, and it
is widely used in linear dimension reduction and can solve
the problem about out-of-sample deficiency. Being the same
with theNMF, the PNMF is a linear dimensionality reduction
method, but many data present the nonlinear characteristics
[6]. At the same time, the NMF and the PNMF only factorize
the original data one time [7]. In many situations, the
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nonnegative data sampled from real applications are usually
very complex and need to be factorized many times for
obtaining the high-level deep features with distinction and
strong representation ability. Some studies have shown that,
in order to learn the high-level representations of complex
data and have better performance in image understanding
and speech perception, the deep learning is needed [6]. And
the deep learning has a profound impact both in academia
and in industry fields since Hinton and Salakhutdinov pub-
lished a known article [8] in Science in 2006. This article
shows the following: (1) artificial neural network with a lot of
hidden layers has excellent ability for learning characteristics,
which is more essential to describe data and facilitates the
visualization, clustering, and classification; (2) the difficulty
on training the deep neural network can be overcome by the
“layer by layer initialization” (layer-wise pretraining). With
the success of training deep architectures, several variants of
deep learning have been introduced [6, 9]. These multilayer
algorithms take hierarchical approaches in feature extraction
and provide efficient solution to complex problems, and they
use an error backpropagation algorithm and unsupervised
learning to obtain an effective representation model. How-
ever, they have not considered the following concerns: (1) the
weights should be nonnegative when a lot of physical signal is
nonnegative data; (2) the pure additive description uses little
component to make the components of the nonnegative data
clear.

For obtaining the deep nonnegative feature represen-
tation, Trigeorgis et al. applied the concept of Semi-NMF
[10] to propose a Deep Semi-NMF [9] that is able to learn
hidden deep representations of the original data. In the Semi-
NMF, the goal is to construct a low-dimensional nonnegative
representation 𝐻+ of our original data 𝑋±, with the bases
matrix 𝑍± serving as the mapping between our original
data and its lower-dimensional representation [10].TheDeep
Semi-NMF model finds a representation of the data that has
a similar interpretation at the top layer.The input data matrix
is now further analyzed as a product of multiple factors𝑍± =
𝑍±1𝑍±2𝑍±3 ⋅ ⋅ ⋅ , which are thought to be deep seminonnegative
matrix factorization. That means it is able to decompose
the data in 𝑛 different ways according to multiple different
attributes:

𝐻+𝑖 = 𝑍±𝑖+1𝐻+𝑖+1, 𝑖 = 1, 2, . . . , 𝑛 − 1,
𝑋± = ∏

𝑖−1

𝑍±𝑖 𝐻+𝑘 , 𝑘 = 1, 2, . . . , 𝑛. (3)

Although theDeep Semi-NMFuses amultilayermodel to
obtain more features, it can only deal with seminonnegative
data, which is a linear transformation with weak representa-
tion capacity. Moreover, the Deep Semi-NMF model still has
the out-of-sample problem.

Based on the above analysis, the PNMF only computes
one projection matrix and it cannot learn more rich features,
especially when the data are a nonlinear or near a nonlinear
manifold, or the data are hierarchically generated. Motivated
by the ideas of the PNMF, the Deep Semi-NMF, and deep
learning (especially, AutoEncoder [8, 11]), in this paper, we

propose a novel model which we call bidirectional nonneg-
ative deep learning (BNDL), for learning more helpful and
meaningful deep nonnegative representations of the original
data with nonlinear characteristic and overcoming the out-
of-sample problem. In Section 2, we introduce our BNDL
method and the analysis of the optimal objective functions.
And we give the corresponding algorithms in Section 3.
Experiments are demonstrated in Section 4. In Section 5, we
briefly give some conclusion remarks about this paper.

2. Bidirectional Nonnegative Deep
Learning Model

2.1.Motivation. Theparticular attraction of the NMF alspon-
gorithm is the nonnegative constraints, and it is useful for
data representation in clustering. But the NMF is a simple
linear coding algorithm using a single layer network with
nonnegative constraints, and it suffers from the out-of-
sample deficiency which cannot directly obtain the codes of
any new coming examples [12, 13].

To the PNMF algorithm, it uses the transpose matrix
of the learned basis matrix as the projection matrix, which
obtains nonnegative coefficients for any new coming exam-
ples [4, 14]. Although it overcomes the problem of out-
of-sample of the NMF, the PNMF is also a linear coding
algorithm and simple single layer decomposition.

On the other hand, the current existing deep network
models rarely consider the nonnegative constraints, even if
the newest related model Deep Semi-NMF [9] only broadens
an incomplete nonnegative constraint and is still a linear
model.

In this paper, we propose a nonnegative hierarchical data
representation model, named bidirectional nonnegative deep
learning (BNDL)model, which applies the concept of PNMF
to train an initial multilayer nonlinear structure that is able
to learn hidden complete deep representations of the original
data.

Different from the other deep architectures, the BNDL
firstly constructs a pretraining deep network through stack-
ing every nonnegative two layers network independently to
get the whole network, and the learning process of each layer
is to combine the PNMF and a designed nonlinear mapping.
That is to say that each time we do one-step decomposition,
then the basis matrix of two-layer BNDL can be regarded
as the weight matrix of the deep network, and the output
of this step can be used as the input of the next layer by a
Sigmoid function. Upwards, iterating this process, we can get
a deep network. Downwards, we can reconstruct the original
sample data. Because BNDL only learn one layer in each step,
we can fast build a deep network. The hierarchical feature
extraction strategy learns more meaningful, helpful features
and higher-order nonnegative nonlinear characteristics than
one-step learning. Finally, a fine-tune training is applied to
improve the reconstruction performance and deep features
of our deep network under the nonnegative weight value
constraints.
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Figure 1: The two-layer binetwork structure for BNDL.

2.2. Bidirectional Nonnegative Deep LearningModel. Let𝑋 =
[𝑋1, 𝑋2, . . . , 𝑋𝑛] denote the data sample set, among which
𝑋𝑖 ∈ 𝑅𝑚 denotes the feature descriptor of the 𝑖th sample
and 𝑛 is the number of total samples. Here we assume that
the input data matrix 𝑋 is nonnegative. Let 𝑘 denote the
dimension of the desired dimension-reduced feature space.
The task of data factorization is to get a nonnegative basis
matrix 𝑊 = [𝑤1, 𝑤2, . . . , 𝑤𝑘] ∈ 𝑅𝑚×𝑘 and its corresponding
coefficient matrix 𝑌 = 𝑉𝑇𝑋. Here 𝑉 ∈ 𝑅𝑘×𝑚 devotes the
projection matrix that transforms an 𝑚-dimensional feature
vector into a 𝑘-dimensional feature space. The matrices 𝐻(𝑖),
𝑖 = 1, . . . , 𝐼, are the output matrices of the first 𝑖 − 1 layers,
and 𝐻(1) is equal to the original matrix 𝑋. The objection of
the 𝑖th factorization is as close as possible𝐻(𝑖); that is,𝐻(𝑖) ≈
𝑊(𝑖)𝑌(𝑖). So the objection function for projective nonnegative
multilayer factorization can be defined as

min
𝑉(𝑖) ,𝑊(𝑖)

󵄩󵄩󵄩󵄩󵄩𝐻(𝑖) −𝑊(𝑖)𝑌(𝑖)
󵄩󵄩󵄩󵄩󵄩
2

S.t. 𝑌(𝑖) = 𝑉(𝑖)𝑇𝐻(𝑖)

𝐻(𝑖+1) = tanh (𝐶 ∗ 𝑌(𝑖))
𝑊(𝑖) ≥ 0, 𝐻(𝑖) ≥ 0, 𝑉(𝑖) ≥ 0,

(4)

where 𝐶 is a positive factor to avoid the too large input
amount for Sigmoid function and 𝑊(𝑖) ≥ 0 (or 𝐻(𝑖) ≥ 0 or
𝑉(𝑖) ≥ 0) denotes that each element of it is nonnegative.

Due to preserving the same S-shape nonlinear mapping
function of the top-to-bottom operator, the top-to-bottom
reconstruction basis 𝑊(𝑖) should also be constrained to
reconstruct the input 𝑌(𝑖−1) of the (𝑖 − 1)th layer. So the new
objective cost is further improved into

min
𝑉(𝑖),𝑊(𝑖)

{󵄩󵄩󵄩󵄩󵄩𝐻(𝑖) −𝑊(𝑖)𝑌(𝑖)
󵄩󵄩󵄩󵄩󵄩
2 + 𝜆 󵄩󵄩󵄩󵄩󵄩𝑌(𝑖−1) − 𝑓 (𝑊(𝑖)𝑌(𝑖))

󵄩󵄩󵄩󵄩󵄩
2}

S.t. 𝑌(𝑖) = 𝑉(𝑖)𝑇𝐻(𝑖)

𝐻(𝑖+1) = 𝑓 (𝐶 ∗ 𝑌(𝑖))
𝑊(𝑖) ≥ 0, 𝐻(𝑖) ≥ 0, 𝑉(𝑖) ≥ 0
𝑓 (𝑥) = tanh (𝑥) ,

(5)

where 𝜆 is the balance factor. In our experiments, if 𝑖 = 1,
𝜆 = 0; else 𝜆 = 1.

So the two-layer structure for constructing BNDL can be
illustrated in Figure 1.

2.3. Multiplicative Update Rule for Initializing the Bottom-
to-Up Weight of BNDL. For the simplicity of initializing
the bottom-to-up weights 𝑉(𝑖), we do not firstly consider
the second term of the objective function in (5), so the
generative weights 𝑉(𝑖) and reconstructive weights 𝑊(𝑖) are
only computed by optimizing the first term. The simple
objective function is

min
𝑊≥0,𝑉≥0

{󵄩󵄩󵄩󵄩󵄩𝐻(𝑖) −𝑊(𝑖)𝑉(𝑖)𝑇𝐻(𝑖)
󵄩󵄩󵄩󵄩󵄩
2} . (6)
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Obviously,

ΓBNDL = 󵄩󵄩󵄩󵄩󵄩𝐻(𝑖) −𝑊(𝑖)𝑉(𝑖)𝑇𝐻(𝑖)
󵄩󵄩󵄩󵄩󵄩
2

= tr ((𝐻(𝑖) −𝑊(𝑖)𝑉(𝑖)𝑇𝐻(𝑖)) (𝐻(𝑖) −𝑊(𝑖)𝑉(𝑖)𝑇𝐻(𝑖))𝑇)

= tr (𝐻(𝑖)𝐻(𝑖)𝑇) − 2tr (𝑊(𝑖)𝑉(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇)
+ tr (𝑊(𝑖)𝑉(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇𝑉(𝑖)𝑊(𝑖)𝑇) .

(7)

According to minimizing (7), simultaneously solving 𝑉(𝑖)
and𝑊(𝑖) is a NP-difficult problem. So the scalable solution of
(6) is alternatively optimizing with respect to𝑉(𝑖) and𝑊(𝑖) by
fixing one of them.

When fixing the 𝑉(𝑖), the objective function solved by
Lagrangian multiplier method [9] is transformed into

ΓBNDL = tr (𝐻(𝑖)𝐻(𝑖)𝑇) − 2tr (𝑊(𝑖)𝑉(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇)
+ tr (𝑊(𝑖)𝑉(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇𝑉(𝑖)𝑊(𝑖)𝑇)
− tr (𝜙𝑊) ,

(8)

where𝜙 is the Lagrangian multiplier, in which the constraints
𝑊 and𝐻 are nonnegative.

The minimization of (8) is equal to letting the equation

𝜕ΓBNDL
𝜕𝑊(𝑖) = −2𝑉(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇 + 2𝑊(𝑖)𝑉(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇𝑉(𝑖)

− 𝜙 = 0.
(9)

Under the nonnegative condition constraints

𝑊(𝑖) ≥ 0,
𝜙 ≥ 0.

(10)

Based on the KKT conditions [15], the minimum solution
of (8) is satisfied as

𝑊𝑗𝑘𝜙𝑗𝑘 = 0, (11)

where 𝑊𝑗𝑘 is the item at the 𝑗th row and the 𝑘th column of
𝑊. We can get the following equality via combining (10) and
(11) with respect to the parameters𝑊.

{−2𝑉(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇 + 2𝑊(𝑖)𝑉(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇𝑉(𝑖)}
𝑗𝑘
𝑊𝑗𝑘

= 0.
(12)

To (12), moving the negative items to the right-hand side
in (12), we have

{𝑊(𝑖)𝑉(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇𝑉(𝑖)}
𝑗𝑘
𝑊𝑗𝑘

= {𝑉(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇}
𝑗𝑘
𝑊𝑗𝑘.

(13)

So we can get a Multiplicative Update Rule (MUR) from
(4) for any two-layer learning of BNDL:

𝑊(𝑖) ←󳨀 𝑉(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇
𝑊(𝑖)𝑉(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇𝑉(𝑖) ⊙𝑊

(𝑖), (14)

where ⊙ denotes the dot product, that is, the product of the
corresponding elements from two matrices, and the matrix
division is the dot division of the corresponding elements.

Similarly, the MUR [12] for 𝑉 is

𝑉(𝑖) ←󳨀 𝑊(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇
𝑊(𝑖)𝑇𝑊(𝑖)𝑉(𝑖)𝐻(𝑖)𝐻(𝑖)𝑇 ⊙ 𝑉

(𝑖). (15)

Moreover, by referring the proof of Theorem 1 in the
literature [12], we can prove the following conclusion, that is,
Theorem 1. Note that the proof of Theorem 1 is similar to the
literature [12]; due to the limited space, we omit the detailed
proof and derivations.

Theorem 1. The Euclidean metric ‖𝐻(𝑖) − 𝑊(𝑖)𝑉(𝑖)𝑇𝐻(𝑖)‖2 is
nonincreasing under the following two Multiplicative Update
Rules:

𝑊(𝑖) ←󳨀 𝑉(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇
𝑊(𝑖)𝑉(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇𝑉(𝑖) ⊙𝑊

(𝑖),

𝑉(𝑖) ←󳨀 𝑊(𝑖)𝑇𝐻(𝑖)𝐻(𝑖)𝑇
𝑊(𝑖)𝑇𝑊(𝑖)𝑉(𝑖)𝐻(𝑖)𝐻(𝑖)𝑇 ⊙ 𝑉

(𝑖).
(16)

And there must exist the optimal𝑊(𝑖) and𝑉(𝑖) to make the
value of (7) achieve a stationary stable point.

2.4. The Modification of the Top-to-Bottom Reconstruction
Weight 𝑊(𝑖). After decomposing the input 𝐻(𝑖) to get non-
negative generative weights 𝑉(𝑖), fixing the first term and
minimizing the second term of the objective function (5), we
need to modify reconstruction weights𝑊(𝑖) for obtaining the
optimal top-to-bottom nonlinear mapping to the (𝑖 − 1)th
layer input; that is, 𝑌(𝑖−1) ≈ 𝑓(𝑊(𝑖)𝑌(𝑖)), 𝑖 ≥ 2. So we can
easily get the following theorem.

Theorem 2. For minimizing the square objective function
‖𝑌(𝑖−1) − 𝑓(𝑊(𝑖)𝑌(𝑖))‖2, because the Sigmoid functions 𝑓(⋅) for
neuron outputs are a monotonic function, the optimal solution
of𝑊(𝑖) is

𝑊(𝑖) = (𝑓−1 (𝑌(𝑖−1)) 𝑌(𝑖)𝑇 (𝑌(𝑖)𝑌(𝑖)𝑇)+)
+
, (17)

where (⋅)+ is the pseudo-inverse computation and (⋅)+ is to
preserve nonnegative elements and substitute the negative
elements into zero.

Corollary 3. If the Sigmoid transfer function for nonnegative
neural networks is the hyperbolic tangent function𝑓(𝑥) = (𝑒𝑥−
𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥), then the inverse function about the function
value 𝑌(𝑖−1) ∈ (0, 1)

𝑓−1 (𝑌(𝑖−1)) = 1
2 ln

1 + 𝑌(𝑖−1)
1 − 𝑌(𝑖−1) . (18)
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Figure 2:The unrolling illustration of BNDL.

For obtaining the stability in our deep model, the input
signals are normalized into the interval [0, 1]. Obviously the
reconstruction signals should lie in the interval [0, 1], so we
also introduce the other common nonlinearity for neural
networks, the Rectified Linear Unit (ReLU) [15].

Corollary 4. If the transfer function for nonnegative neural
networks is the ReLU function at [0, 1], that is, 𝑓(𝑥) =
min{max (0, 𝑥), 1},then the inverse function about the function
value 𝑌(𝑖−1) ∈ (0, 1) has the same representation; that is,

𝑓−1 (𝑌(𝑖−1)) = min {max {0, 𝑌(𝑖−1)} , 1} . (19)

2.5. Unfolding Each Two-Layer Network to Construct a Mul-
tilayer Nonnegative Network. Though the weight matrices of
all layers are learned, they are only efficient in each two-layer
network, and they are not optimal for the whole network.
The weights in higher layers may be not optimal for the
lower layers [16, 17]. So after greedily learning good initial
values for the weights in every two layers, we unroll each
two-layer nonnegative network by using the𝑊(𝑖) and 𝑉(𝑖) to
construct a multilayer nonnegative nonlinear network which

can be seen in Figure 2. From top to down, we hope that
the reconstruction error is as small as possible. So the BP
algorithm is applied to fine-tune the unrolled deep networks
under the nonnegative-weight constraints.

3. The BNDL Algorithm Description

Summarizing the above analysis, unrolling each two-layer
nonnegative network, the bottom-to-top weights 𝑉(𝑖) con-
nect each nonlinear neuron layer to get the first multilayer
structure; then the top-to-bottom weights𝑊(𝑖) connect each
nonlinear neuron layer from the top layer to the bottom layer
(i.e., the input layer) and get a whole multilayer nonlinear
nonnegative deep network structure as illustrated in Figure 2.
For further optimizing the multilayer deep networks, fine-
tuning all weights by the improved BP algorithm reduces
the reconstruction error and ensures the weights to be
nonnegative by constraining the gradient descent iteration
𝑊(𝑡) + Δ𝑊 ≥ 0. In our fine-tune stage, the weights are
updated by using the conjugate gradient with three-time
linear searching from the source codes in literature [8], and
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Table 1: The characteristics of the datasets.

Datasets Dimension (𝑚) Total number (𝑛) Number of classes
COIL20 1024 1440 20
COIL100 1024 7200 100
CMU PIE 1024 2856 68

nonnegative weights are ensured by the computation 𝑊(𝑡 +
1) = max{0,𝑊(𝑡) + Δ𝑊}.

The main steps of the BNDL algorithm are described in
Algorithm 1.

Algorithm 1 (training algorithm for BNDL). Learning algo-
rithm for BNDL includes the following steps.

Step 1. Pretrain bottom-top initial nonnegative weights 𝑊(𝑖)
and 𝑉(𝑖)for each layer.

(1) Initialize the first layer𝐻(0) = 𝑋, getting𝑊(0) ∈ 𝑅𝑚∗𝑘
and 𝑉(0) ∈ 𝑅𝑚∗𝑘 with nonnegative random values at
interval [0, 1].

(2) Repeatedly update the reconstructed weights 𝑊(𝑖)
and generative weights 𝑉(𝑖) by, respectively, using the
iterative formulas (14) and (15) until the maximum
number of iterations.

(3) Modify the top-to-bottom reconstruction weight𝑊(𝑖)
by (17).

Step 2. Unroll each two-layer nonnegative network by using
the 𝑊(𝑖) and 𝑉(𝑖) to construct a multilayer nonnegative
nonlinear network as shown in Figure 2.

Step 3. Fine-tune weights 𝑉(𝑖) and 𝑊(𝑖) by the improved BP
algorithm under the constraints 𝑉(𝑡) + Δ𝑉 ≥ 0 and 𝑊(𝑡) +
Δ𝑊 ≥ 0. The updated nonnegative weights are performed
by using the conjugate gradient of the reconstruction error
with three-time linear searching from the source codes in
literature [8], and𝑊(𝑡 + 1) = max {0,𝑊(𝑡) + Δ𝑊}.
Step 4. Run the 𝐾-means algorithm, the feature representa-
tion by the given nonnegative output.

4. Experiments

In this section, we carry out some experiments to verify
the validity of BNDL on three datasets including COIL20,
COIL100, and CMU PIE, as shown in Table 1. In order
to compare the clustering experimental results, we use the
Accuracy (AC) and Normalized Mutual Information (NMI)
[13] as the evaluation measures.

4.1. Datasets Introduction. COIL20 dataset [17] in this exper-
iment contains 20 objects.The images of each object are taken
5 degrees apart as the object is rotated on a turntable and each
object has 72 images. The size of each image is preprocessed
into 32 × 32 pixels, with 256 grey levels per pixel. Thus, each
image is represented by a 1024-dimensional vector.

COIL100 dataset [17] which contains 100 objects is used to
the experiment.The images of each object are taken 5 degrees
apart as the object is rotated on a turntable and each object
has 72 images. The size of each image is preprocessed into
32×32 pixels, with 256 grey levels per pixel.Thus, each image
is represented by a 1024-dimensional vector.

CMU PIE [18] includes the original database of 41,368
images of 68 people, each person under different poses
and different illumination conditions and with different
expressions. Due to the limitation of experiment platform,
in this experiment, the fore 42 face images corresponding to
each person are extracted from the preprocessed CMU PIE
dataset [18] with 11,544 face pose images of 68 persons at size
32 × 32 pixels, so the experimental data includes 2856 face
images of 68 persons where each person corresponds to 42
face images with different poses.

4.2. Clustering Experiment on COIL20, COIL100, and CMU
PIE Datasets. The related literatures have demonstrated that
NMFmethod has good performance for clustering, especially
in the image clustering task. So we mainly do experiments
about clustering by comparing the most related methods
including NMF [1], PNMF [2], Deep Semi-NMF [9], and our
deep learning model, that is, BNDL. In this experiment, the
number of layers about BNDL is set to five, the number of
nodes in its first layer is the dimension of the input data, the
second layer has 500 nodes, the third layer has 500 nodes,
the fourth layer has 2000 nodes, and the last has the same
number with classes 𝑘. So the whole network node is 1024-
500-500-2000-𝑘. Note that fine-tuning training is carried out
on nine-layer networks.The network structure can be seen in
Figure 2.

In this subsection, “2nd layer” expresses the second layer
of the deep network matrix decomposition; “rec. 1st layer”
expresses the first reconstruction layer of the deep network
matrix reconstruction, and so on.

In the clustering experiment, we use the feature from
the all learned layers and reconstruction layers of BNDL
to compare with other methods. All algorithms use the
same iterations (5000 times), the same initialization method
(random initialization), and the same termination conditions
(the error is less than 10−6).The clustering performance based
on AC and NMI is shown in Table 2.

From the results of Table 2, we can see that BNDL has the
following advantages:

(1) Comparedwith the single layermatrix decomposition
network, BNDL learns more rich features while the
clustering effect is not reduced.

(2) Compared with the deep network matrix decomposi-
tionnetwork, each layer of BNDLhas better clustering
effect.

(3) Each layer of BNDL has a stable clustering perfor-
mance, which is better for the data representation and
downward transmission.
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Table 2: Performance comparison on different datasets.

Algorithms COIL20 COIL100 CMU PIE
AC NMI AC NMI AC NMI

NMF 0.6069 0.7216 0.4483 0.7236 0.4321 0.7197
PNMF 0.6340 0.7356 0.4701 0.7409 0.1796 0.4326
Deep Semi-NMF 2nd layer 0.2889 0.4124 0.3114 0.5502 0.6218 0.7868
Deep Semi-NMF 3rd layer 0.3688 0.4304 0.4064 0.6695 0.6047 0.7720
Deep Semi-NMF 4th layer 0.4375 0.5131 0.4065 0.6367 0.5018 0.7313
Deep Semi-NMF 5th layer 0.6063 0.7141 0.4018 0.6674 0.8074 0.9402
BNDL 2nd layer 0.5687 0.7275 0.4624 0.7389 0.2843 0.5880
BNDL 3rd layer 0.5806 0.7277 0.4754 0.7273 0.3459 0.6495
BNDL 4th layer 0.6431 0.7434 0.3890 0.6441 0.3186 0.5754
BNDL 5th layer 0.6458 0.6760 0.4499 0.6895 0.3533 0.6393

Table 3: Performance comparison of reconstruction data on different datasets.

Algorithms COIL20 COIL100 CMU PIE
AC NMI AC NMI AC NMI

NMF rec. 0.6267 0.7490 0.4468 0.7200 0.4391 0.7569
PNMF rec. 0.6528 0.7630 0.4686 0.7373 0.1866 0.4698
Deep Semi-NMF rec. 1st layer 0.5563 0.6304 0.3689 0.5783 0.8277 0.9506
Deep Semi-NMF rec. 2nd layer 0.5535 0.6590 0.4125 0.6471 0.7962 0.9156
Deep Semi-NMF rec. 3rd layer 0.6708 0.7263 0.4169 0.6568 0.8319 0.9447
Deep Semi-NMF rec. 4th layer 0.5271 0.5701 0.3114 0.5262 0.5963 0.7627
BNDL rec. 1st layer 0.5903 0.6793 0.5004 0.7313 0.3771 0.6503
BNDL rec. 2nd layer 0.5813 0.6819 0.4760 0.7424 0.3074 0.6074
BNDL rec. 3rd layer 0.6132 0.6815 0.4753 0.7328 0.2532 0.5640
BNDL rec. 4th layer 0.6049 0.6827 0.4826 0.7426 0.2454 0.5377

(4) From the results on COIL20 and COIL100, we can see
that BNDL has a better clustering performance for
large scale samples, which is more conducive to the
characteristic expression of complex data.

(5) Experimental results on CMU PIE face images are
disappointed in a degree. Compared with our model,
NMF and Deep Semi-NMF suffer from the out-of-
sample problem. But both our BNDL model and the
classical PNMF can solve the problem about out-of-
sample deficiency. Moreover, our BNDL obtains the
better performance than the PNMFon CMUPIE face
dataset. In addition, face clustering and classification
usually get the better results by using cosine distance
metric, so the graph regularization with the sine
similarity is introduced to improve the BNDL in the
future.

The reconstruction performance of BNDL is also excel-
lent. In order to compare the reconstruction performance of
each algorithm, here we compare the clustering performance
of reconstruction data. Table 3 is the results on the three
datasets. It can be found that the final reconstruction result of
BNDL does not decrease, compared with the reconstruction
result of the single layer matrix decomposition. And BNDL
is better than other deep network matrix decomposition.
The experiment results show that the reconstruction data

BNDL 2nd layer
BNDL 3rd layer
BNDL 4th layer
BNDL 5th layer

BNDL rec. 1st layer
BNDL rec. 2nd layer
BNDL rec. 3rd layer
BNDL rec. 4th layer

Before fine-tuning
After fine-tuning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

NMI

Figure 3: NMI of before and after fine-tuning of BNDL on COIL20.

of BNDL has better clustering effect, and the deep network
structure is more conductive to the multilayer feature expres-
sion.

The reason why BNDL has better reconstruction results is
that it connects each layer into a deep learning network after
decomposing all layers and fine-tuning the whole network
by improved BP algorithm to reduce reconstruction error to
minimum. To verify the effect of fine-tuning to the whole
network, we compare the difference of before fine-tuning and
after fine-tuning, as shown in Figures 3 and 4. Two figures
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Figure 4:NMIof before and after fine-tuning of BNDLonCOIL100.

imply that the clustering ability of BNDL has a considerable
improvement after fine-tuning, which means fine-tuning has
a strong effect on network; that is to say, themultilayer feature
representation ability of network is strongly boosted after
fine-tuning.

5. Conclusion

This paper proposes a bidirectional nonnegative deep learn-
ing model to obtain effective feature representation, which
can automatically learn a deep hierarchy with nonlinear and
nonnegative feature representations via inputting a given
nonnegative dataset, and such representations are demon-
strated to be suited for clustering. About the PNMF, it is a
linear dimensionality reduction and feature representation
method, and it only factorizes the original data in one step.
And the Deep Semi-NMF can construct a multitime linear
factorization to learn more features, but it is still a linear
dimensionality reduction method and not an absolutely
nonnegative treatment. Our BNDL model combines the
advantages of PNMF and deep belief networks under the
inspiration of theDeep Semi-NMF and overcomes the above-
mentioned shortcomings. At the same time, we designed an
effective learning algorithm for optimizing the corresponding
parameters of our BNDL model. Lastly, we show its better
clustering performance compared with the single-layered
NMF, PNMF, and Deep Semi-NMF to a degree. In addition,
our method avoids the out-of-sample problem and negative
feature representation in the different motivation with Deep
Semi-NMF.
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