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In this paper, complexity curtailing techniques are introduced to create faster version of insertion heuristics, that is, cheapest
insertion heuristic (CIH) and largest insertion heuristic (LIH), effectively reducing their complexities from O(r®) to O(#?) with no
significant effect on quality of solution. This paper also examines relatively not very known heuristic concept of max difference and
shows that it can be culminated into a full-fledged max difference insertion heuristic (MDIH) by defining its missing steps. Further
to this the paper extends the complexity curtailing techniques to MDIH to create its faster version. The resultant heuristic, that
is, fast max difference insertion heuristic (FMDIH), outperforms the “farthest insertion” heuristic (FIH) across a wide spectrum
of popular datasets with statistical significance, even though both the heuristics have the same worst case complexity of O(1?).
It should be noted that FIH is considered best among lowest order complexity heuristics. The complexity curtailing techniques

presented here open up the new area of research for their possible extension to other heuristics.

1. Introduction

The Traveling Salesman Problem (TSP) is one of the most
studied problems in the scientific literature and sometimes
is referred to as a mother of all combinatorial optimization
problems. It continues to be a testing ground for the develop-
ment of combinatorial optimization methods, while having
numerous practical applications in diverse areas, including
logistics, genetics, manufacturing, telecommunications, and
neuroscience [1]. Examples of real-world application domains
with problems that can be naturally formulated as the TSP
include VLSI design, vehicle routing, data clustering, and job-
shop scheduling [2]. The earliest reference to the TSP can be
found in the 1832 German handbook for travelling salesmen
[1]. The problem consists of finding the shortest possible tour
of a set of n cities, such that the tour starts from and ends at
the same city and visits each of the remaining cities precisely
once. The problem is simple to state but has proved to be
intractable and is included among the seven “millennium
prize problems” described by the Clay Mathematical Institute,

carrying a prize of one million US dollars for discovery of a
polynomial time solution method.

Meanwhile, research and practice in the TSP have focused
on heuristic methods that yield fast approximate solutions.
These heuristic methods tend to cluster into three main
groups: (i) tour construction heuristics, (ii) tour improve-
ment heuristics, and (iii) composite heuristics (which com-
bine elements of both tour construction and tour improve-
ment). A tour construction heuristic constructs the tour from
scratch, beginning with one city and iteratively expanding the
subtour by one city at a time. In contrast, a tour improvement
heuristic begins with a complete tour and makes one or more
rearrangements in an attempt to improve it. A vast space
of “composite” heuristics obscures the distinction between
these two categories by using elements of both; for example,
in the highly successful Lin-Kernighan heuristic [3], the
context is that of iterated tour improvement; however the
improvement process consists of repeated construction of full
solutions from partial solutions. The concord software code
[4], which has solved most problems in TSPLIB to optimality,



uses the Lin Kernighan heuristic to find out near optimal
tours and then applies various mathematical programming
methodologies to achieve optimality.

With no general polynomial time solution method yet
available, the quest for the development of new heuristics
for the TSP remains active. Tour construction heuristics have
played an important role in this quest, in particular because
they can form components of a wide range of approaches.
For example, they can be used to construct the starting
solutions for tour improvement heuristics [5], and they can
provide rough estimates of the cost of optimal solutions. In
turn, they therefore provide interesting analytical grounds
for the study of upper bounds on solution quality [6] and
provide material for empirical studies [7, 8] that attempt to
understand how optimal solutions differ from solutions that
arise from tour construction heuristics. Such studies lead to
better understanding of the structure of optimal solutions
of the TSP, a problem that has now remained centre of our
intellectual curiosity for centuries.

The basic procedure of tour construction heuristics can
be summarised as follows:

(1) Establishment of the initial small subtour (subtour
establishment rule).

(2) Selection of a city not present in the current subtour
(selection rule).

(3) Expansion of the current subtour to include the
selected city (expansion rule).

(4) Iterative application of steps (2) and (3) until a
complete tour is obtained.

In the repeated application of steps (2) and (3), the subtour
is “successively augmented” with the insertion of a new city;
this is why tour construction heuristics are sometimes also
called “successive augmentation” heuristics (see, e.g., [9]).
Different tour construction heuristics are characterised by
the specific methods they choose for each of the three steps:
the initial subtour establishment, selection, and expansion
rules. Expansion rules can be grouped into two main types:
insertion and addition. An insertion-based expansion rule
chooses where in the permutation to place the new city on
the basis of the cost of the resulting subtour, whereas an
addition-based expansion rule bases this decision on next-
hop distance. It has been reported that insertion heuristics
generally perform better than addition heuristics (see, e.g.,
[8]); we have therefore chosen to focus on insertion-based
expansion heuristics in this paper.

Three insertion heuristics are particularly prominent in
the literature, namely, nearest, farthest, and cheapest [10]. We
consider these three heuristics in the remainder of this work,
along with a further two that are less well known. The first
of these two is the “largest-cost insertion heuristic” (LIH)
[11], which sits naturally alongside the aforementioned three,
despite being rarely considered in the literature. The second is
the “max difference insertion heuristic” (MDIH). Tunnel and
Heath [12] presented “max difference” as a concept that could
be attached to any other heuristic; however we argue that,
with appropriate extensions that we later describe (resulting
in MDIH), it is more appropriately seen as a tour construction
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heuristic in itself, and in fact we demonstrate that it is a
particularly effective one.

The insertion heuristics under study can be divided
into two groups, that is, distance based insertion heuristics
(DBIH) and cost based insertion heuristics (CBIH). The
DBIH has city selection rule based on distance. This group
includes nearest (NIH) and farthest insertion heuristics
(FIH). The CBIH has city selection rule based on the
cost of insertion (see (5)). This group includes cheapest
(CIH), largest (LIH), and max difference insertion heuristics
(MDIH). The difference in selection rule brings about differ-
ence in worst case complexity of heuristics with DBIH having
worst case complexity of O(n*) and CBIH having complexity
of O(1”) (see Section 4). This paper proposes techniques to
curtail the complexity of CBIH to O(n?), effectively creating
faster versions of CBIH, that is, FCIH, FLIH, and FMDIH,
while addition of “F” denotes the word fast.

Previously it has been reported that farthest insertion
heuristic (FIH) generally performs best among the commu-
nity of insertion heuristics of O(1*) or lower time complexity
(see, e.g., [13]). However we will show that the performance
of FMDIH is consistently better than FIH on a wide spectrum
of popular datasets even though the complexity of FMDIH is
no greater than that of FIH.

The remainder of this paper is structured as follows. In
Section 2, we describe four of the five insertion heuristics
of interest: cheapest, largest, nearest, and farthest insertion.
In Section 3 we describe the previously overlooked “max
difference” concept and build on that to describe the “max
difference insertion” heuristic. In Section 4, we discuss design
and complexity issues for all five of the heuristics of interest,
and in Section 5 we then describe our complexity curtailing
techniques to produce accelerated and approximated variants
of cost based insertion heuristics. Section 6 provides sum-
maries of empirical results, and we conclude with a statement
of our main findings in Section 7. In Appendix, we then
show the empirical results for the farthest and max difference
insertion heuristics in finer detail.

2. Description of Tour Construction Heuristics

Below, we explain the design details of four of the five main
heuristics considered in this paper. Our elaboration of the
details follows the four-part structure given in Section 1 for
tour construction heuristics. Being insertion heuristics, the
most important elements are the city selection and subtour
expansion methods. The city selection method is also salient
for another reason, which is the fact that the name of a
tour construction heuristic (e.g., cheapest and farthest) tends
to reflect the nature of this rule. We come back to this
fact in Section 3, when we speculate about why the “max
difference” heuristic has been largely overlooked. The simple
“initial subtour establishment” rule is also described for
completeness and to facilitate replication of our experiments.
Meanwhile, it is worth noting an interesting aspect of the city
selection rule.

2.1. Initial Subtour Establishment. This is the first step in
any tour construction heuristic. In each of the standard
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forms of the cheapest, largest, nearest, and farthest insertion
heuristics, this initial “subtour” is simply a single city chosen
uniformly at random.

2.2. City Selection. Momentarily referring to the subtour
expansion rule (in Section 2.3), we note that two of the
heuristics of interest are based on cost, and two are based
on distance. Where subtour expansion is based on cost, the
city selection rule is as follows. Let 7 be the set of cities in the
subtour and let 7’ be the set of cities not in the subtour, while
city k € 7’ and cost(t, k) is the expansion cost of subtour 7 by
insertion of city k. Then, the city k is selected such that

for CIH

cost (7, k) = min {Vj et (cost(r, ]))} (1)
and for LIH

cost (7, k) = max {Vj et (cost(r, ]))} (2)

When subtour expansion is instead based on distance, the
city selection rule is different. Now, let d(h, k) be the distance
between cities k and ; the city k is selected such that

for NIH

d(hk)=min{Vje ', vier (d(ij))} (3)

and for FIH

dhk)=max{Vjer, vier (dGij)}. @

2.3. Subtour Expansion. As indicated in the introduction,
subtour expansion heuristics can be based around either
insertion or addition. We are only concerned with insertion-
based variants in this paper and so will confine our descrip-
tion accordingly. Let k ¢ 7' and (i,i') € 7, such that i
and i’ are a pair of consecutive cities in 7. Let d(i, k) be the
distance between the cities i and k. The subtour is expanded
by inserting the selected city k in the subtour 7 such that

cost (1, k)

®)
=min [V (i,i') e T {dG,k)+d (i, k) -d (i.i")}].

This step is applicable to each of CIH, LIH, FIH, and NIH.
From this point onwards, we refer to the edge (i,i') related
to cost(r, k) as the expansion cost edge. It should be noted
that the “largest-cost insertion” heuristic is not published yet,
however, an unpublished paper about it is present on the
internet [10]. We include it in our experiments, noting that it
is the logical counterpoint to CIH, in the same way that FIH is
related to NIH. It therefore completes a set of four heuristics
of which two are based on minimum and maximum distance
((3)-(4)) while two are based on minimum and maximum
expansion cost ((1)-(2)). We later find that LIH outperforms
both CIH and NIH, though apparently missing from the
literature.

3. The Max Difference
Insertion Heuristic (MDIH)

The idea behind the MDIH was introduced in a Master’s
thesis [12] a quarter of a century ago and no research paper
about this could be found in literature. The “max difference”
concept was presented by Tunnel and Heath as a way to
engineer new variants of existing heuristics (they applied it
to two versions of CIH and also to Stewart’s Algorithm [14]).
However, since (as we will see) the concept relates directly
to how the city selection step is done, from which the names
of tour construction heuristics seem invariably to be derived,
we would argue that it merits reinvention as a fully fledged
tour construction heuristic. Its performance in the form of
MDIH, as detailed in the next section, certainly supports this
view. Meanwhile we speculate that Tunnel and Heath may
not have put it forward as a standalone new heuristic, based
on the belief that it was the “insertion” (subtour expansion)
rather than the “max difference” (city selection) that was
salient in such categorization; in turn, this seems to have
led to its being unnoticed, despite its comparatively strong
performance among similar heuristics.

We now explain the key “city selection” step for MDIH.
First, we need some helper definitions. The first of these is
the function “nth minimum,” denoted as min, {Vv € U (v)}.
The meaning of “nth minimum? is that if all the values v in set
U are sorted from minimum to maximum then this function
represents the nth value in that list. Now, the “nth expansion
cost” of a subtour by the insertion of any city not in that
subtour is equal to the function min, {Vv € U (v)}, if the set
U is the set of all the expansion costs of that subtour on all of
its edges caused by the insertion of that city. Now let k € 7’
and (i,i') € 7, such thatiand i’ area pair of consecutive cities
in 7. Let d(i, k) be the distance between the cities i and k. Let
cost, (7, k) represent nth expansion cost of the tour 7 by the
insertion of city k and then by the definition

cost,, (1, k)

. .l . ./ .l (6)
= min [V(l,z ) €T {d(z,k) +d(z ,k) —d(z,1 )}] .

It should be noted that, apart from here, the exclusive use
of above function is made in Sections 5.2 and 5.3. From this
point onwards the edge (i, i') related to cost, (7, k) is referred
to as the nth expansion cost edge. In the city selection rule
of MDIH the city k is selected such that the cost difference
D(k) between its expansion cost and 2nd expansion cost is
maximum among all the cities not in the tour; that is,

D (k) = max [Vk e 7' {cost, (1,k) — cost (1, k)}] .

It should be noted that there is no difference between
cost, (7, k) and cost(z, k). The 3rd step (subtour expansion)
follows the same rule as represented by (5).

Finally to present MDIH as complete tour construction
heuristic in itself, we also explore five variants of the subtour
establishment rule (step (1)). Unlike the other insertion
heuristics considered in this paper, the city selection step of
MDIH requires an initial subtour containing at least three



cities. We therefore test five subtours establishment rules: (i)
a subtour of three randomly chosen cities; (ii) a subtour first
formed by two randomly chosen cities and then the third city
is chosen based on cheapest expansion; (iii) a subtour first
formed by two randomly chosen cities and then the third
city is chosen based on largest-cost expansion; (iv) a subtour
initially formed by one randomly chosen city and the next
two are chosen iteratively based on cheapest expansion; (v) a
subtour first formed by one randomly chosen city and then
the next two are iteratively chosen on the basis of largest-cost
expansion. Associated experiments and results are discussed
later in Section 6.

4. Design and Complexity Aspects of
Tour Construction Heuristics

Design of any heuristic consists of the design of data struc-
tures and algorithms for its efficient implementation. Our
implementation centres around two key data structures: a
doubly circular linked list representing the set of cities not
in the subtour and a singly circular linked list representing
the subtour. For set of cities not in the subtour, the doubly
circular linked list allows for a very simple and fast city
deletion operation. For the set of cities representing the
subtour g, single circular linked list is sufficient since only an
insertion operation is needed here. Initially, a doubly circular
linked list is prepared representing the set of cities not in
the subtour. From this list, cities are deleted one by one
and correspondingly inserted in the single circular linked list
representing the subtour of cities at each step. The procedure
continues until the doubly circular linked list becomes empty.

The design of step (2) (city selection) of DBIH, that is, the
nearest and farthest insertion heuristics ((3)-(4)), consists of
finding the nearest neighbour city present in the subtour for
each of the cities not in the subtour. To reduce computation
costs, the nearest neighbour city in the subtour for each city
not in the subtour is recorded in each iteration, and in the
next iteration the distance of only the recently added city is
compared with the distance of the nearest neighbour from
the previous iteration, thus updating the nearest neighbour
information for the current iteration. Therefore, FIH and NIH
can be implemented within time complexity of O(#*).

In the case of CBIH, that is, the cheapest and largest
insertion heuristics, the design of the city selection step ((1)
and (2)) consists of finding the expansion cost for insertion
into the subtour of each city not in the subtour. This implies
that the expansion cost needs to be computed for each city not
in the subtour; in turn, computation of the expansion requires
visits to each and every edge of the subtour. To make this
efficient, information should be preserved between iterations,
and in each new iteration the expansion cost of only newly
added edges is computed and compared with the expansion
costs of the previous iteration to update the expansion cost
information. However this shortcut may not be possible for
all the cities not in the subtour. This is because some of the
cities may have expansion costs in the previous iteration at
an edge which is broken in the current iteration. This means
the information about the expansion cost of those cities is no
longer valid since the relevant edge for the expansion does
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FIGURE 1: Subtour “abcdefa” showing principle of fast CTH.

not exist. For such cities, we need to compute the expansion
costs for newly formed edges and if this expansion cost is less
than or equal to their expansion cost in previous iterations,
then it means their new expansion cost has been found on
the newly formed edges. However, if not, we are forced to
recompute the expansion cost of these cities on all edges of
the current subtour to find out their new expansion cost.
Therefore worst case scenario complexity of CIH and LIH is
O(n*). The average complexity of CIH is reported as of the
order O(n? logn) [14].

To design the city selection step for MDIH, for each
city not in the subtour both the expansion cost and the 2nd
expansion cost need to be computed (7). However, both of
these quantities can be computed simultaneously in a single
scan of the subtour. To implement the step efficiently, these
quantities should be preserved between iterations for each
city not in the subtour, and in the new iteration only the
expansion cost and 2nd expansion cost of the recently added
edges are computed and compared with those of the previous
iteration to update them. However, just as was the case for
CIH and LIH, this shortcut is not always possible; for some
cities the expansion costs at all edges of the subtour need to
be computed. Therefore the worst case scenario complexity
of MDIH is same as that of cheapest and largest insertion
heuristics, that is, O(n*).

5. Complexity Curtailing Techniques for
Cost Based Insertion Heuristics

In this section, complexity curtailing techniques are intro-
duced to create fast and approximate variants of CIH, LIH,
and MDIH.

5.1. Design of Fast Cheapest Insertion Heuristic (FCIH). We
can devise a new but faster heuristic based on CIH on the
basis of simple geometrical principle. Consider the subtour
“abcdefa” in Figure 1.

In Figure 1 it can be seen that g, h, i are the cities yet to be
inserted. For each of these cities, the cheapest insertion edge is
ab. The final shape of the tour depends on the order in which
these three edges are inserted. If city i is inserted first, then
edge ab will be deleted and the edges ia and ib will be added.
In the new subtour aibcdefa it is now a genuine possibility
that the cheapest insertion for city h becomes edge af, since
edge ab is no longer present. In this case, we will need to
traverse the entire current subtour aibcdefa to determine the
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Procedure FCIH starts

Form empty Linked list 7
Choose an arbitrary city p € 7’
Delete p from the list 7’

Insert p in the empty list

while T’ is not empty do begin

do begin (Visit all hin ')
Let

6[3] = cost(t, h)

end if

while all 1 in 7' not visited
Delete g from the list 7’

end while
Procedure FCIH ends

Form circular linked list of cities 7’ not in the subtour

Initialize expansion costs of subtour 7 by insertion w.r.t. all ki in 7’ to very high value

8[1] = Cost of insertion of city h on 1st newly formed edge
8[2] = Cost of insertion of city h on 2nd newly formed edge

If expansion cost edge is broken in last iteration
then cost(t, h) = min[Vr € {1,2} (O[r])]
else cost(t, h) = min[Vr € {1,2,3} (8[r])]

Choose city q in 7' such that cost(t, g) = min{Vh € T (cost(t, h))}

Insert g in 7 on the edge connected to cost(, q)

PROCEDURE 1: Fast cheapest insertion heuristic (FCIH).

new cheapest insertion for h. However, if city g had been
inserted first instead of city i then edge ab is deleted and
new edges ga and gb are added. In this case most likely
situation becomes that h is inserted in the newly added edge
ga, requiring only inspection of the newly added edges ga
and gb.

In interim summary, if we encounter the scenario in
Figure 1 during the construction of a tour using CIH, then,
for the sake of computational efficiency, we would hope that
city i is not chosen as the first of the three to be inserted.
However, some reflection will reveal that the position of city
i in this scenario is unlikely in the first place. It is well known
that CIH grows tours “outwardly.” This means that the cities
not in the subtour lie outside the periphery of the subtour,
rather than inside it, such as we see with city i in Figure 1. By
exploiting this property, we can propose a variant of CIH that
only inspects the recently added edges in each iteration, even
for the cities whose earlier cheapest edge is broken. Though
no longer guaranteeing the “cheapest” insertion, intuition
suggests that this would lead to a favourable tradeoft, with
at most minor loss of quality set against significant benefit
in speed. In this “fast CIH” heuristic, the total number of
computations of expansion costs (now independent of details
of the dataset) is given below:

N, =2x{n-1)+n-2)+n-3)+---+3+2+1}

(8)
=n(n-1).

Meanwhile, since one expansion cost involves traversal of 3
edges, the total number of edges traversed for computation
of expansion costs is given by

N,=3n(n-1). 9)

The time complexity of “fast CIH” is therefore O(n?), which
is below the average complexity of CIH. Note that fast CIH
runs in the order O(n*) on any dataset (with best case,
worst case, and average case scenarios all equivalent). A full
procedural summary of this new “fast cheapest insertion”
heuristic (FCIH) is given in Procedure 1.

The first five lines of “Procedure 1” establish the initial
tour. Expansion of this initial tour is then implemented in the
remainder of the procedure. The inner loop in the remainder
is used to compute the expansion cost cost(z,h) for each
city h (the definition of this cost is given in (5)). However,
a short cut is used to compute this cost, by computing the
expansion cost on only two newly formed edges. There are
two potential scenarios associated with this shortcut: in the
first scenario, the edge related to the expansion cost of this city
in the previous iteration is broken, and in the second scenario
it has survived. In the first scenario, the new expansion cost
of the city h in the current iteration is assumed to be the
minimum of the two expansion costs of city h computed
on the two newly formed edges; in the second scenario, the
difference is that we also consider the expansion costs of city
h computed in the previous iteration. The condition “while all
hin 7’ not visited” ensures that the cost of all uninserted cities
is computed. The outer loop chooses the city for insertion that
has the lowest expansion cost.

5.2. Design of Fast Largest Insertion Heuristic (FLIH). In
contrast to CIH, tours constructed by LIH do not grow
“outwardly,” and the situation in Figure 1, where one of
the currently unvisited cities lies inside the periphery of
the current subtour, is a common occurrence. We cannot
therefore design a faster version of LIH on the same basis used
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Procedure FLIH starts

Form empty Linked list
Choose an arbitrary city p € 7'
Delete p from the list 7/

Insert p in the empty list T

while 7' is not empty do begin

do begin (Visit all hin 7')
Let

é

é

S[3] = cost(t, h)
8[4] = cost, (1, h)

while all h in 7' not visited
Delete g from the list 7’

end while
Procedure FLIH ends

Form circular linked list of cities 7’ not in the subtour

Initialize expansion costs and 2nd expansion costs w.r.t. all 1 in 7’ to very high value

[1] = Cost of insertion of city & on 1st newly formed edge
[2] = Cost of insertion of city h on 2nd newly formed edge

If expansion cost edge is broken in last iteration

then Vn € {1,2} (cost,(t,h) = min,[Vr € {1,2,4} (S[r])])
else if 2nd expansion cost edge is broken in last iteration

then Vn € {1,2} (cost, (7, h) = min, [Vr € {1,2,3} (§[r])])
else Vn € {1,2} (cost, (1, h) = min, [Vr € {1,2,3,4} (5[r])])
end if

Choose city q in 7' such that cost(t, q) = max{Vh € T (cost(t, h))}

Insert g in 7 on the edge connected to cost(, q)

PROCEDURE 2: Fast largest insertion heuristic (FLIH).

for FCIH. However, in the case of LIH a different approximate
assumption can be made which may help avoid computing
expansion costs on all edges of the current subtour. Referring
again to Figure 1: if city 7 is inserted in the subtour first, the
new subtour aibcdefa is formed, breaking the edge ab as a
result. Now in this case, as discussed earlier, city & might not
make its cheapest insertion with newly formed edges ai and
ib. However, there is a genuine possibility that city h makes its
2nd cheapest insertion with ai or ib. This leads us to the idea
of a fast version of LIH in which we approximate, rather than
guarantee, the cheapest insertion, while scanning at most four
edges in each iteration of the construction process. In detail,
in each iteration we only need to keep a record of the 2nd
expansion cost in addition to the (Ist) expansion cost for each
city not in the subtour. In turn, we find the 2nd expansion
cost of a city by scanning at most only four edges: the two
newly formed edges, along with the expansion cost edge and
2nd expansion cost edge of the previous iteration. If either of
the latter two were broken in the previous iteration, then we
can simply use the remaining three edges to (approximately)
update the expansion cost and 2nd expansion cost in the new
iteration. Again, the resulting heuristic, FLIH, has complexity
O(n*), independently of details of the dataset. A procedural
summary of fast largest insertion heuristic (FLIH) is given
in Procedure 2.

In common with Procedurel, the first five lines of
“Procedure 2” establish the initial subtour, while the remain-
der concern its expansion. In the inner loop, the expansion
cost cost(t,h) and second expansion cost cost,(r,h) are

calculated for each city h (see (5) and (6), resp.). The costs
are calculated on the basis of two newly formed edges, and
the detail of the procedure concerns three potential scenarios
that may arise. In the first scenario, the edge related to the
expansion cost of city 4 in the previous iteration is broken. In
the second, the edge related to the second expansion cost of
city h is broken; in the third scenario, none of the expansion
edges is broken. In the first scenario the new expansion cost
and second expansion cost of city h are taken to be the
two minimum expansion costs of three quantities: the two
expansion costs of city h computed on the two newly formed
edges and its second expansion cost in the last iteration. In
the second scenario, the three quantities are now the two
expansions costs computed on the two newly formed edges
(as before) and its expansion cost computed in the previous
iteration. Finally, in the third scenario, the two costs are taken
as the smallest two of four quantities: the two expansion
costs of city h computed on the two newly formed edges
and its expansion cost and second expansion cost computed
in the earlier iteration. The condition “while all h in 7’ not
visited” ensures that cost of all uninserted cities is computed.
The outer loop chooses the city for insertion that has largest
expansion cost.

5.3. Design of Fast Max Difference Insertion Heuristic
(FMDIH). Faster design of MDIH is possible on a similar
basis to that used in faster design of FLIH. A key difference
between LIH and FLIH is that, in each iteration, LIH
calculates only the expansion costs for the unvisited cities,
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Procedure FMDIH starts

Form empty Linked list 7

Setup initial subtour of three cities (p,, p,, p;) € T’
Delete (p,, p,, p;) from the list 7’

Insert (p,, p,, p;) in the empty list

while 7' is not empty do begin

do begin (Visit all hin 7')
Let

8[4] = costy (1, h)

]
]

S[3] = cost(t, h)
]

8[5] = costy (7, h)

while all h in 7' not visited
Delete g from the list 7’

end while
Procedure FMDIH ends

Form circular linked list of cities 7’ not in the subtour

Initialize expansion costs, 2nd expansion costs and 3rd expansion costs w.r.t. all k2 in 7’ to very high value

8[1] = Cost of insertion of city h on 1st newly formed edge
8[2] = Cost of insertion of city h on 2nd newly formed edge

If expansion cost edge is broken in last iteration

then Vn € {1,2,3} (cost, (7, h) = min,[Vr € {1,2,4,5} (8[r])])
else if 2nd expansion cost edge is broken in last iteration

then Vn € {1,2,3} (cost, (7, h) = min,[Vr € {1,2,3,5} (8[r])])
else if 3rd expansion cost edge is broken in last iteration

then Vn € {1,2,3} (cost, (7, h) = min, [Vr € {1,2,3,4} (S[r])])
else Vn € {1,2,3} (cost,(7,h) = min,[Vr € {1,2,3,4,5} (8[r])])
end if

Choose city g in 7' such that cost difference D(q) = max[Vh € T{cost(t, h) — cost,(7, h)}]

Insert g in 7 on the edge connected to cost(r, q)

PROCEDURE 3: Fast max difference insertion heuristic (FMDIH).

while FLIH (approximately) computes both the expansion
costs and the 2nd expansion costs. By going “one step further”
in this sense, FLIH facilitates much faster update of this
information, while sacrificing some exactness. To extend the
same principle to fast MDIH, we will go “one step further”
in the computations required for the city selection rule in
MDIH. In MDIH, city selection requires both the expansion
cost and the 2nd expansion cost for each city not in the
subtour (7). Therefore, we can design a fast MDIH that
additionally computes and records the 3rd expansion cost of
each city not in the subtour. This means we need to record
at most five edges per iteration: the two newly added, plus
the expansion, 2nd expansion, and 3rd expansion cost edges
from the previous iteration. As with FLIH, if one of the latter
three was broken in the current iteration, we will simply
rely on the others to provide approximations. A detailed
procedural summary of the fast max difference insertion
heuristic (FMDIH) is given in Procedure 3.

In “Procedure 3”, again, the initial subtour is computed
by the first five lines, and the remainder expands it. The
inner loop of the remainder is used to compute the expansion
cost cost(t, h), the second expansion cost cost,(t,h), and
the third expansion cost cost;(7,h) for each city h. The
definitions of these costs are given in (5) and (6). The details
of the inner loop achieve a shortcut in computing these
costs, which involves four scenarios. In the first scenario, the

edge related to the expansion cost of city & in the previous
iteration is broken. In the second scenario, the edge related
to the second expansion cost of city h is broken; in the
third scenario, the edge related to the third expansion cost
of city h is broken, and in the fourth scenario none of the
three expansion edges is broken. In the first scenario the
expansion cost, second expansion cost, and third expansion
cost are assumed to be the smallest three of four quantities:
the two expansion costs of city h computed on the two newly
formed edges and its second and third expansion costs in the
last iteration. In the second scenario they are taken as the
smallest three of a slightly changed set of four quantities: the
two expansion costs of city & computed on the two newly
formed edges and its expansion cost and third expansion cost
computed in the earlier iteration. In the third scenario, the
four quantities are now the two expansion costs of city h
computed on the two newly formed edges and its expansion
cost and second expansion cost from the earlier iteration.
In the fourth scenario, first, second, and third expansion
costs are taken as minimum costs of five quantities, that is,
two expansion costs on two newly formed edges and first,
second, and third expansion costs of the previous iteration.
The condition “while all h in 7’ not visited” ensures that cost
of all uninserted cities is computed. The outer loop chooses
the city for insertion that has maximum cost difference

(7).



6. Experiments and Results

This section consists of four subsections. In Section 6.1 we
report experiments that evaluate each of the five types of
initial subtour establishment rules described in Section 3
allowing us to “configure” and complete the new MDIH. Later
in Section 6.2 performance of MDIH is compared with all
baseline heuristics considered in this paper, that is, NIH,
FIH, CIH, and LIH. In Section 6.3 the cost based insertion
heuristics, that is, CIH, LIH, and MDIH, are compared with
their faster versions FCIH, FLIH, and FMDIH. Finally in
Section 6.4 the focus of our evaluation is to investigate
the potential for FMDIH as a new O(n?) heuristic for fast
approximate solution of TSPs, by comparing it with the
current best-regarded O(nz) heuristic, that is, FTH.

Experiments are conducted on 109 datasets, involving
from 14 to 15112 cities from a popular test bed [14]. For
each heuristic and problem instance, 30 simulations are run
independently, and we record the best, worst, and average
solutions, the standard deviation in solution quality, and
the average execution time. For the majority of experiments
we provide summary statistics in this section (volume of
results data precludes otherwise); however a full description
of results is provided in an appendix for the FMDIH and
FIH tests. The hardware used in the experiments was an
Intel® Core™ i3-2348 M CPU @ 2.30 GHz, 8.0 GB Memory;,
with 64 bit operating system. The heuristics were coded in
Microsoft Visual Studio C/C++.

6.1. Experiments to Finalize Initial Tour Establishment Step
of Max Difference Insertion Heuristic (MDIH). First of all,
in Table 1 we can see a summary of the results for MDIH
with the five different strategies for generating the initial
subtour. The heuristics named MDIH-1to MDIH-5 represent
MDIH using methods (i) to (v) as described in Section 3.
Each column in Table 1 refers to a certain statistical value
in relation to deviation from the known optimal solution.
The mathematical description of each of those values is given
below, where C, to Cs in (10)-(14), respectively, represent the
quantities in columns 1-5 in Table 1:

¢, = avgly fmin (vi €5 (3Y))}. "
¢, =avg] ) max(vi e (3)}, “”
C, = avg 2 favg=S (v} 2
C,=avg Y [avglS {y ~ave S (W)}, 9
¢, = avgl N favg=S (1) o

where
! = ((v] =v))/v)) x 100,
avg =) = (X5,

N means number of datasets which equals 109,

S means number of simulations which equals 30,
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V{ means cost of solution of a simulation i on a dataset
j7

v, means cost of optimal solution of a dataset j.

In Table 1, it can be seen that MDIH-5 has the best
average solution quality. Its average quality for worst solution
is also among the best, while its standard deviation is also
the best of the five. Only on one criterion, average of best
solution, its performance is worst among all. However, the
difference between the best and worst values for this statistic
is only 0.17%, and we propose that it can be ignored in favour
of choosing method (v) as the appropriate initial subtour
establishment rule for MDIH and FMDIH.

6.2. Experiments to Compare Performance of All Baseline
Heuristics NIH, CIH, LIH, FIH, and MDIH. Table 2 sum-
marises the results of the five tour construction heuristics
NIH, CIH, LIH, FIH, and MDIH, with MDIH configured
to use the fifth initial tour establishment rule. (The results
for MDIH are already in Table 1 but are copied into Table 2
for convenient comparison.) From the results it can be seen
that performance of MDIH is best among all heuristics on
all five criteria. For example, the average deviation from the
optimal solution for MDIH is 4.64%, and there is a relatively
sharp decline until we come to the second best on this
category, which is FIH at 7.27%. It seems that the performance
of FIH is second best (to MDIH) in all criteria except
standard deviation. Meanwhile, LIH seems to show the worst
performance among those examined, on all criteria except the
average deviation from the best solution. Closer inspection
of the full results, however, shows that the relatively poor
figures for LIH derive from a notable failure on only one
problem instance, BRG180. On this instance its best solution
is 260% (average + 22 standard deviations) away from the
optimal, and its worst solution is 2032.82% (average + 59
standard deviations) away from the optimal. This dataset
brings out the worst performance from each of the heuristics
and is clearly a particularly unusual example with a structure
that deviates from the vast majority of TSPs. In fact this
problem arises from a participant-comparison metric in a
cards-playing tournament, and performance of any heuristic
on it is therefore not reflective of performance on cases
where the matrix contents are more closely associated with
physical distances. We therefore decided that omitting this
dataset would lead to a more useful cross-comparison of the
heuristics, and the outcome of that for the remaining 108
datasets is given in Table 3; MDIH is preserved as the best
performer in all categories, while LIH is now third best.

In Figure 2 we attempt to visualise the performance of
these five heuristics as a function of the number of cities, with
number of cities on the horizontal axis, the vertical axis being
percent difference of average solution of 30 simulations from
the optimal solution. Since there is dense accumulation of
datasets up to 2000 cities, the picture is not very clear up to
this point. However after this point the pattern is quite clear. It
can be seen that heuristics follow two different patterns of rise
and falls of graph. One pattern is followed by MDIH, FIH, and
LIH, while CIH and NIH follow another pattern. The MDIH-
FIH-LIH pattern is dominated by MDIH, followed by FIH.
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TABLE 1: Results of MDIH with five different initial subtour establishment rules.

Average of best Average of worst Average of average Average of standard Average of execution
Name solution solution solution deviation time
% age % age % age % age seconds
(0) @ @ 3 (4) (5)
MDIH-1 4.56 12.12 7.37 1.78 0.45
MDIH-2 4.53 11.28 6.75 1.50 0.45
MDIH-3 4.47 9.09 6.50 112 0.46
MDIH-4 4.56 9.65 6.71 1.29 0.48
MDIH-5 4.64 8.59 6.34 0.99 0.46
TABLE 2: Results of 5 different tour construction heuristics.
Average of best Average of worst Average of average Average of standard Average of execution
Name solution solution solution deviation time
% age % age % age % age seconds
(0) @ ©) 3) “) (5)
NIH 17.91 25.74 21.17 2.55 0.62
CIH 14.27 18.90 16.64 1.27 0.48
LIH 11.18 34.48 23.69 5.93 0.42
FIH 7.27 14.96 10.16 1.99 0.63
MDIH 4.64 8.59 6.34 0.99 0.46
s s %
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FIGURE 2: Graph showing average solution performance of heuris-
tics.

While the CIH-NIH pattern is dominated by CIH. Notably,
we can see that MDIH is not bettered by any of the other
heuristics as we move beyond the 2000 city mark.

To make the picture clear for datasets up to the 2000
cities another graph in Figure 3 is presented. This graph
removes the results of datasets more than 2000 cities to make
picture clear for smaller problems. However even in this
graph picture is not clear up to 200 cities as there is a dense
accumulation of datasets up to this point. However picture
beyond 200 mark is quiet clear. Again seemingly there are two
patterns, one followed by CIH-NIH and another followed by
MDIH-FIH-LIH. Former is dominated by CIH and latter is
dominated by MDIH. In overall picture mostly MDIH graph
dominates all the other graphs.

6.3. Experiments to Compare Performance of Cost Based
Insertion Heuristics with Their Faster Counterparts. We turn

Number of cities

—— MDIH CIH
rrrrrr FIH -—-— NIH
LIH

FIGURE 3: Graph showing average solution performance of heuris-
tics up to 2000 city datasets.

now to the fast approximate variants of these heuristics.
Table 4 shows comparative results for the standard and
fast/approximate variants of CIH, LIH, and MDIH. From
the table it can be seen that there are statistically only small
differences between the standard and fast variants across all
the four criteria. The largest difference between any standard
and fast variant occurs in the case of CIH and is in favour
of the faster method, with FCIH solution quality on average
deviating 13.99% from optimal, compared with 14.26% for
CIH. In all cases, the fast method naturally provides a
significant advantage in execution time, with a reduction of
70-80% from the execution time of the standard variant.

We also performed statistical tests (Student’s t-test) to
investigate whether or not there was any significant differ-
ence in solution quality between the standard and faster
versions. While comparing results between CIH and FCIH
based on a confidence level of 95%, it was found that CIH
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TABLE 3: Results of 5 different tour construction heuristics after removing noise (dataset BRG180).
Average of best Average of worst Average of average Average of standard Average of execution
Name solution solution solution deviation time
% age % age % age % age seconds

(0) @ 2) 3) “) (5)

NIH 17.78 22.37 20.10 1.25 0.63

CIH 14.26 18.82 16.61 1.25 0.48

LIH 8.88 15.97 12.01 1.74 0.42

FIH 6.84 12.89 9.51 1.52 0.64

MDIH 4.35 8.18 6.00 0.95 0.46

TaBLE 4: Comparison of standard heuristics with their faster designs.

Average of best Average of worst

Average of average Average of standard ~ Average of execution

Name Category solution solution solution deviation time
% age % age % age % age seconds
(0a) (0b) 1) 2) 3) 4) (5)
CIH Standard 14.26 18.82 16.61 1.25 0.48
Fast 13.99 18.84 16.46 1.29 0.1
LIH Standard 8.88 15.97 12.01 1.74 0.42
Fast 9.02 16.19 12.24 1.79 0.11
MDIH Standard 4.35 8.18 6.00 0.95 0.46
Fast 4.3 8.27 6.02 0.99 0.14

performed better than FCIH in 17 out of 108 datasets, while
FCIH performed better than CIH on 10 out of 108 datasets.
Similarly, while comparing results between LIH and FLIH it
was found that LIH performed better than FLIH on only 2
out of 108 datasets while FLIH performed better than LIH
in 18 out of 108 datasets. While comparing results between
MDIH and FMDIH it was found that MDIH performed
better than FMDIH in only one out of 108 datasets while
FMDIH performed better than MDIH in 3 out 0f 108 datasets.
From these results it is clear that the new heuristics detailed
in this paper are competitive in solution quality with the
original slower versions; moreover, when there is a statistical
difference in quality, this is more often than not (with the
exception of CIH versus FCIH) in favour of the faster
heuristic. We would conclude that the faster heuristics are
generally worth applying to save computational time, with the
risk to jeopardise solution quality being balanced by a similar
chance of improved solution quality.

We note that a detailed performance comparison among
the faster designs is not necessary, since the performance
characteristics of the faster designs clearly echo those of
the standard designs; therefore comparison among faster
versions of heuristics reflects the same comparative analysis
that was done among standard versions in Table 3.

6.4. Experiments to Compare Performance of FMDIH and
FIH. Since MDIH has turned out to be best among all
heuristics in the above experiments and its faster version

FMDIH has provided same solution quality equal to MDIH
with reduced time complexity equal to FIH, this shows a
leap forward in the achievement of solution quality with time
complexity of O(#*). To test whether or not this advantage is
statistically significant we have given comparison of FMDIH
with FIH in Appendix with full detail and commentary along
with statistical tests. In terms of the columns in Tables 2-4,
we simply note here that the FMDIH summary values are,
in order of the columns, as follows: 4.30, 8.27, 6.02, 0.99, and
0.14. These are to be compared with the FIH summary values
from Table 3, which are, respectively, 6.84, 12.89, 9.5, 1.52,
and 0.64. Here however we visualise the relative performance
of FMDIH and FIH (previously the best reported O(1*)
tour construction heuristic) with Figure 4, again using the
same axes as in Figures 2-3. It can be seen in Figure 4
that FMDIH is consistently better than FIH throughout the
dataset spectrum, with the advantage even apparent in the
dense area of problem instances smaller than 2000 cities.

7. Conclusions and Future Work

In this paper a previously unpublished tour construction
heuristic, namely, the largest insertion heuristic (LIH), is
introduced. It is shown that LIH completes the set of well-
known popular tour insertion heuristics (cheapest, nearest,
and farthest) and seems to produce better solution quality
than cheapest and nearest insertion heuristics on the great
majority of datasets. Furthermore, this paper also introduces
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FIGURE 4: Graph showing performance comparison between
FMDIH and FIH.

max difference insertion heuristic (MDIH). It is based on a
max difference concept previously introduced in [11] as a way
to engineer variants of other heuristics; however in this paper
we have argued that, following its “completion” by defining an
initial subtour establishment method, it merits “first-class”
status as a heuristic in itself, alongside others of the same
type. The resulting heuristic MDIH produced better solutions
on average than all the other baseline heuristics considered
in this paper. Furthermore, we have introduced complexity
curtailing techniques that reduced worst case complexity of
cost based insertion heuristics, that is, CIH, LIH, and MDIH,
from O(®) to O(?), resulting in the development of their
faster versions FCIH, FLIH, and FMDIH. It is shown that the
faster versions do not statistically produce inferior solutions
but reduce computational cost up to 80%. The development
of FMDIH proved a leap forward in production of quality
solutions among community of O(n*) complexity heuristics.
This is because it has performed 3.5% on average better than
FIH on a wide spectrum of popular datasets. We believe
this is the first time that FIH has been demonstrated to be
outperformed by an O(n*) heuristic on a wide spectrum of
popular test bed. Our immediate future work in this direction
is inspired by complexity curtailing techniques. What if these
techniques are introduced in other higher order heuristics to
reduce their complexity. We believe more interesting results
are yet to come.

Appendix
Comparison between FIH and FMDIH

This appendix presents detailed dataset-wise comparison
between two tour construction heuristics, that is, farthest
insertion heuristic (FIH) and fast max difference insertion
heuristic (FMDIH). Both heuristics have complexity of the
order O(1*). However FMDIH designed in this paper has
shown consistently better performance in the wide spectrum
of datasets in the popular test bed. In Table 5 column-2 shows
the results of FIH and column-3 shows the results of FMDIH.
Column (a) shows best value among 30 simulations and its
percentage difference from the optimal value. Column (b)
shows worst value among 30 simulations and its percentage
difference from the optimal value. Column (c) shows average

1

value of 30 simulations and its percentage difference from the
optimal value. Column (d) shows standard deviation of 30
simulations and its value as a percentage of the optimal value.
Column (e) shows average execution time of 30 simulations.
The datasets are arranged according to size from smallest
(14 cities) to largest (15112 cities). From the column (a) of
the table it can be seen that FMDIH has obtained optimal
solution in 9 datasets against 7 datasets by FIH. FMDIH has
obtained better solution than FIH in 94 out of 108 datasets
and in 6 datasets they have solution of same quality. This
means that FMDIH has worse solution than FIH in only
8 datasets out of 108 datasets. From the column (b) of the
table it can be seen that FMDIH has worse solutions of better
quality than FIH in 105 out of 108 datasets. In two datasets
they have worse solutions of equal quality. It means only
in one dataset FIH has worse solution better than FMDIH.
From column (c) of the table it can be seen that average
solution of FMDIH is better in 105 out of 108 datasets. This
means FMDIH is beaten only in 3 datasets in terms of average
solution. From the column (d) it can be seen that FMDIH has
better standard deviation than FIH in 96 out of 108 datasets.
This means only on 12 datasets FMDIH is worse in standard
deviation than FIH. The story does not stop here; there are
more interesting comparisons. By comparing column 3C with
column 2a it can be seen that FMDIH has obtained average
solutions in 69 out of 108 datasets that are better than the
best solutions of FIH. However FIH has not attained this
feet on any of the datasets. By comparing column 3b with
2c it can be seen that worst solutions of FMDIH are better
than the average solution of FIH in 79 out of 108 datasets,
while in none of the datasets FIH has attained this feet. Now
most interesting result can be seen by comparing column 3b
with column 2a. The worst solutions obtained by FMDIH
in 30 simulations are better than the best solutions obtained
by FIH in 30 simulations in 28 out of 108 datasets (>25%).
If results are looked at more carefully then it can be seen
that these 28 datasets start from RD400 dataset. There are
only 49 datasets that are of the size 400 cities and above.
In 28 out of these 49 datasets (>50%) worst solutions of
FMDIH are better than the best solutions of FIH. If dataset
spectrum is squeezed to larger band of 1000 cities and above
then it is very surprising to see FMDIH has attained worse
solutions better than the best solutions of FIH in 25 out of
31 datasets (>80%). Finally in all the 8 datasets of greater
than 4000 cities worst solutions of FMDIH are better than
the best solutions of FIH in 30 simulations. These results
show that advantage to FMDIH improves with increase in
size of the dataset and this clearly put performance of FMDIH
much ahead of FIH. Student’s ¢-test was conducted which
confirmed that the output of FMDIH is better than FIH up to
the 99.5% of confidence level on the 100 datasets. On another
dataset FMDIH had better results up to 95% of confidence
level, where FIH did not prove any statistical supremacy on
any of the 108 datasets.
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