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Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be an undirected simple connected graph. A network is usually represented by an undirected simple
graph where vertices represent processors and edges represent links between processors. Finding the vulnerability values of
communication networks modeled by graphs is important for network designers. The vulnerability value of a communication
network shows the resistance of the network after the disruption of some centers or connection lines until a communication
breakdown. The domination number and its variations are the most important vulnerability parameters for network vulnerability.
Some variations of dominationnumbers are the 2-dominationnumber, the bondage number, the reinforcement number, the average
lower domination number, the average lower 2-domination number, and so forth. In this paper, we study the vulnerability of cycles
and related graphs, namely, fans, 𝑘-pyramids, and 𝑛-gon books, via domination parameters.Then, exact solutions of the domination
parameters are obtained for the above-mentioned graphs.

1. Introduction

Graph theory has become one of the most powerful math-
ematical tools in the analysis and study of the architecture
of a network. Networks are important structures and appear
in many different applications and settings. The study of
networks has become an important area of multidisciplinary
research involving computer science, mathematics, chem-
istry, social sciences, informatics, and other theoretical and
applied sciences [1–3].

It is known that communication systems are often
exposed to failures and attacks. So robustness of the net-
work topology is a key aspect in the design of computer
networks. The stability of a communication network, com-
posed of processing nodes and communication links, is of
prime importance to network designers. As the network
begins losing links or nodes, eventually there is a loss
in its effectiveness [4]. In the literature, various measures
were defined to measure the robustness of network and a
variety of graph theoretic parameters have been used to
derive formulas to calculate network vulnerability. Graph
vulnerability relates to the study of graph when some of

its elements (vertices or edges) are removed. The measures
of graph vulnerability are usually invariants that measure
how the deletion of one or more network elements changes
properties of the network [5, 6]. The best known measure
of reliability of a graph is its connectivity. The vertex (edge)
connectivity is defined to be theminimumnumber of vertices
(edges) whose deletion results in a disconnected or trivial
graph [7]. Then the toughness [8], the integrity [9], the
domination number [10, 11], the bondage number [12, 13],
the 2-domination number [14], and the 2-bondage number
[15] have been defined. Moreover, there are many graph
theoretical parameters depending upon local damage for the
graphs like the average lower independence number [16, 17],
the average lower domination number [17, 18], the average
connectivity [19], the average lower connectivity [20] and the
average lower bondage number [6]. The average parameters
have been found to bemore useful in some circumstance than
the corresponding measures based on worst-case situation
[6].

Anaturalway tomodel the topology of a communications
network is as a graph consisting of vertices and edges. In
this paper, we consider simple finite undirected graphs by
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ignoring any variation in the type of edges. Let 𝐺 =

(𝑉(𝐺), 𝐸(𝐺)) be a simple undirected graph of order 𝑛. We
begin by recalling some standard definitions that we need
throughout this paper. For any vertex V ∈ 𝑉(𝐺), the open
neighborhood of V is 𝑁

𝐺
(V) = {𝑢 ∈ 𝑉 | 𝑢V ∈ 𝐸(𝐺)} and

closed neighborhood of V is 𝑁
𝐺
[V] = 𝑁

𝐺
(V) ∪ {V}. The degree

of vertex V in𝐺 is denoted by 𝑑𝐺(V), that is, the size of its open
neighborhood. Themaximum degree of 𝐺 is max{𝑑𝐺(V) | V ∈

𝑉(𝐺)} and the minimum degree of 𝐺 is min{𝑑𝐺(V) | V ∈

𝑉(𝐺)}.Themaximum andminimumdegrees of a graph𝐺 are
denoted by Δ(𝐺) and 𝛿(𝐺), respectively [11]. The graph 𝐺 is
called r-regular graph if 𝑑𝐺(V) = 𝑟 for every vertex V ∈ 𝑉(𝐺).
The vertex V is called isolated vertex if 𝑑𝐺(V) = 0. The null
graph on 𝑛-vertices consists of 𝑛-isolated vertices with no
edges. The join of graphs 𝐺 and 𝐻, denoted by 𝐺 ∨ 𝐻, is
obtained from the disjoint union 𝐺 + 𝐻 by adding the edges
{V𝑤 | V ∈ 𝑉(𝐺), 𝑤 ∈ 𝑉(𝐻)} [21]. We will use ⌊𝑥⌋ and ⌈𝑥⌉ for
the largest integer not larger than 𝑥 and smallest integer not
less than 𝑥, respectively.

Cycles and various related graphs have been studied for
many reasons. Fans, wheels, pyramids, bipyramids, and 𝑛-
cycle books are among such graphs. The definitions of these
graphs will be given in Sections 3.2, 3.3, and 3.4.

Our aim in this paper is to consider the computing of the
average lower domination number (ALDN) and the average
lower 2-domination number (AL2DN) of some networks
including cycles. In Section 2, definitions and well-known
basic results have been given for ALDN and AL2DN, respec-
tively. In Section 3, ALDN and AL2DN of some networks
including cycles, namely, fans, 𝑘-pyramids, and 𝑛-gon books,
have been determined.

2. The Average Lower Domination Number
Parameters and Basic Results

A set 𝑆 ⊆ 𝑉(𝐺) is a dominating set if every vertex in𝑉(𝐺)−𝑆 is
adjacent to at least one vertex in 𝑆. The minimum cardinality
taken over all dominating sets of 𝐺 is called the domination
number of 𝐺 and it is denoted by 𝛾(𝐺) [10]. Moreover, a 2-
dominating set of a graph 𝐺 is a set 𝐷 ⊆ 𝑉(𝐺) of vertices
of graph 𝐺 such that every vertex of 𝑉(𝐺) − 𝐷 has at least
two neighbors in 𝐷. The 2-domination number of a graph
𝐺, denoted by 𝛾

2
(𝐺), is the minimum cardinality of a 2-

dominating set of the graph 𝐺 [2, 11, 14].
In 2004, Henning introduced the concept of average

domination and average independence [17]. The average
lower domination number of a graph 𝐺, denoted by 𝛾av(𝐺),
is defined as 𝛾av(𝐺) = (1/|𝑉(𝐺)|) ∑V∈𝑉(𝐺) 𝛾V(𝐺), where the
lower domination number, denoted by 𝛾V(𝐺), is the minimum
cardinality of a dominating set of the graph 𝐺 that contains
the vertex V [17, 18, 22]. In [23], the average lower 2-
domination number of a graph 𝐺 was defined. The AL2DN
is defined by 𝛾2av(𝐺) = (1/|𝑉(𝐺)|) ∑V∈𝑉(𝐺) 𝛾2V(𝐺), where the
lower 2-domination number, denoted by 𝛾2V(𝐺), of the graph
𝐺 relative to V is the minimum cardinality of 2-dominating
set in the graph 𝐺 that contains the vertex V. Moreover,
Turaci showed that AL2DN is more sensitive than other
vulnerability parameters, namely, connectivity, domination
number, ALDN, and 2-domination number, in [23].

Theorem 1 (see [17]). For any graph G of order 𝑛 with
domination number 𝛾(𝐺), 𝛾

𝑎V(𝐺) ≤ (𝛾(𝐺) + 1) − 𝛾(𝐺)/𝑛, with
equality if and only if G has a unique 𝛾(𝐺)-set.

Theorem2 (see [17]). If𝐾
1,𝑛−1

is a star graph of order 𝑛, where
𝑛 ≥ 3, then 𝛾

𝑎V(𝐾1,𝑛−1) = (2𝑛 − 1)/𝑛.

Theorem 3 (see [17]). If 𝑃
𝑛
is a path graph of order 𝑛, then

𝛾
𝑎V (𝑃𝑛) =

{{

{{

{

𝑛 + 2

3
−

2

3𝑛
, 𝑖𝑓 𝑛 ≡ 2 (mod 3) ;

𝑛 + 2

3
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(1)

Theorem4 (see [17]). If𝐾
𝑛
is a complete graph of order 𝑛, then

𝛾
𝑎V(𝐾𝑛) = 1.

Observation 5. If 𝑊
𝑛
is a wheel graph of order 𝑛 + 1, then

𝛾av(𝑊𝑛) = (2𝑛 + 1)/(𝑛 + 1).

Theorem 6 (see [15]). If 𝐾
𝑛
is a complete graph of order 𝑛,

where 𝑛 ≥ 2, then 𝛾
2
(𝐾
𝑛
) = 2.

Theorem 7 (see [15]). If 𝑃
𝑛
is a path graph of order 𝑛, then

𝛾
2
(𝑃
𝑛
) = ⌊𝑛/2⌋ + 1.

Theorem 8 (see [15]). If 𝐶
𝑛
is a cycle graph of order 𝑛, where

𝑛 ≥ 3, 𝛾
2
(𝐶
𝑛
) = ⌊(𝑛 + 1)/2⌋.

Theorem 9 (see [15]). If 𝑊
𝑛
is a wheel graph of order 𝑛 + 1,

where 𝑛 ≥ 5,

𝛾
2
(𝑊
𝑛
) =

{{

{{

{

2, 𝑖𝑓 𝑛 = 3, 4;

1 + ⌈
𝑛

3
⌉ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(2)

Theorem 10 (see [23]). Let 𝐺 be any connected graph of order
𝑛. If 𝛾2(𝐺)-set is unique, then

𝛾
2𝑎V (𝐺) = (𝛾

2 (𝐺) + 1) −
𝛾
2 (𝐺)

𝑛
. (3)

Theorem 11 (see [23]). Let 𝐺 be any connected graph of order
𝑛. If 𝛿(𝐺) ≥ 2, then

𝛾2 (𝐺) ≤ 𝛾2𝑎V (𝐺) ≤ (𝛾2 (𝐺) + 1) −
𝛾
2 (𝐺)

𝑛
. (4)

Theorem 12 (see [23]). Let 𝐺 be any connected graph of order
𝑛, where 𝑛 ≥ 2. Then,

2 ≤ 𝛾2𝑎V (𝐺) ≤ 𝑛 − 1 +
1

𝑛
. (5)

Theorem 13 (see [23]). Let 𝐺 and 𝐻 be two connected graphs
of order 𝑛 and 𝑚, respectively. If 𝑛 ≥ 2 and 𝑚 ≥ 2, then
𝛾2𝑎V(𝐺) + 𝛾2𝑎V(𝐻) ≥ 𝛾2𝑎V(𝐺 + 𝐻).

Theorem 14 (see [23]). Let 𝑇 be any connected tree of order 𝑛.
If𝑇 has s support vertices and (𝑛−𝑠) leaf vertices, then 𝛾2𝑎V(𝑇) ≥

𝑛 − 𝑠 + 𝑠/𝑛.
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Theorem 15 (see [23]). If 𝑃
𝑛
is a path graph of order 𝑛, then

𝛾
2𝑎V (𝑃𝑛) =

{{{

{{{

{

⌊
𝑛

2
⌋ + 2 −

⌊𝑛/2⌋ + 1

𝑛
, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑;

⌊
𝑛

2
⌋ + 1, 𝑖𝑓 𝑛 is even.

(6)

Theorem 16 (see [23]). If 𝑊𝑛 is a wheel graph of order 𝑛 + 1,
where 𝑛 ≥ 5, then

𝛾
2𝑎V (𝑊𝑛) = 1 + ⌈

𝑛

3
⌉ . (7)

Theorem 17 (see [23]). If 𝐾
𝑛
is a complete graph of order 𝑛,

where 𝑛 ≥ 2, then 𝛾
2𝑎V(𝐾𝑛) = 2.

Theorem 18 (see [23]). If 𝐾
1,𝑛−1

is a star graph of order 𝑛,
where 𝑛 ≥ 3, then

𝛾
2𝑎V (𝐾1,𝑛−1) = 𝑛 − 1 +

1

𝑛
. (8)

3. Calculation of ALDN and AL2DN of
Cycles and Related Networks

3.1. Cycles

Theorem 19 (see [17]). If 𝐶
𝑛
is a cycle graph of order 𝑛, then

𝛾
𝑎V(𝐶𝑛) = 2.

Theorem 20 (see [23]). If 𝐶
𝑛
is a cycle graph of order 𝑛, then

𝛾
2𝑎V(𝐶𝑛) = ⌊(𝑛 + 1)/2⌋.

3.2. Fans

Definition 21 (see [21]). If one joins a vertex of 𝐶
𝑛
(𝑛 ≥ 3)

to all other vertices, the resulting graph is called a fan (also
known as a shell), denoted by 𝐹𝑛. For 𝑛 = 3, we notice that
𝐹3 ≡ 𝐶3. Fans can be described by the join operation 𝐹𝑛 =

𝑃𝑛−1 + V, where 𝑛 ≥ 3. There is a vertex with (𝑛 − 1)-degree,
namely, 𝑢, in the graph 𝐹𝑛.

Theorem 22. Let 𝐹𝑛 be a fan of order 𝑛 and 𝑛 ≥ 5; then
𝛾2(𝐹𝑛) = ⌈(𝑛 + 2)/3⌉.

Proof. The 2-dominating set is formed by two ways in 𝐹
𝑛.

Case 1. Let 𝐷
1 be a 2-dominating set and let 𝐷1 include the

vertex 𝑢. So, the vertex 𝑢 dominates vertices of 𝑉(𝐹𝑛) − {𝑢}

by once. Clearly, these (𝑛 − 1)-vertices which are dominated
once form the path 𝑃𝑛−1. Due to the fact that 𝛾(𝑃𝑛−1) = ⌈(𝑛 −

1)/3⌉, these ⌈(𝑛 − 1)/3⌉ vertices must be taken to the set 𝐷
1
.

So, |𝐷
1
| = 1 + ⌈(𝑛 − 1)/3⌉ = ⌈(𝑛 + 2)/3⌉ is obtained.

Case 2. Let 𝐷
2
be a 2-dominating set and let 𝐷

2
not include

vertex 𝑢. So, the set𝐷
2
must include vertices of subgraph path

𝑃
𝑛−1

. By Theorem 7, we have |𝐷
2
| = 1 + ⌈(𝑛 − 1)/2⌉ = ⌈(𝑛 +

1)/2⌉.

By Cases 1 and 2, |𝐷
2
| ≥ |𝐷

1
| is obtained for 𝑛 ≥ 5. As a

result, we get 𝛾
2
(𝐹
𝑛
) = ⌈(𝑛 + 2)/3⌉.

Theorem 23. Let 𝐹
𝑛
be a fan of order 𝑛 and 𝑛 ≥ 3; then

𝛾
𝑎V(𝐹𝑛) = (2𝑛 − 1)/𝑛.

Proof. By the definition of domination number and the
structure of𝐹

𝑛
, the dominating set of𝐹

𝑛
is unique and 𝛾(𝐹

𝑛
) =

1. ByTheorem 1, we get 𝛾
𝑎V(𝐹𝑛) = 1+1−1/𝑛 = (2𝑛−1)/𝑛.

Theorem 24. Let 𝐹
𝑛
be a fan of order 𝑛 and 𝑛 ≥ 5; then

𝛾2𝑎V (𝐹𝑛) =
1

𝑛
[⌈

(𝑛 + 2)

3
⌉ + (𝑛 − 1) (𝛾𝑎V (𝑃𝑛−1) + 1)] . (9)

Proof. When 𝛾
2V(𝐹𝑛) is calculated for all vertices in 𝐹

𝑛
, the

vertices in three cases should be examined.

Case 1. For the vertex 𝑢, the 2-dominating set must include
the vertex 𝑢 byTheorem 22. The rest of the proof of this case
is similar to Case 1 of Theorem 22. So, we get 𝛾

2𝑢
(𝐹
𝑛
) = 1 +

⌈(𝑛 − 1)/3⌉ = ⌈(𝑛 + 2)/3⌉.

Case 2. For all vertices V
𝑖
∈ 𝑉(𝐹

𝑛
)−{𝑢}which forms the graph

𝑃
𝑛−1. We know that ∑

𝑛−1

𝑖=1
𝛾V𝑖(𝐹𝑛) = (𝑛 − 1)𝛾av(𝑃𝑛−1) by the

definition of ALDN. Furthermore, we know that the vertex
𝑢 must be in the 2-dominating set. So, we have ∑

𝑛−1

𝑖=1
𝛾
2V𝑖 =

(𝑛 − 1)𝛾av(𝑃𝑛−1) + (𝑛 − 1) for the sum of the lower 2-
domination number of all vertices V𝑖 ∈ 𝑉(𝐹𝑛)−{𝑢}. As a result,
∑
𝑛−1

𝑖=1
𝛾
2V𝑖(𝐹𝑛) = (𝑛 − 1)(𝛾av(𝑃𝑛−1) + 1) is obtained.

By Cases 1 and 2, we get

𝛾
2av (𝐹𝑛) =

1

𝑉 (𝐹
𝑛
)


(𝛾
2𝑢

(𝐹
𝑛
) +

𝑛−1

∑

𝑖=1

𝛾
2V𝑖 (𝐹𝑛))

=
1

𝑛
[⌈

(𝑛 + 2)

3
⌉ + (𝑛 − 1) (𝛾av (𝑃𝑛−1) + 1)] .

(10)

Remark 25. Let 𝐹
𝑛
be a fan of order 𝑛 and 𝑛 ≥ 5; then

𝛾2av (𝐹𝑛)

=

{{{{

{{{{

{

(𝑛
2
+ 3𝑛 − 3) /3 + ⌈(𝑛 − 1) /3⌉

𝑛
, if 𝑛 ≡ 0 (mod 3) ;

(𝑛
2
+ 3𝑛 − 1) /3 + ⌈(𝑛 − 1) /3⌉

𝑛
, otherwise.

(11)

Proof. This is clear fromTheorems 3 and 24.

3.3. 𝑘-Pyramids

Definition 26 (see [21]). The join graph 𝐶
𝑛
∨ 𝑁
𝑘
(𝑛 ≥ 3, 𝑘 ≥

1), where𝑁
𝑘
is the null graph of order 𝑘, is called a 𝑘-pyramid

and is denoted by 𝑘𝑃(𝑛). The 2-pyramid 𝐶
𝑛
∨ 𝑁
2
is called

bipyramid and is denoted by BP(𝑛). The 1-pyramid𝐶
𝑛
∨𝑁
1
is

the wheel graph 𝑊
𝑛
.
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Theorem 27. Let 𝐵𝑃(𝑛) be a bipyramid of order 𝑛+ 2 and 𝑛 ≥

7; then 𝛾(𝐵𝑃(𝑛)) = 2.

Proof. Because Δ(BP(𝑛)) < 𝑛 + 1, the domination number
𝛾(BP(𝑛)) is greater than 1. Let V

1
and V

2
be vertices whose

degrees are 𝑛, and let𝐷 be a dominating set. The dominating
set 𝐷 is formed by 3 cases.

Case 1. Let V
1
, V
2
∈ 𝐷. Due to 𝑁BP(𝑛)[V1, V2] = 𝑉(BP(𝑛)), the

set 𝐷 is a dominating set.

Case 2. Let V
1
∈ 𝐷 and let 𝑢

𝑖
be any vertex of 𝐶

𝑛
. Due to the

fact that 𝑁BP(𝑛)[V1, 𝑢𝑖] = 𝑉(BP(𝑛)), the set 𝐷 is a dominating
set.

Case 3. Let V1, V2 ∉ 𝐷. Then, the set 𝐷 includes only vertices
of 𝐶𝑛. So, we have |𝐷| ≥ ⌈𝑛/3⌉.

By Cases 1, 2, and 3, 𝛾(BP(𝑛)) = 2 is obtained.

Theorem 28. Let 𝐵𝑃(𝑛) be a bipyramid of order 𝑛 + 2 and
𝑛 ≥ 7; then

𝛾
𝑎V (𝐵𝑃 (𝑛)) = 2. (12)

Proof. When 𝛾V(BP(𝑛)) is calculated for all vertices in the
graph BP(𝑛), the vertices in two cases should be examined.
Let V1 and V2 be vertices whose degrees are 𝑛.

Case 1. For the vertices V
1 and V2, we know that the set

{V1, V2} dominates all vertices of 𝑉(BP(𝑛)) − {V1, V2}. So, we
get 𝛾V1(BP(𝑛)) = 𝛾V2(BP(𝑛)) = 2.

Case 2. For all vertices V
𝑖
∈ 𝑉(BP(𝑛)) − {V

1
, V
2
}, by the defini-

tion of lower domination number and Case 2 ofTheorem 27,
we have 𝛾V𝑖(BP(𝑛)) = 2 for all vertices V

𝑖
∈ 𝑉(BP(𝑛))−{V

1
, V
2
}.

By Cases 1 and 2, we get 𝛾av(BP(𝑛)) = 2.

Theorem 29. Let 𝐵𝑃(𝑛) be a bipyramid of order 𝑛 + 2 and
𝑛 ≥ 3; then 𝛾

2
(𝐵𝑃(𝑛)) = 2. Furthermore, the 2-dominating set

of 𝐵𝑃(𝑛) is unique.

Proof. Let 𝑢
𝑖
be the vertices of 𝐶

𝑛
, where 1 ≤ 𝑖 ≤ 𝑛, and let V

𝑗

be vertices of the graph𝐾2, where 1 ≤ 𝑗 ≤ 2.There are 3 cases
while forming 2-dominating set.

Case 1. Let 𝐷1 be a 2-dominating set of BP(𝑛). Furthermore,
the set𝐷1 contains vertices V1 and V2. Clearly,𝑁BP(𝑛)[V1, V2] =

𝑉(BP(𝑛)). So, |𝐷1| = 2 is obtained.

Case 2. Let 𝐷
2 be any 2-dominating set, and the set 𝐷2

contains V1 or V2. So, the set 𝐷2 1-dominates all vertices of
𝐶
𝑛
. By the definition of 𝛾(𝐶

𝑛
), if we add ⌈𝑛/3⌉ vertices to

the set 𝐷
2
, then all of 𝐶

𝑛
graph’s vertices are 2-dominated.

So, ⌈𝑛/3⌉ ≥ 2 for 𝑛 ≥ 5. Hence, |𝐷
2
| = 1 + ⌈𝑛/3⌉ is ob-

tained.

Case 3. Let𝐷
3
be any 2-dominating set. Moreover, the set𝐷

3

contains only vertices 𝑢
𝑖
of 𝐶
𝑛
. It is clear that the set 𝐷

3
is

the 2-dominating set of 𝐶
𝑛
. By Theorem 8, we have |𝐷

3
| =

⌊(𝑛 + 1)/2⌋.

By Cases 1, 2, and 3 we get |𝐷
1
| = 2, |𝐷

2
| ≥ 3, and |𝐷

3
| ≥

3 for 𝑛 ≥ 5. As a result, by the definition of 2-domination
number, we have 𝛾

2
(BP(𝑛)) = 2 and this 2-dominating set is

unique.

Theorem 30. Let 𝐵𝑃(𝑛) be a bipyramid of order 𝑛 + 2 and
𝑛 ≥ 3; then

𝛾2𝑎V (𝐵𝑃 (𝑛)) =
3𝑛 + 4

𝑛 + 2
. (13)

Proof. Since the 2-dominating set is unique, we have
𝛾
2av(BP(𝑛)) = 2 + 1 − 2/(𝑛 + 2) = (3𝑛 + 4)/(𝑛 + 2) by
Theorem 10.

Theorem31. For the 3-pyramid 3𝑃(𝑛)with 𝑛 ≥ 7, 𝛾
2
(3𝑃(𝑛)) =

3.

Proof. There are 3 vertices whose degrees are 𝑛 in the graph
3𝑃(𝑛) and they are shown by 𝑢

1
, 𝑢
2
, and 𝑢

3
. We have four

cases while 2-dominating set is forming.

Case 1. Let 𝐷
1
be any 2-dominating set of 3𝑃(𝑛) and

let 𝐷
1
contain vertices 𝑢

1
, 𝑢
2
, and 𝑢

3
. It is clear that

𝑁
3𝑃(𝑛)

[𝑢
1
, 𝑢
2
, 𝑢
3
] = 𝑉(3𝑃(𝑛)) is obtained. So, the set 𝐷

1
is

2-dominating set of 3𝑃(𝑛). Thus, |𝐷
1
| = 3 is obtained.

Case 2. Let 𝐷
2
be any 2-dominating set of 3𝑃(𝑛) and let set

𝐷
2
include any two vertices of the vertices 𝑢

1
, 𝑢
2
, and 𝑢

3
.

These two vertices are 2-dominated by the vertices of 𝐶
𝑛
. If

the remaining vertex is added to𝐷
2
set, it is similar to set𝐷

1

and all vertices of 3𝑃(𝑛) are 2-dominated. If the remaining
vertex is not added to 𝐷2 set, two vertices of 𝑉(3𝑃(𝑛)) −

{𝑢1, 𝑢2, 𝑢3} must be added to the set 𝐷2. Thus, |𝐷2| ≥ 3 is ob-
tained.

Case 3. Let 𝐷
3
be any 2-dominating set of 3𝑃(𝑛) and let the

set𝐷
3
include any one vertex of 𝑢

1
, 𝑢
2
, and 𝑢

3
. So, the vertices

of 𝐶
𝑛
are dominated once by the set 𝐷

3
. Since the set 𝐷

3

does not include the remaining two vertices of the vertices
𝑢
1
, 𝑢
2
, and 𝑢

3
, ⌈𝑛/3⌉ vertices of 𝐶

𝑛
must be taken to set

𝐷
3
to 2-dominate all vertices of 𝐶

𝑛
and the remaining two

vertices of the vertices 𝑢
1
, 𝑢
2
, and 𝑢

3
. Because 𝑛 ≥ 7, we have

|𝐷
3
| = ⌈𝑛/3⌉ + 1.

Case 4. Let 𝐷
4
be any 2-dominating set of 3𝑃(𝑛) and let the

set 𝐷
4
not include any vertices of 𝑢

1
, 𝑢
2
, and 𝑢

3
. So, we must

add vertices of the graph𝐶
𝑛
to set𝐷

4
. We know that 𝛾

2
(𝐶
𝑛
) =

⌊(𝑛 + 1)/2⌋ by Theorem 8. Thus, |𝐷
4
| ≥ ⌊(𝑛 + 1)/2⌋ is ob-

tained.

By Cases 1, 2, 3, and 4 we get |𝐷1| = 3, |𝐷2| ≥ 3, |𝐷3| ≥

⌈𝑛/3⌉+1, and |𝐷4| ≥ ⌊(𝑛+1)/2⌋ for 𝑛 ≥ 7. As a result we have
𝛾
2
(3𝑃(𝑛)) = 3 by the definition of 2-domination number and

this 2-dominating set is unique.

Theorem 32. For the 3-pyramid 3𝑃(𝑛) with 𝑛 ≥ 7,
𝛾
2𝑎V(3𝑃(𝑛)) = (4𝑛 + 9)/(𝑛 + 3).
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Proof. Since the 2-dominating set is unique, we have
𝛾
2av(3𝑃(𝑛)) = 3 + 1 − 3/(𝑛 + 3) = (4𝑛 + 9)/(𝑛 + 3) by
Theorem 10.

Theorem 33. Let 𝑘𝑃(𝑛) be a 𝑘-pyramid with 𝑘 ≥ 4 and 𝑛 ≥ 7;
then 𝛾

2
(𝑘𝑃(𝑛)) = 4.

Proof. The vertices of 𝐶
𝑛
are denoted by V

𝑖
, where 𝑖 ∈

{1, . . . , 𝑛}, and the remaining 𝑘-vertices are denoted by 𝑢
𝑗
,

where 𝑗 ∈ {1, . . . , 𝑘}. We have three cases while 2-dominating
set is forming.

Case 1. Let𝐷1 be any 2-dominating set of the graph 𝑘𝑃(𝑛) and
let𝐷1 contain only vertices 𝑢𝑗, where 𝑗 ∈ {1, . . . , 𝑘}. It is clear
that set {𝑢1, 𝑢2 . . . , 𝑢𝑗} 2-dominated all vertices of 𝑘𝑃(𝑛). So,
|𝐷1| = 𝑘 and |𝐷1| ≥ 4 are obtained.

Case 2. Let 𝐷2 be any 2-dominating set of 𝑘𝑃(𝑛) and let 𝐷2
contain only vertices of V

𝑖
, where 𝑖 ∈ {1, . . . , 𝑛}. ByTheorem 8,

we have |𝐷2| = ⌊(𝑛 + 1)/2⌋. As a result, |𝐷
2
| ≥ 4 is ob-

tained.

Case 3. Let 𝐷3 be any 2-dominating set of 𝑘𝑃(𝑛) and let 𝐷3
contain any vertex of 𝑢𝑗 and V𝑖, where 𝑗 ∈ {1, . . . , 𝑘} and 𝑖 ∈

{1, . . . , 𝑛}. Let 𝐷
3

= {𝑢
1
, V
1
}. Let = {𝑢

𝑗
| 1 ≤ 𝑗 ≤ 𝑘}. The

vertex 𝑢
1
dominates vertices of 𝑉(𝐶

𝑛
) − {𝑢
1
} by once and the

vertex V
1
dominates vertices of𝑈− {V

1
} by once. If any vertex

of V
𝑖
and any vertex of 𝑢

𝑗
are added to set 𝐷

3
, then 𝐷

3
will

be 2-dominating set of the graph 𝑘𝑃(𝑛). Hence, |𝐷
3
| = 4 is

obtained.

By Cases 1, 2, and 3 we get |𝐷
1
| ≥ 4, |𝐷

2
| ≥ 4, and |𝐷

3
| =

4 for 𝑛 ≥ 7. As a result, by the definition of 2-domination
number, we have 𝛾

2
(𝑘𝑃(𝑛)) = 4.

Theorem 34. Let 𝑘𝑃(𝑛) be a 𝑘-pyramid with 𝑘 ≥ 4 and 𝑛 ≥ 7;
then 𝛾

2𝑎V(𝑘𝑃(𝑛)) = 4.

Proof. By Theorem 33, we have the lower 2-domination
number as 4 for all vertices of 𝑘𝑃(𝑛). Thus, 𝛾

2av(𝑘𝑃(𝑛)) = 4

is obtained.

3.4. 𝑛-Gon Books

Definition 35 (see [21]). When 𝑘 copies of 𝐶𝑛 (𝑛 ≥ 3)

share a common edge, they will form an 𝑛-gon book of 𝑘

pages and are denoted by 𝐵(𝑛, 𝑘). The degree set of 𝐵(𝑛, 𝑘)

is {2, 𝑘 + 1}. Therefore, the vertices of 𝐵(𝑛, 𝑘) are of two
kinds: vertices of degree 2, which will be referred to asminor
vertices, and vertices of degree 𝑘 + 1, which will be referred
to asmajor vertices. The minor vertices of 𝐵(𝑛, 𝑘) are labeled
V
11
, V
12

. . . , V
1𝑗
, V
21
, V
22
, . . . , V

2𝑗
, . . . , V

𝑘1
, V
𝑘2
, . . . , V

𝑘𝑗
, that is V

𝑖𝑗
,

where 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛 − 2}.

Theorem 36. Let 𝐵(𝑛, 𝑘) be an 𝑛-gon book and 𝑛 ≥ 5; then

𝛾 (𝐵 (𝑛, 𝑘)) =

{{

{{

{

𝑘⌈
𝑛 − 4

3
⌉ + 2, 𝑛 ≡ 1 (mod 3) ;

𝑘 ⌈
𝑛 − 3

3
⌉ + 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(14)

Proof. Let 𝑢
1
and 𝑢

2
be two major vertices. We have three

cases depending on the dominating set of 𝐵(𝑛, 𝑘) that are
including major vertices or not.

Case 1. Let 𝐷
1
be a dominating set, and let 𝐷

1
include two

major vertices. The set {𝑢
1
, 𝑢
2
} dominates 2𝑘-vertices from

all 𝐶
𝑛
. So, there are (𝑛 − 4)-vertices which are not dominated

from each 𝐶
𝑛
. Then the 𝑘-distinct path 𝑃

𝑛−4
is obtained by

these minor vertices. Thus, |𝐷1| = 𝑘⌈(𝑛 − 4)/3⌉ + 2 is ob-
tained.

Case 2. Let 𝐷2 be a dominating set, and let 𝑢1 ∈ 𝐷2 (or
𝑢2 ∈ 𝐷2). The vertex 𝑢1 dominates the vertex 𝑢2 and 𝑘-
vertices which are adjacent to the vertex 𝑢1 from all 𝐶𝑛.
Then the remaining (𝑛 − 3)-vertices are not dominated from
each 𝐶𝑛. So, the 𝑘-distinct path 𝑃𝑛−3 is obtained by these
minor vertices. As a result, |𝐷2| = 𝑘⌈(𝑛 − 4)/3⌉ + 1 is ob-
tained.

Case 3. Let 𝐷3 be a dominating set, and let {𝑢1, 𝑢2} ∉ 𝐷3.
Since the set 𝐷

3
includes only minor vertices, we have two

subcases depending on 𝑛.

Case 3.1. Let 𝑛 ≡ 0, 1 (mod3). Due to the structure of
𝐵(𝑛, 𝑘), the set𝐷

3
must include ⌈(𝑛−2)/3⌉-vertices from each

𝐶
𝑛
. So, the whole vertices of𝐵(𝑛, 𝑘) are dominated. As a result

we have |𝐷
3
| = 𝑘⌈(𝑛 − 2)/3⌉.

Case 3.2. Let 𝑛 ≡ 2 (mod 3). Due to the structure of 𝐵(𝑛, 𝑘),
two minor vertices which are neighbors to the major vertices
must be taken to the set𝐷

3
from any graph 𝐶

𝑛
. Furthermore,

the remaining (𝑘−1)(𝑛−2)-vertices are not dominated in the
graph 𝐵(𝑛, 𝑘). Since (𝑘 − 1)⌈(𝑛 − 2)/3⌉-vertices must be taken
to the set 𝐷

3
, |𝐷
3
| = 2 + ⌈(𝑛 − 6)/3⌉ + (𝑘 − 1)⌈(𝑛 − 2)/3⌉ is

obtained.

By Cases 3.1 and 3.2, we get

𝐷3


=

{{

{{

{

2 + ⌈
𝑛 − 6

3
⌉ + (𝑘 − 1) ⋅ ⌈

𝑛 − 2

3
⌉ , 𝑛 ≡ 2 (mod 3) ;

𝑘 ⋅ ⌈
𝑛 − 2

3
⌉ , otherwise.

(15)

Clearly, if 𝑛 ≡ 0 (mod 3), then we have |𝐷3| > |𝐷1| > |𝐷2|,
if 𝑛 ≡ 1 (mod3), then we have |𝐷

2
| > |𝐷

3
| > |𝐷

1
|, and if

𝑛 ≡ 2 (mod 3), then we have |𝐷
1
| > |𝐷

3
| = |𝐷

2
|. As a result,

we get

𝛾𝐵 (𝑛, 𝑘) =

{{

{{

{

𝑘⌈
𝑛 − 4

3
⌉ + 2, 𝑛 ≡ 1 (mod 3) ;

𝑘 ⌈
𝑛 − 3

3
⌉ + 1, otherwise.

(16)

Thus the proof is completed.

Theorem 37. Let 𝐵(𝑛, 𝑘) be an 𝑛-gon book and 𝑛 ≥ 5; then



6 Journal of Optimization

𝛾
𝑎V (𝐵 (𝑛, 𝑘))

=

{{{{{{{

{{{{{{{

{

𝑘⌈
𝑛 − 3

3
⌉ + 1, 𝑖𝑓 𝑛 ≡ 2 (mod 3) ;

3 + 𝑘 ⌈
𝑛 − 4

3
⌉ −

2 + 𝑘 ⌈(𝑛 − 4) /3⌉

𝑘 (𝑛 − 2) + 2
, 𝑖𝑓 𝑛 ≡ 1 (mod 3) ;

1

𝑘 (𝑛 − 2) + 2
([(𝑛 − 2) (𝑘 + 2) − 𝑘 ⌈

𝑛

3
⌉] (1 + 𝑘 ⌈

𝑛 − 3

3
⌉) + 𝑘 ⌈

𝑛

3
⌉ (2 + 𝑘 ⌈

𝑛 − 3

3
⌉)) , 𝑖𝑓 𝑛 ≡ 0 (mod 3) .

(17)

Proof. While finding lower domination number of all vertices
of 𝐵(𝑛, 𝑘), we have three cases depending on 𝑛.

Case 1. Let 𝑛 ≡ 1 (mod3), and let 𝐷 be a dominating set.
Clearly, the set𝐷 is a unique dominating set. ByTheorem 10,
we have

𝛾av (𝐵 (𝑛, 𝑘)) = 3 + 𝑘 ⌈
𝑛 − 4

3
⌉ −

2 + 𝑘 ⌈(𝑛 − 4) /3⌉

𝑘 (𝑛 − 2) + 2
. (18)

Case 2. Let 𝑛 ≡ 2 (mod3), and let 𝐷 be a dominating set.
By Theorem 36, the set 𝐷 is formed by two ways. Clearly,
𝛾V𝑖(𝐵(𝑛, 𝑘)) = ⌈(𝑛 − 3)/3⌉ + 1 is obtained for every V

𝑖
∈

𝑉(𝐵(𝑛, 𝑘)). As a result, we have 𝛾av(𝐵(𝑛, 𝑘)) = 1+𝑘⌈(𝑛−3)/3⌉.

Case 3. Let 𝑛 ≡ 0 (mod 3), and let 𝐷 be a dominating set. By
Case 2 ofTheorem 36, we know that the set𝐷 includes either
the vertex 𝑢

1
or the vertex 𝑢

2
. Let 𝑆 = {V

𝑖𝑗
| 𝑖 ∈ {1, . . . , 𝑘} ∧

𝑗 ∈ {1, 4, . . . , 𝑛 − 2}}. Clearly, the set 𝐷 contains vertices of
𝑉(𝐵(𝑛, 𝑘)) − 𝑆 by Theorem 36. Thus, we have 𝛾V𝑖(𝐵(𝑛, 𝑘)) =

1 + 𝑘⌈(𝑛 − 3)/3⌉ for every V
𝑖
∈ 𝑉(𝐵(𝑛, 𝑘)) − 𝑆. Furthermore,

we have 𝛾V∗
𝑖

(𝐵(𝑛, 𝑘)) = 2+𝑘⌈(𝑛−3)/3⌉ for every V∗
𝑖
∈ 𝑆. Thus,

𝛾av (𝐵 (𝑛, 𝑘))

=
1

|𝑉 (𝐵 (𝑛, 𝑘))|
( ∑

V𝑖∈𝑉(𝐵(𝑛,𝑘))−𝑆
𝛾V𝑖 (𝐵 (𝑛, 𝑘))

+ ∑

V∗
𝑖
∈𝑆

𝛾V∗
𝑖

(𝐵 (𝑛, 𝑘)))

=
1

𝑘 (𝑛 − 2) + 2
([(𝑛 − 2) (𝑘 + 2) − 𝑘 ⌈

𝑛

3
⌉]

⋅ (1 + 𝑘 ⌈
𝑛 − 3

3
⌉) + 𝑘 ⌈

𝑛

3
⌉ (2 + 𝑘 ⌈

𝑛 − 3

3
⌉)) .

(19)

By Cases 1, 2, and 3 the proof is completed.

Theorem 38. Let 𝐵(𝑛, 𝑘) be an 𝑛-gon book and 𝑛 ≥ 5; then

𝛾
2 (𝐵 (𝑛, 𝑘)) =

{{

{{

{

𝑘(⌊
𝑛 + 1

2
⌋ − 1) + 1, 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛;

𝑘 (⌊
𝑛 − 4

2
⌋ + 1) + 2, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

(20)

Proof. Let 𝑢
1 and 𝑢2 be twomajor vertices.We have two cases

depending on 𝑛.

Case 1. Let 𝑛 be even, and let𝐷 be 2-dominating set.We know
that the set𝐷 contains either the vertex 𝑢1 or the vertex 𝑢

2
by

the definition of𝐵(𝑛, 𝑘) andTheorem 8.Thus, (⌊(𝑛+1)/2⌋−1)-
vertices of each𝐶

𝑛
must be taken to the set𝐷. Since there is 𝑘-

graph𝐶
𝑛
, we have |𝐷| = 𝑘(⌊(𝑛+1)/2⌋−1)+1. So, 𝛾

2
(𝐵(𝑛, 𝑘)) =

𝑘(⌊(𝑛 + 1)/2⌋ − 1) + 1 is obtained.

Case 2. Let 𝑛 be odd.We have two subcases depending on the
2-dominating set of 𝐵(𝑛, 𝑘) that are including major vertices
or not.

Case 2.1. Let 𝐷
1
be 2-dominating set, and let 𝐷

1
include

any major vertex. Clearly, the set 𝐷 must include two major
vertices in this subcase by Theorem 8. So, the set {𝑢

1
, 𝑢
2
}

dominates 2𝑘-vertices from all 𝐶
𝑛
. Then, (𝑛 − 4)-vertices are

not dominated from each𝐶
𝑛
.Thus, the 𝑘-distinct path 𝑃

𝑛−4
is

obtained by these minor vertices. As a result, |𝐷
1
| = 𝑘(⌊(𝑛 −

4)/2⌋ + 1) + 2 is obtained.

Case 2.2. Let 𝐷
2
be 2-dominating set, and let {𝑢

1
, 𝑢
2
} ∉ 𝐷

2
.

Clearly, the set𝐷
2
includes (⌊(𝑛−2)/2⌋+1)-vertices of𝑉(𝐶

𝑛
)−

{𝑢
1
, 𝑢
2
} of each𝐶

𝑛
byTheorem 7.Thus, |𝐷

2
| = 𝑘(⌊(𝑛−2)/2⌋+

1) is obtained.

By Cases 2.1 and 2.2 |𝐷
1
| = |𝐷

2
| for 𝑘 = 2 and 𝑛 ≥ 5.

Then we have |𝐷
1
| < |𝐷

2
| for 𝑘 ≥ 3 and 𝑛 ≥ 5. Furthermore,

2-dominating set is unique for 𝑘 ≥ 3 and 𝑛 ≥ 5. As a result,
𝛾2(𝐵(𝑛, 𝑘)) = 𝑘(⌊(𝑛 − 4)/2⌋ + 1) + 2 is obtained.

By Cases 1 and 2, the proof is completed.

Theorem 39. Let 𝐵(𝑛, 𝑘) be an 𝑛-gon book, where 𝑛 ≥ 3 and
𝑘 ≥ 3; then

𝛾2𝑎V (𝐵 (𝑛, 𝑘)) =

{{{

{{{

{

𝑘(⌊
𝑛 + 1

2
⌋ − 1) + 1, 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛;

𝑘 (⌊
𝑛 − 4

2
⌋ + 1) + 3 −

𝑘 (⌊(𝑛 − 4) /2⌋ + 1) + 2

𝑘 (𝑛 − 2) + 2
, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

(21)
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Proof. Let 𝑢
1
and 𝑢
2
be twomajor vertices.We have two cases

depending on 𝑛.

Case 1. Let 𝑛 be even. We have that the 2-dominating set
including the vertex 𝑢

1
is 2-dominating set of any 𝐶

𝑛
. Since

the vertex 𝑢
1
is common vertex of each𝐶

𝑛
and byTheorem 8,

we get 𝛾2𝑢1
(𝐵(𝑛, 𝑘)) = 𝑘(⌊(𝑛 + 1)/2⌋ − 1) + 1. Similarly, we

get 𝛾2𝑢2(𝐵(𝑛, 𝑘)) = 𝑘(⌊(𝑛 + 1)/2⌋ − 1) + 1. Let V𝑖1 be minor
vertex which is neighbor to the vertex 𝑢1 of any 𝐶𝑛, and let
V𝑖(𝑛−2) be minor vertex which is neighbor to the vertex 𝑢2 in
the same graph 𝐶𝑛. It is easy to see that the 2-dominating
set including the vertex V𝑖1 is the 2-dominating set including
the vertex 𝑢2 by Theorem 8. Similarly, the 2-dominating set
including the vertex V𝑖(𝑛−2) is the 2-dominating set including
the vertex 𝑢

1
. Thus, 𝛾

2V𝑖1(𝐵(𝑛, 𝑘)) = 𝛾
2V𝑖(𝑛−2)(𝐵(𝑛, 𝑘)) = 𝑘(⌊(𝑛 +

1)/2⌋−1)+1 is obtained. Furthermore, we get 𝛾
2V𝑖𝑗(𝐵(𝑛, 𝑘)) =

𝑘(⌊(𝑛 + 1)/2⌋ − 1) + 1 for every V
𝑖𝑗

∈ 𝑉(𝐵(𝑛, 𝑘)) − {𝑢
1
, 𝑢
2
},

where 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛 − 2}. As a result,
𝛾
2av(𝐵(𝑛, 𝑘)) = 𝑘(⌊(𝑛 + 1)/2⌋ − 1) + 1 is obtained.

Case 2. Let 𝑛 be odd. We have two subcases depending on 𝑘.

Case 2.1. Let 𝑘 = 2. We know that 2-dominating set is formed
by two ways in Case 2 of Theorem 38. Clearly, 𝛾2V(𝐵(𝑛, 𝑘)) =

𝑘(⌊(𝑛−4)/2⌋+1)+2 is obtained for every vertex V ∈ 𝑉(𝐵(𝑛, 𝑘)).
As a result, 𝛾2av(𝐵(𝑛, 𝑘)) = 𝑘(⌊(𝑛 − 4)/2⌋ + 1) + 2 is obtained.

Case 2.2. Let 𝑘 ≥ 3. We know that 2-dominating set is unique
by Case 2 of Theorem 38. So, 𝛾2av(𝐵(𝑛, 𝑘)) = 𝑘(⌊(𝑛 − 4)/2⌋ +

1) + 3 − ((𝑘(⌊(𝑛 − 4)/2⌋ + 1) + 2)/𝑘(𝑛 − 2) + 2) is obtained by
Theorem 10.

By Cases 1 and 2 the proof is completed.

Theorem 40. Let 𝐵(𝑛, 𝑘) be an 𝑛-gon book, where 𝑛 ≥ 3 and
𝑘 = 2; then

𝛾
2𝑎V (𝐵 (𝑛, 𝑘))

=

{{

{{

{

𝑘(⌊
𝑛 + 1

2
⌋ − 1) + 1, 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛;

𝑘 (⌊
𝑛 − 4

2
⌋ + 1) + 2, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

(22)

Proof. The proof directly comes fromTheorem 39.

4. Conclusion

In this study, a new defined graph theoretical parameter,
namely, the average lower 2-domination number and the
average lower domination number, has been studied for the
network vulnerability. Additionally, the stability of popular
interconnection networks including cycles has been studied
and their domination numbers, 2-domination numbers, aver-
age lower domination numbers, and average lower domina-
tion 2-numbers, have been computed. These networks have
been modeled with the fans, the 𝑘-pyramids, and the 𝑛-gon
books.
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