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In this paper, a novel approach of hybridization of two efficient metaheuristic algorithms is proposed for energy system analysis
and modelling based on a hydro and thermal based power system in both single and multiobjective environment. The scheduling
of hydro and thermal power is modelled descriptively including the handling method of various practical nonlinear constraints.
The main goal for the proposed modelling is to minimize the total production cost (which is highly nonlinear and nonconvex
problem) and emission while satisfying involved hydro and thermal unit commitment limitations. The cascaded hydro reservoirs
of hydro subsystem and intertemporal constraints regarding thermal units along with nonlinear nonconvex, mixed-integer mixed-
binary objective function make the search space highly complex. To solve such a complicated system, a hybridization of Gray Wolf
Optimization and Artificial Bee Colony algorithm, that is, h-ABC/GWO, is used for better exploration and exploitation in the
multidimensional search space. Two different test systems are used for modelling and analysis. Experimental results demonstrate
the superior performance of the proposed algorithm as compared to other recently reported ones in terms of convergence and

better quality of solutions.

1. Introduction

Hydrothermal unit commitment coordination (HTUC)
problem concerns utilizing hydro potential satisfying hydro
constraints in such a way that the cost of produced electricity
from thermal resources during a scheduling period of time
is lowermost and with lowest environmental impact. Many
researchers’ have forwarded various solution techniques to
solve such problem but due to extreme nonlinearity and
compounded structure of hydro and thermal units, the
process of finding feasible and optimal solution is quite tough
and time-consuming. In addition, nonlinearity of search
space increases greatly with increasing complexity of the
compounded structure of the system. Most conventional
optimization techniques do not work well for problems like
HTUC with such nonlinearity and multimodality. The con-
cerned problem involves not only nonlinearity but also non-
convexity. The thermal power generation (due to quadratic

cost function), hydro power generation, and emission are
nonlinear in nature. In case of thermal power generation the
nonconvexity is due to consideration of valve point loading
effect for thermal units. In Figure 1, the difference between
without valve point loading effect and with valve point
loading effect on thermal units on production cost is shown.
The effect of valve point loading effect is quite considerable
on optimization aspect as the problem becomes highly
nonconvex in nature. Also due to reliability and security
requirements, hydro and thermal constraints such as load
balance, generation limits, and water discharge, starting and
ending storage volumes of water, intertemporal limitations,
and ramp rate limitations have to be included. The limited
storage capability of water reservoirs, the stochastic nature of
available water, and different limitations regarding commit-
ment status of thermal units make the problem more difficult
for hydrothermal systems. In addition, the environmental
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FIGURE 1: The waveform of production cost of two thermal units (a) with valve point loading effect and (b) without valve point loading effect
where x- and y-axis represent the thermal power generation of respective thermal units and z-axis represents the total production cost.

impacts are also a great issue considering thermal power
plant which bound the authors to include the emission as
a second objective function, increasing system complication
even more.

Several researchers have attempted solving HTUC prob-
lem using different solution procedures. Initially most
researchers proposed conventional mathematical techniques,
such as dynamic programming [1, 2], decomposition tech-
niques [3], and concept of nonlinear network flow [4, 5] to
solve such a complex problem. The development and im-
provement of different soft computing techniques and
their reported impressive performance made the researchers
incline towards the use of soft computing techniques to
handle such highly nonlinear complex problems. Those tech-
niques, such as Genetic Algorithm [6, 7], Simulated Anneal-
ing [8], Evolutionary Programming (EP) [9-12], Bender
Decomposition [13-15], Harmony Search Algorithm [16],
Particle Swarm Optimization (PSO) [17, 18], Evolution
Strategy [19], Differential Evolution (DE) algorithm [20,
21], and mixed-integer programming (MIP) [22], and their
modifications are also used to solve HTUC problems as
these methods are reported to be efficient in finding near
global optimal solutions. HTUC problem can be divided into
two subproblems, hydro subproblem and unit commitment
coordination subproblem. In literature [23] a detailed survey
on unit commitment problem is described.

Cataldo et al. solved hydro subsystem using a nonlinear
optimization method [24] and thermal subsystem using e-
constraining method [25]. Sinha et al. [11] solved a test
system, initially proposed in [6] with valve point loading
effect using fast EP and demonstrated better results. Basu
[12] proposed interactive fuzzy satisfying method based on
EP technique to solve HTUC with four hydro and three
thermal units with valve point loading effect and emission
function coefficients. Modified DE is used to solve the HTUC
problems [20]. But this modification lacks enough diversity
to provide better solution quality in search space. Rebennack
[14] solves the problem by a decomposition algorithm, based
on Benders decomposition. Although the problems consid-
ered here are nonlinear and various nonlinear constraints are
accounted for in the formulation, linear approximation and

convexification approaches are used to simplify the problem
which in turn is bounded to be erroneous up to some extent.
Afkousi-Paqaleh et al. [16] solved unit commitment using
Harmony Search Algorithm. Mandal and Chakraborty [21]
proposed a new test system for HTUC with hydro subsystem
and ten thermal plants with quadratic cost function including
valve point loading effects. They have solved the problem
using DE technique. However, the proposed method failed
to provide superior solution quality for larger system. Hota
etal. [17] solved the HTUC problem using an improved PSO.
Farhat and El-Hawary [26] present a survey of literature on
various optimization techniques applied on HTUC. Recently
Zhang et al. [27] proposed a new solution technique known
as Small Population based PSO (SPPSO) technique. A new
algorithm has been found known as CS-MODE [28] where
chaotic sequence is used to increase diversity but the pro-
posed method helps increase local optima entrapment by
forcefully directing the swarms to another position without
exploring properly. Most of these techniques consume signif-
icantamount of time with vast multidimensional search space
and many researchers have not considered many reliability
limitations, necessary to design a practical system. Recently
Predator Prey algorithm [29] is evolved which increases the
diversity using accelerating operation but with a cost of
depth search. Recently Norouzi et al. [30] have solved HTUC
problem using Lexicographic Optimization technique with e-
constraint. Clonal Selection Algorithm (CSA) [31] is recently
proposed to demonstrate lesser computational efforts with
HTUC. Here, the concept of higher population is used for
better convergence but there is a strong possibility of local
optima entrapment. It is noticed from the recent publications
that these improved heuristic algorithms are able to search
better solution from a nonlinear, complex search space. But
with greater variable and complicated structure, the behavior
of search space becomes more nonlinear [31] with higher
chances of premature convergence.

Therefore, the objective of this research focuses on
developing a suitable algorithm for HTUC problem based
on hybridized Artificial Bee Colony (ABC) and Gray Wolf
Optimization (GWO) algorithm (h-ABC/GWO), initially
developed by Mirjalili et al. [32, 33]. The standard GWO
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is based on the hunting behavior of gray wolves [32, 33].
In general the gray wolves are considered at the top of the
food chain. The gray wolves mostly hunt in groups. Their
hunting instinct is mostly divided into three steps. Firstly
they create a hierarchy among themselves; secondly they
encircle the prey; and thirdly they hunt. In mathematical
point of view, the exploitation (which mainly tries to improve
its position in terms of optimization or local search) is very
much familiar with this hunting instinct of gray wolves.
The social hierarchy provides the most efficient wolf in the
group which can be termed as the closest individual of
the population to the global best. The encircling provides
the best individual to understand the prey’s position after
evaluating its neighborhood. This phenomena provides the
algorithm great exploitation or local search capability. In h-
ABC/GWO algorithm, the onlooker bee phase is replaced by
this GWO phase as the onlooker bee phase of ABC algorithm
is not very efficient against the problems like HTUC. As for
the global search, the initial population and the employed
bee phase provide sufficient diversity in the population to
provide required global search. Also the scout bee phase
is used for global search. In this phase all the solutions
that are not improved with increase in iteration are used
to explore the search space globally until they find another
better position in the search space. This exploration capability
is very effective for a complicated and vast problem like
HTUC. Moreover, the amount of global and local search in
the search space can easily be controlled by a parameter used
in the algorithm according to the nature of search space of
the problem. Overall these processes provide a great balance
between global and local search or in other words enhanced
exploration and exploitation capability.

On the other hand, in GWO algorithm alone the global-
or-local search operation on individual position reduces the
exploration capability of GWO, which makes GWO fail to
provide sufficient diversity in the search space for a complex
problem like HTUC with a further deficiency regarding
local optima entrapment or premature convergence. For this
reason in this research the h-ABC/GWO is used where two
algorithms (i.e., ABC and GWO) are merged together to
design a more efficient algorithm to solve HTUC problem.

The performance of the proposed h-ABC/GWO approach
is demonstrated on two test systems and compared with
GWO (32, 33], ABC [34], CSA [31], and SPPSO [27] and
recent state-of-the-art mixed-integer nonlinear program-
ming (MINLP) [32]. From the computational results, it is
observed that the proposed approach yields better conver-
gence than other mentioned algorithms.

2. Problem Formulation

2.1. Objective Function. HTUC involves optimization of non-
linear objective function, with a mixture of linear/nonlinear
and dynamic network flow constraints. The problem diffi-
culty is compounded by a number of practical considerations
and unless several simplifying assumptions are made, the
problem is difficult to solve for practical power systems. The
basic optimal HTUC involves minimizing overall thermal

cost, F, and total emission, E over a given scheduling period
of time, T, which can be described as

T Ng

Minimize, F =Y " f, (P (i,t)) + SD + ST, (1a)
t=1i=1
T NS . . .
Minimize, E(Q) =) ) (o + B x Ps (i, t) + '
t=1i=1 (1b)

x (P (i,1))" + 1 x exp ((Si x Py, (i, t))) ,

i (P 0) = [+ Py (i) + b, - Py (1) + 6] + |d,
. (2)
sin [e; - (Ps ()™ = Py i, 1)) ]|

where g;, b, ¢, d;, and e; are coeflicients for thermal power
generation and ST and SD represent the startup and shut-
down cost. o, B, ', 7', 8" represent the emission coefficient
of ith unit.

In Figure 2, the nature of production cost and emission
based on thermal power generation for a particular unit
is demonstrated. From the figure it is clear that both the
waveforms are highly nonlinear in nature and the thermal
production cost is not only nonlinear but nonconvex as well.

In this paper, one day is considered as the scheduling
period (T'), consisting of 24 discretized intervals of 1 hour.
Concerning the thermal units, shutdown cost, SD is quite
low in comparison with startup cost (ST) and fuel cost
given in (la), so SD is neglected in this work. Along with
quadric cost function the valve point loading effect [12] is
also considered as the second part of (2) suggests, which
incorporates nonconvexity into the search space of HTUC
along with nonlinearity.

(a) The Continuity Equation for Reservoir Network. The
storage volume of ith reservoir at the end of interval ¢ can
be calculated using continuity equation [27]

Vh (i,t— 1) - Vh (l,t) + Ih (l,t) - Qh (l,t) _Sh (l,t)

R, (i)
+ {Q,mt-1,)+S,(mt-1,)}, 3

m=1

i=1,2,...,Ng, t = 1,2,...,T.

(b) Physical Limitations on Reservoir Storage Volume and
Discharge Rate. The water content of a reservoir has to be
within its maximum and minimum reservoir limit, which is
represented by (4). The water discharges of hydro units also
have to be within its maximum and minimum limit [35]

VIR G, t) <V, G 1) < VIR (1),
(4)
i=1,2,...,N,, t=1,2,...,T,

Q™ (i,t) < Q, (i, 1) < QP™ (i, ),
i=1,2,...,N,, t=12,...,T.

(5)



(¢) Initial and Final Reservoir Storage Volume. Water content
of each reservoir at initial and end interval of the scheduled
period is prespecified [5]

Vi, G, 1)~ = VR ),

Vv, G0 = v, (6)

begin . . o .
where V, (7)) and V;nd(z) are initial and final reservoir
volume.

(d) Generator Capacity. The power generation of thermal and
hydro plants has to be within its maximum and minimum
generation limit [6]

P (i,t) < P, (i) < PP (i, ),

i=1,2,...,N,, t=12,...,T,
. )

i=1,2,...,Ng, t=1,2,...,T.

(e) Hydro Power Generation Equation. The hydro power
generation is generally a concave nonlinear function in nature
[36]. In Figure 3 the waveform of hydro discharge to power
generation of a hydro unit for different water volume or
water content is shown. From Figure 3 it is evident that the
power generation from hydro units is a function of both
hydro discharge and water volume. For this reason in this
research this quadratic concave function is represented by (8)
(11, 27, 37]

P, (i,t) =¢, -V, (ibt)* + ¢, - Q, (i,1)* + ¢ - V,, (i 1)
Qi) +¢ -V, (i) + 65 - Qp (i 8) + ¢ (8)
i=1,2,...,N,, t=1,2,...,T,

where, ¢, ¢,, 63, ¢4, G5, and ¢ are power generation coefficients
of respective hydro units.

(f) Ramp Rate Limitation. The power generation on a partic-
ular thermal unit cannot be increased or decreased beyond
ramp up or ramp down limit [23]

PS(l)t)_PS(I)t_ 1) SIJR(l)r
P (i,t — 1) = Py (i,t) < DR (i), €
i=1,2,...,Ng, t=12,...,T.

(¢) Minimum Up/Down Time Limitation [23]. If a unit is
forced to change its state, it cannot change its state again for a
certain amount of time, called minimum up/down time limit
[XNGt-1 -G} 1Gt-1)- 16,1} 20,
(X G- -1 O} {1G,H-1Gt-1)} =0, (10)

i=1,2,...,Ns t=1,2,...,T.
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Production cost and emission

Power generation of a particular thermal unit
—— Emission
—— Production cost

FIGURE 2: The waveform of production cost (see (1b)) and generated
emission (see (2)) for a particular thermal unit.

VG, 1)
Vi (i, t)
Vi, (i, t)

VG, 6) > VEG, 1) > VG, 1)

Hydro discharge (Qy,(i, 1))

Hydro power generation (P, (i, t))

FIGURE 3: The waveform of hydro power generation cost (see (8))
with respect to hydro discharges for a particular thermal unit. Hydro
discharge (Q,(i,1)).

(h) System Load Balance. The overall power demand at every
hour has to be provided by available thermal and hydro power
plants [6]

N, N,
Y Po(i,t)+ ) B, (i,t) =Py (i,t) t=1,2,...,T. (1)
i=1 i=1

(i) Startup Cost. Depending on the duration of being off
before start, the execution of cold start cost [CS()] or hot start
cost [HS(7)] is decided for each start of an individual unit.
If a unit starts after a certain period of time, T (1) [23],
cold start cost [CS(7)] is considered or otherwise hot start cost
[HS(7)] is taken into account for calculation. The summation
of all startup costs of all units (see (13)) is incorporated in the
cost function given by (la)

SC(i,t) = CS (i) x {I (i, t) = I (i, t — 1)} - I (i, £)

if {X° (i,5) - T (i)} = 0,
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SCG,t) =HS @) x{I (G, t) - I(i,t —1)}-I(i,¢t)

if {XF (i,1) - T ()} <0,
(12)

T Ng

ST =) Y SC(i,1). (13)

t=1i=1

3. Hybrid-Artificial Bee Colony (ABC)/Grey
Wolf Optimization (GWO) Algorithm

The main drawback regarding metaheuristic algorithms is
extensive random search where there is a high possibility
of searching the same position repeatedly while few places
in the vast multidimensional search space did not get any
attention at all. Superior nonlinearity and nonconvexity
increase the effect of this phenomena even further. In order
to search such a complex search space it is necessary to
balance between the local and global search capability of
the acting algorithm or in other words the exploitation
and exploration capability according to the search space
behavior. For this purpose a hybridized algorithm, that is,
hybrid-Artificial Bee Colony/Grey Wolf Optimization (k-
ABC/GWO) algorithm, is adopted. In this algorithm the
superior exploitation capability of GWO algorithm is merged
with diversified exploration capability of ABC algorithm.
The challenge of an algorithm in constrained environ-
ment is much more complicated than in an unconstrained
environment. Algorithm performance also greatly depends
on the technique used to handle the acting constraints. Before
explaining the function evaluation method and constraint
handling process of HTUC problem, the key arrangement of
h-ABC/GWO algorithm is discussed in this section.

3.1 Initialization. The initial population will be created using
(14), where i and j signify the dimension of the problem and
population size

x;; = I; + rand (0, 1) x (w; = 1). (14)

3.2. Employed Bee Phase. The employed bees will search the
neighborhoods of the initial positions, in hopes of better
position using (15) and modify the initial population with
better positions

Vij = Xij + ¢y % (xij - xil)- (15)

3.3. Grey Wolf Phase

Social Hierarchy. In GWO [33] algorithm gray wolves are
categorized among «-alpha wolf (fittest solution of the popu-
lation), 3-Beta wolf (second best solution of the population),
O-delta wolf (third best solution of the population), and w-
omega wolves (all other solutions). The hunting for prey (the

optimum solution) is guided by alpha, beta, and delta wolves
with the help of omega wolves [24, 33].

Encircling the Prey. In the next stage, according to gray wolves
the prey will be encircled and these specific behaviours can
mathematically be replicated by

D;; = |C; (1) x XE () - X;; (1)),
(16)
X,‘j t+1) = Xij ()= A; (t) x D; (t),

where

A;(t)=2xa;(t) xry —a; (),
(17)
C(t) = 2%,

The components of A;(t) are reduced from 2 to 0 with respect
to iterations and r;;, 1;, are vectors of random number within
[0,1].

Hunting. In optimization perspective, the prey actually refers
to the global optima. But in practical scenario it is almost
impossible to find global best solution. So in order to imitate
the hunting mechanism of grey wolf the best, second, and
third best solution are considered as alpha, beta, and delta
wolf and used for hunting. The first step is to create distance
vectors using «, 3, and & wolves by (18) followed by (19) which
gives three different positions for a particular individual of
the population. The modified position will be evaluated using
(20)

1
Df = |Cf x X - X,
2
Df = |c} x X - x5 (18)
S 3 8
D = |G x X, - X,

1 o 1 o
X = X5 - A; x Dfj

X;; = X[, - A7 x Df; (19)
3 8 3 S
X;, = X}, - A} x D
X!

2 3
+ ij + Xij

X (t+1)= ; (20)

3.4. Scout Bee Phase. Consistent individuals that do not
improve their position will be converted to scout based on a
predefined parameter, limited and forced to search the search
space without any guidance using

Wiy, =1L +rand (0,1) x (u; = 1) (1)

3.5. Selection. The best solution so far is taken as the global
best for the next iteration. This process continues until the
iteration number reaches the maximum cycle number (M;).
The flow chart for h-ABC/GWO is shown in Figure 4.
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FIGURE 4: The detailed flow chart of hybrid-Artificial Bee Colony
(ABC)/Grey Wolf Optimization (GWO) (h-ABC/GWO) algorithm.

Multiobjective Optimization. As the problem concerned is
multiobjective in nature, the algorithm is made suitable
for handling multiple objectives simultaneously. A typical
multiobjective problem can be stated as

Jn (X
Subject to A, (X)

Minimize, n=12,...,0bj;
=0 p=1...,X

(22)
Bq(X) <qg=0 1,...,Y

Constraints,

where f,(x) is the nth objective function and obj is the
total number of objectives. In order to find best compromise
solution the first step is to create Pareto optimal front
consisting all nondominated individual, which can be found

by
fiX) < fi(Y)
fi(X) < f;X

The individuals X and Y satistying (21) state that X
dominates Y. So, in other words solution x is nondominated
over solution y. Among all the solutions, the solutions that
are not dominated by any other solution are termed as

Vi e {1,2,...,0bj},
(23)

Jj e {1,2,...,0bj}.
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nondominated solution. The Pareto optimal front is created
by nondominated solutions only.

Best Compromise Solution. Among the individuals of Pareto
optimal front there is one individual that has to be termed
as best individual. For this purpose, a membership function
is used to fit all the objectives within unity bound so that obj,
number of objectives, values can be compared accurately. The
membership function, g/ for jth individual with respect to
nth objective function can be calculated as

1 for fi < fmin
S -1

= —fmax ~ i for £ < f] < fm (24)
n n

0 for f1 < ™,

R

where M is the size of Pareto optimal front and f™" and
S are the lowest and highest function value of nth objective
function. In order to find the best compromise solution
another normalized function for each individual is found

using
i ob, F
s 5 ()

The individual with minimum /A’ is taken as the best
compromise solution.

W= (25)

4. Modelling HTUC in
h-ABC/GWO Framework

In this section, an algorithm based on h-ABC/GWO method
for solving hydrothermal unit commitment coordination
problem is described. According to Section 3(i), the initial
subpopulations are created where each string of subpopula-
tions (X) in the context of HTUC can be represented by

x=[Q p|", (26)
where
Q=[Q,(1,1)Q,(1,2)---Q, (1,T)
Q2 1) Q, (N T - 1)Q, (N, T)]" o
= [Ps(1,1) Pg(1,2)--- Py (1, T)
. Pg(2,1)--- Pg (N5, T — 1) Pg (N, T)]"

According to the algorithm strategy the hydro discharges
(Q) and thermal generations (P) are generated randomly; that
is why it is natural for these generated values which may not
satisfy most of the limitations, specially equality limitations
(end volume limitation and power balance limitation) stated
in Section 2. In order to counter the abovementioned prob-
lem, constraint handling techniques based on rectification
method are used, which are shown in Section 5.
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Constraint handling technique used to satisfy hydro
limitations is as follows:

(1) Considering the initial volume as reference, the end
volume of ith unit can be calculated using

T T
Vi 1) =V, (1) + ) 1 1) = ) Qy (i)
t=1

t=1

T RG (28a)
+> > {Qu(mt-1,)}.
t=1 m=1
So, the end volume mismatch is
mis; = V), (i, T) = V;, i, T) . (28b)

(2) A dependent time variable, z, is randomly generated
provided z is a natural number and 1 < z < 24.

(3) In order to minimize the mismatch, the discharge at
zth hour of the concerned unit is set to a preferable
value within its upper and lower bound. If discharge
exceeds boundary limit, it is set to its limit. And mis;
will be calculated for a second time using (28a) and
(28b).

(4) If mis; is still unacceptable, z will be generated again
and processes 2 and 3 continue until mis; decreases to
an acceptable value.

This process is applied on every hydro unit present in
the system from least depended to most depended units.
Normally a piecewise linear function is used along with
Lagrangian multiplier to handle the end volume constraint
but this process is time-consuming and erroneous as lin-
earization compromises the accuracy of the system. For this
reason in this proposed heuristic approach a rectification
based method is used to solve the end volume limitation.

Once all the mentioned limitations concerning hydro
network are satisfied, the hydro power generation at each
hour has to be calculated (see (8)) in order to find the rest of
the demanded power that has to be supplied through available
thermal units.

The constraint handling technique for power balance is
described below:

(1) As the minimum up/down time limitations are con-
sidered, the units that are available on a particular
time interval have to be found based on previous
hours and the value (generation) of unavailable units
is set to zero. The required power is distributed among
the available units.

(2) A dependent variable, z,, is randomly generated,
provided z; is a natural number and zg € Ng, where
N is the set of available units.

(3) Power balance mismatch at ¢tth hour is
NO

S
mis’ = P9 — Z P (i, t), (29)
i=1
where
Ny,
P =P (i,t) = ) P, (irt). (30)

i=1

(4) The power generation of z th unit is set to preferable
value within its boundary in order to reduce the mis-
match, but due to ramp rate limitation the boundary
limits are reduced according to previous hours and
upper/lower limit and mis’ will be calculated.

(5) If mis’ is not within acceptable limit, once again z,
will be generated and Steps 2 to 4 continue until mis’
reduces to acceptable limit.

This process will be implemented for every hour to
balance generated power at each hour.

In any metaheuristic algorithm the constraint handling
techniques are very crucial factor. But the problem adopted in
this research is not only nonlinear but also highly nonconvex
in nature as shown in Figures 1, 2, and 3. The basic techniques
like Lagrangian multiplier can be used to handle such
complex constraints but with the cost of accuracy as this
technique requires linearization which additionally increases
the time consumption. On the other hand penalty factor
method can also be used which forcibly brings the infeasible
solutions into feasible region. The selection of penalty factor
is very complex considering the complexity and vastness of
the problem. Also due to highly restricted feasible region
of the search space which is actually scattered around the
search space, the penalty factors are not that effective as the
proposed heuristic technique shown above. The proposed
rectification based technique efficiently brings the infeasible
solutions into the feasible region compared to that by penalty
factor method.

Algorithm Implementation

(a) After creating the subpopulations according to Sec-
tion 3 (i), the positions are modified according to
constraint handling techniques given in previous two
sections and evaluated for fitness value, using

1
fit (X;) = T(X,) 31)

where X is the jth individual of the population.
f(X ;) is the function value evaluated by (la) and (1b)
of the concerned position.

In case of multiple objectives, fitness value will be
found using (31) for both objectives followed by
membership function evaluation using (24) and best
compromised solution will be found by (25). In every
step this procedure needs to be followed to accurately
find the best compromised solution.

(b) For each individual according to the grey wolf opti-
mization phase the better individuals will be selected
modifying the population.

(c) The new positions will be evaluated using (31) after
constraint handling techniques and based on better
fitness value another subpopulation (modified sub-
population) will be created.

(d) Each individual of population will create another
position according to (21). The new positions are
evaluated for fitness value.
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TABLE 1: Parameters used for test systems in algorithms.
Test System I Test System II
Maximum cycle number Maximum cycle number
(M) = 3500 (M) = 3500
Limit = 25 Limit = 35

Population size = 40 Population size = 80

(e) Based on the fitness values of new found positions
and their concerned individual of population found
in Step (c), a final population of same size will be
created.

(f) The best solution of final population will be consid-
ered as global best.

(g) Finally, an iteration counter increases.

Steps (b)-(g) will continue until iteration counter reaches
M,.

For multiple objectives, instead of best solution best
compromised solution needed to be found. In that case the
global best compromised solution can be calculated using
pareto optimal front given in (23). After that based on the
membership function global best solution will be evaluated.

5. Numerical Result

In this section, two test systems are considered for exper-
imentation of the performance of proposed algorithm on
HTUC problem. The scheduled time period for both systems
is taken as 24 hours. The objective of these studies is to
showcase the effectiveness of 1-ABC/GWO to handle HTUC
under various scenarios.

5.1. Parameter Selection. 'The parameters of the h-ABC/GWO
are tuned manually and reported in Table 1 along with
ABC and GWO algorithm. The developed algorithms are
run independently with different maximum cycle number
(M) keeping other parameters constant. It is observed from
the convergence characteristics that the algorithms converge
before 3500 iterations for Test System I and the same is
for Test System II as well. So, in order to compare the
convergences of different algorithms M; is set to the value
as in Table 1. The rest of the other parameters of individual
algorithms are found by trial and error method.

5.2. Results. The mentioned algorithms are coded in MAT-
LAB (Version: 8.1.0.604 (R2013a)) environment and simu-
lated on Dell XPS15 (2760QM?, Intel configured), 3rd Gener-
ation Quad-Core i7 Processor ~3.2 GHz processor speed and
12GB RAM.

5.2.1. Test System I Test System I [27] consists of four
hydro and ten thermal units. The hydro units are connected
in a multichain cascaded formation. The detailed data for
hydro units are taken from literature [6] and essential data
regarding thermal units and required load are taken from
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[21]. Valve point loading effect for thermal units is taken into
consideration in the fuel cost function.

This system is solved in two different scenarios. In first
scenario (Case I) all the hydro limitations are considered
along with thermal generation limitation (see (9)-(13)) while
in second case (Case II) all the limitations of Section 2 are
considered.

The number of dimensions in the multidimensional
search space or decision variables in Case I is 24 = (4 +
10) = 336, with 4 + 24 = 28 equality and 96 inequality
constraints while in second case due to accumulation of
binary variables, the total decision variable increases to
576 with added complexity due to ramping restriction and
intertemporal limitations.

Single Objective Environment

Case I. In this case the thermal power is distributed by con-
ventional load dispatch [34] technique without any influence
of intertemporal constraints. The mentioned algorithms are
simulated 10 times independently and successively and the
best solution obtained is $165921.53 by h-ABC/GWO. The
solutions of finest individuals found by mentioned algorithms
are given in Table 2 Case I column with respect to best,
worst, and average solution (of 35 simulations) along with the
result of mixed-integer nonlinear programming (MINLP),
small population based PSO, and improved DE published in
literature [27, 35] and the convergence characteristics for h-
ABC/GWO, ABC, GWO, SPPSO, IDE, and MINLP are shown
in Figure 5(a). The MINLP modelling of this test case is
performed on GAMS software using BONMIN solver.

From Table 2 and Figure 5, it is observed that there is a
significant improvement in the performance of the proposed
algorithm as compared to the normal GWO due to added
diversity through hybridization in terms of convergence and
quality of solutions. It is also shown that the convergence
rate for MINLP is far better than h-ABC/GWO. But the
optimal solution of MINLP is very poor with respect to other
solutions, which prove higher nonconvexity in the search
space. The position (X) in optimal condition, comprising
hydro discharges and thermal generations, is shown in Table 3
in hour basis. The water content of every reservoir at each
hour can be found using (3). It is evident that --ABC/GWO
algorithm has much faster convergence rate than GWO and
ABC. It also avoids premature convergence.

Case II. In this scenario, after hydro power production,
the rest of required power is distributed among available
thermal units by unit commitment coordination [16], where
the thermal power distribution is performed using unit com-
mitment, which calls for binary variables in order to define
commitment status of thermal units. Due to the mentioned
intricacy and additional intertemporal limitations, the search
space becomes more nonlinear and vast. The algorithms
mentioned in Section 5.1 are implemented on this scenario
too and the best solution comes out to be $271736.07 found
by h-ABC/GWO. GWO and ABC algorithm are also used to
solve the same and the comparison with respect to best, worst,
and average solution for 35 consecutive simulations is given in
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TABLE 2: Performance comparison for Test System I (Case I and Case II).
Algorithm Casel Case II

Best Worst Time Best Worst Time
h-ABC/GWO 165921.53 170201.83 202.59 Sec 271736.07 475124.26 394.61 Sec
ABC [34] 168386.23 183044.84 213.89 Sec 281645.19 489542.39 1023.64 Sec
GWO [32] 180356.68 195635.44 242.65 Sec 325689.26 524586.69 536.98 Sec
SPPSO [27] 167710.56 — — — —
IDE [35] 170576.50 — — — —
MINLP [37] 208706.20 — 105.23 Sec — — —

TABLE 3: Performance comparison for Test System II for both Cases I and II in single objective environment.
Algorithm Case I 4 Case II ‘

Best Worst Time Best Worst Time
h-ABC/GWO 3411361.47 3814805.07 424.36 Sec 4604300.83 6653645.64 394.61 Sec
ABC [34] 3923430.55 4811261.91 443.59 Sec 4828932.22 6453793.64 1506.64 Sec
GWO [32] 4259836.27 5037176.67 797.53 Sec 5315693.34 7037176.67 624.64 Sec
CSA [31] 3503527.75 — 4823256.68 — —
MINLP [37] 4023565.36 — 212.56 Sec — — —

Table 2 in Case II column. Figure 5(b) shows the convergence
characteristics of different algorithms proving better solution
quality for hi-ABC/GWO.

5.2.2. Test System II. In Test System II the number of
dimensions is even higher than Test System I and contains
almost all the features of a practical hydrothermal system. It
incorporates 44 hydro units and 54 thermal units. The hydro
system [31] comprises a large multichain hydro network
connected together in a cascaded formation. The divisions
of water from 20th, 24th, 28th, and 30th hydro units to their
downstream units are taken as decision variable.

The thermal system [38] comprises two subsystems of 40
and 13 units. The feature of 54th unit is the same as 53rd unit.

This system is solved in two different scenarios like Test
System L. In Case I the number of variables is 24 = 44 + 24 =
54 + 4 (for the diversion of water) = 2356 as thermal power
distribution is performed by economic load dispatch while in
Case IT the number of decision variables is 24 * 44 + 24 = 54 +
24 % 54 + 4 = 3652 due to inclusion of unit commitment as
subproblem. The complexity of this problem is higher than
Test System I not only due to additional limitations but also
for more complicated structure of the hydro network.

Case I. In this case all hydro limitations are considered with
thermal power generation limitation for thermal subproblem.
Table 1 shows different parameters for the algorithms (h-
ABC/GWO, ABC, and MINLP) used. The optimized cost for
this scenario is found out to be $3,411,361.47.

In order to verify, the results are compared with [31] in
Table 3 of Case I column. The convergence characteristics of
mentioned algorithms are shown in Figure 6(a). It is observed
that there is a significant difference between the performances
of h-ABC/GWO and GWO algorithm. h-ABC/GWO has
outperformed GWO and ABC in terms of convergence rate
and quality of solutions obtained. It also gives better result

over the newly proposed Clonal Selection Algorithm (CSA)
reported in [31].

The convergence characteristics show that the h-ABC/
GWO is far better than the other mentioned algorithms. The
reason behind this vast difference in terms of solution quality
for these two algorithm is firstly the lack of diversity in the
multidimensional search space and secondly the attraction
towards local optimum resulting premature convergence,
which is basically a reverse effect of high intensity depth
search. Due to lower enormity and inferior nonlinearity
in the search space of first problem (with comparison to
the second), GWO could reach desired diversity to provide
acceptable solution where the effect of premature conver-
gence can be countered with higher population number. But
to find an acceptable solution for second problem where the
search space is massive with higher nonlinearity requires an
algorithm having the capability to provide massive diversity
in the multidimensional search space along with controlled
depth search.

Case II. In this scenario Test System II is solved considering
all the limitations of Section 2. The required demand in this
case is taken 1 GW less than in Case I for providing sufficient
feasible region in nonlinear, nonconvex search space. The
problem is also solved by h-ABC/GWO, GWO, and ABC
algorithm and optimal solutions are shown in Table 3, Case
II column. However data used to solve the problem is not
provided in the paper for limited space but will be provided
if required. The optimum solution in this case is found to
be $4,604,300.83. From the convergence characteristics of
Figure 6(b) the superiority of ~-ABC/GWO over GWO and
ABC in terms of solution quality is proved.

Multiobjective Environment. In multiobjective environment
the production cost and emission are considered as the
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FIGURE 5: (a) Convergence characteristic of different algorithms for Test System I, Case I. (b) Convergence characteristic of different
algorithms for Test System I, Case II.
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FIGURE 6: (a) Convergence characteristic of different algorithms for Test System II, Case I. (b) Convergence characteristic of different
algorithms for Test System II, Case II.

two objectives as mentioned earlier. Both the objectives are  solutions with respect to best and worst solutions are given
needed to be reduced as much as possible. in Table 4 including time consumption with various other
established algorithms like, ABC, GWO, IDE, and recent
5.2.3. Test System I. This problem is solved using the same  state of the art MINLP algorithm. And the convergence
parameter shown in Section 5.2.1 for both the cases. The  characteristics for both cases are shown in Figure 7.
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TABLE 4: Performance comparison for Test System I for both Case I and Case II in multiobjective environment.
Algorithm Best Worst
Cost Emission Time Cost Emission Time
h-ABC/GWO 113295.63 19536.65 452.69 123569.65 23326.65 463.59
ABC [34] 167386.23 21831.56 745.36 135643.96 23549.95 745.36
GWO [32] 178546.35 22469.49 721.49 154937.19 24987.48 456.19
IDE [35] 134649.96 234697.49 748.59 194853.15 3149719 489.46
MINLP [37] 123494.46 200349.45 451.74 — — —
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FIGURE 7: Convergence characteristic of (a) production cost and (b) emission for Test System I.

From the convergence characteristics, it is clear that
the #-ABC/GWO algorithm is better than other mentioned
algorithms in terms of convergence, solution quality, and time
consumption.

5.2.4. Test System I1. Like the previous section in this case also
Test System II is solved under the influence of the parameter
used in Section 5.2.2. The comparative performance of
proposed algorithm and convergence characteristics of the
same with respect to other established algorithms is shown
in Table 5 and Figure 8 along with time consumption. From
these results also the superiority of --ABC.GWO can further
be consolidated.

In addition to this it is seen that the convergence and time
consumption for h-ABC/GWO algorithm are considerably
large in case of Test System IT compared to those in Test Sys-
tem I for both single and multiobjective environment, which
suggest that Test System II is much more complicated than
Test System I. But even so the proposed algorithm efficiently
solves the problem within acceptable time duration.

The reason for such efficiency of the proposed algorithm
is due to using the more sophisticated and efficient exploita-
tion technique of GWO algorithm instead of onlooker bee
phase of ABC algorithm. These phenomena give the algo-
rithm necessary attribute to efficiently search the globally
best solution from such complicated and vast search space.
Also the effect of proposed constraint handling technique
mentioned in Section 4 is considerable. Due to the use of this
technique more than 90% of the solutions of the population
are feasible for Test System I and more than 80% of solution
gets feasible for Test System II. This observation points to the
fact that Test System II is much more complicated than first
test system.

6. Conclusion

The hydrothermal unit commitment coordination (HTUC)
is modelled having included various limitations of hydro and
thermal subsystems. The analysis is performed based on an
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TABLE 5: Performance comparison for Test System II for both Case I and Case II in multiobjective environment.

. Best Worst
Algorithm
Cost Emission Time Cost Emission Time
h-ABC/GWO 2259863.56 438592.35 1523.32 2456965.58 440015.20 1589.26
ABC [34] 2667386.23 438312.56 1689.36 2785952.63 445963.56 1702.25
GWO [32] 3498830.99 671839.44 1559.45 3925696.54 675895.68 1517.26
MINLP [37] 5939758.65 542569.65 936.36 — — —
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FIGURE 8: Convergence characteristic of (a) production cost and (b) emission for Test System IL

efficient optimization algorithm for better performance. A
hybridized approach of ABC and GWO is presented in this
work in both single and multiobjective environment. This
proposed method is tested with two different test systems
in different scenarios. Though the proposed method is
performing better than other mentioned algorithms through
thorough analysis, it is found that, in case of Test System I,
where the number of variables is comparatively low, the h-
ABC/GWO helps to improve robustness and convergence.
But in Test System II (where the number of variables is
considerably high) the proposed approach not only improves
the convergence but also successfully avoids the local opti-
mum along with better robustness. The computation time
and cost function are improved by the proposed method
and are compared with other methods. The computation
performance is found to be significantly superior to the
proposed method using hybridization. Superiority of the
proposed h-ABC/GWO algorithm is further consolidated
through experimentation with a larger system with faster
convergence and better quality of solutions.

Nomenclature

Nh:
Ng:

T:

T, (1):
R, (i):
Ih(i, t)

S, (i, 1):
Vh(i, t)

Qh(i) t):

Pp(t): _
P, 1) /P (G, t):

Q™ (i, )/ Q™ (i, t):

Unit number

Number of hydro units

Number of thermal units

Scheduled time (1 day (24 hours))
Time delay of ith hydro unit from
mth upstream unit

Set of upstream plant of ith unit
Inflows to ith hydro unit at tth time
Spillage of ith hydro unit at ¢th time
Reservoir volume or water content of
ith hydro unit at ¢th time

Discharge from ith hydro unit at tth
time [the first set of decision
variables as shown in Section 4 (Q;,)]
Load demand at time “¢”
maximum/minimum power limit of
ith hydro unit at ¢th time
Maximum/minimum discharge limit
of ith hydro reservoir at tth time
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Vi@, 0V, in(j,t): Maximum/minimum volume limit of
ith hydro reservoir at tth time

P& (i, 1) Pg" ™(i,t): Maximum/minimum power limit of
ith thermal unit at ¢th time

P,(i,1): Power from ith hydro unit at ¢th time

P.(i,1): Power from ith thermal unit at tth
time [the second set of decision
variables as shown in Section 4 (P;)]

I(i, t): ON/OFF status of ith thermal unit
(“0” or “17)

T () Initial status of ith thermal unit

TON/OFE (3. Minimum ON/OFF time of ith
thermal unit

TCOM (i) Minimum cold start time of ith
thermal unit

XON/OFE(j 4. Time duration for which ith thermal
unit has been ON/OFF at tth hour

UR(i), DR(7): Up and down ramp rate limit of ith
thermal unit

CS(i), HS(7): Cold and hot start cost of ith thermal
unit.
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