
Research Article
Hybridization of Adaptive Differential Evolution with
an Expensive Local Search Method

Rashida Adeeb Khanum,1 Muhammad Asif Jan,2

Nasser Mansoor Tairan,3 and Wali Khan Mashwani2

1Department of Mathematics, Jinnah College for Women, University of Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
2Department of Mathematics, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa 26000, Pakistan
3College of Computer Science, King Khalid University, Abha 61321, Saudi Arabia

Correspondence should be addressed to Muhammad Asif Jan; majan.math@gmail.com

Received 27 December 2015; Revised 9 June 2016; Accepted 14 June 2016

Academic Editor: Manlio Gaudioso

Copyright © 2016 Rashida Adeeb Khanum et al.This is an open access article distributed under the Creative CommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

Differential evolution (DE) is an effective and efficient heuristic for global optimization problems. However, it faces difficulty
in exploiting the local region around the approximate solution. To handle this issue, local search (LS) techniques could be
hybridized with DE to improve its local search capability. In this work, we hybridize an updated version of DE, adaptive differential
evolution with optional external archive (JADE) with an expensive LS method, Broydon-Fletcher-Goldfarb-Shano (BFGS) for
solving continuous unconstrained global optimization problems. The new hybrid algorithm is denoted by DEELS. To validate
the performance of DEELS, we carried out extensive experiments on well known test problems suits, CEC2005 and CEC2010. The
experimental results, in terms of function error values, success rate, and some other statistics, are compared with some of the state-
of-the-art algorithms, self-adaptive control parameters in differential evolution (jDE), sequential DE enhanced by neighborhood
search for large-scale global optimization (SDENS), and differential ant-stigmergy algorithm (DASA). These comparisons reveal
that DEELS outperforms jDE and SDENS except DASA on the majority of test instances.

1. Introduction

Optimization is concerned with finding best solution for an
objective function. In general, an unconstrained optimization
problem can be stated as follows: Find global optimum x∗ of
an objective function 𝑓(x), where x = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
) ∈ 𝑅𝑛

and 𝑛 is the dimension of the problem.
Evolutionary algorithms (EAs) are inspired from Dar-

winian theory of evolution [1]. They are very efficient for
finding global optimumofmany real world problems, includ-
ing problems from mathematics, engineering, economics,
business, and medicines. EA family consists of a variety of
stochastic algorithms, like Genetic Algorithms (GAs) [2],
Particle Swarm Optimization (PSO) [3, 4], Evolutionary
Strategies (ES) [5], and differential evolution algorithm (DE)
[6, 7].

Among EAs, DE is the most recent algorithm and is
efficient in solving many optimization problems. DE has

many advantages. For example, it is simple to understand and
implement, has a few control parameters, and is robust [8].
There is no doubt that DE is a remarkable optimizer for many
optimization problems. But it has few limitations, like stagna-
tion, premature convergence, and loss of population diversity
[9, 10]. Being a global optimizer, DE suffers from searching
the neighborhood of the approximate solution to the given
problem. This makes room for hybridizing DE with other
techniques to improve its poor exploitation (exploring the
neighborhood of the approximate solutions). On the other
hand, the role of LS methods is to stabilize the search
especially in the environs of a local optimum.Thus, they can
be combined with global search algorithms to enhance their
local searching.

The main aim of this paper is to experiment with and
validate the performance of our newly proposed hybrid algo-
rithm, DEELS, which combines JADE [11, 12] and BFGS [13].
As a result, we want to see whether this hybridization will

Hindawi Publishing Corporation
Journal of Optimization
Volume 2016, Article ID 3260940, 14 pages
http://dx.doi.org/10.1155/2016/3260940

2 Journal of Optimization

improve the performance of JADE further. Contrary to our
published preliminary work [14], this paper presents DEELS
in full depth. It also comments on the performance of DEELS
for large-scale global optimization problems with dimension
1000. Moreover, in contrast to our previous published com-
parison with JADE only [14], this time DEELS is compared
with jDE [15], SDENS [16], and DASA [17] on problems
from CEC2005 and CEC2010 test suits to further explore the
capabilities of DEELS for handling small and large dimension
problems.

The rest of this paper is organized as follows. Section 2
describes the basic DE, JADE, and the BFGS algorithms.
Section 3 presents literature review. Section 4 presents pro-
posed algorithm. Section 5 gives the experimental results, and
finally Section 6 concludes this paper and discusses future
research direction.

2. Some Relevant Existing Methods

Asmentioned earlier, DEELS depends upon JADE and BFGS.
Thus, this section presents the basic operators of DE, JADE,
and BFGS.

2.1. Basic DE. Differential evolution (DE) [6, 7] is a recently
developed bioinspired scheme for finding the global opti-
mum x∗ of an optimization problem. This section briefly
reviews the DE algorithm. More details about it can be found
in [18–22]. The working of DE can be described as follows.

2.1.1. Parent Selection. For each member x
𝑖
, 𝑖 = 1, 2, . . . , 𝑁

𝑝
,

of the current generation𝐺, three othermembers, x
𝑟
1

, x
𝑟
2

, and
x
𝑟
3

, are randomly selected, where 𝑟
1
, 𝑟
2
, and 𝑟

3
are randomly

chosen indices such that 𝑟
1
, 𝑟

2
, and 𝑟

3
∈ {1, 2, . . . , 𝑁

𝑝
} and

𝑖 ̸= 𝑟
1

̸= 𝑟
2

̸= 𝑟
3
. Thus, for each individual, x

𝑖
, a mating pool

of four individuals is formed in which an individual x
𝑖
breeds

against three individuals and produces an offspring.

2.1.2. Reproduction. To generate an offspring, DE incorpo-
rates two genetic operators, mutation and crossover.They are
detailed as follows:

(1) Mutation. After selection, mutation is applied to pro-
duce a mutant vector k

𝑖
, by adding a scaled difference

of the two already chosen vectors to the third chosen
vector; that is,

k
𝑖
= x

𝑟
1

+ 𝐹 (x
𝑟
2

− x
𝑟
3

) , (1)

where 𝐹 ∈ (0, 1) is the scaling factor.
(2) Crossover. After mutation, the parameters of the

parent vector x
𝑖
and mutant vector k

𝑖
are mixed by a

crossover operator and a trial member u
𝑖
is generated

as follows:

𝑢
𝑖,𝑗
=
{
{
{

V
𝑖,𝑗
, if rand

𝑗
(0, 1) ≤ CR;

𝑥
𝑖
, otherwise,

(2)

where 𝑗 ∈ {1, 2, . . . , 𝑛}.

2.1.3. Survival Selection. At the end, the trial vector generated
in (2) is compared with its parent vector on the basis of its
objective function value.The best of the two will get a chance
to become a member of the the new generation; that is,

x
𝑖+1

=
{
{
{

u
𝑖
, if 𝑓 (u

𝑖
) ≤ 𝑓 (x

𝑖
) ;

x
𝑖
, otherwise.

(3)

2.2. JADE. JADE [11] is an adaptive version of DE which
modifies it in three aspects.

2.2.1. DE/Current/to-𝑝best Strategy. JADE utilized twomuta-
tion strategies: one with external archive and the other
without it. These strategies can be expressed as follows [11]:

k
𝑖
= x

𝑖
+ 𝐹

𝑖
(x𝑝best − x

𝑖
) + 𝐹

𝑖
(x

𝑟
1

− x̃
𝑟
2

) , (4)

k
𝑖
= x

𝑖
+ 𝐹

𝑖
(x𝑝best − x

𝑖
) + 𝐹

𝑖
(x

𝑟
1

− x
𝑟
2

) , (5)

where x𝑝best is a vector chosen randomly from the top 𝑝%
individuals and x

𝑖
, x

𝑟
1

, and x
𝑟
2

are chosen from the current
population𝑃, while x̃

𝑟
2

is chosen randomly from𝑃∪𝐴, where
𝐴 denotes the archive of JADE and 𝑝 is a constant chosen as
0.5. In DEELS, we will utilize the strategy given in (4).

2.2.2. Control Parameters Adaptation. For each individual x
𝑖
,

control parameter 𝐹
𝑖
and the crossover probability CR

𝑖
are

generated independently from Cauchy and normal distribu-
tions, respectively, as follows [11]:

𝐹
𝑖
= rand (𝜇𝐹, 0.1) , (6)

CR
𝑖
= rand (𝜇CR, 0.1) . (7)

These are then truncated to (0, 1] and [0, 1], respectively.
Initially, both 𝜇𝐹 and 𝜇CR are set to 0.5. They are then
updated at the end of each generation as follows:

𝜇𝐹 = (1 − 𝑐) 𝜇𝐹 + 𝑐 ⋅mean
𝐿
(𝑆
𝐹
) , (8)

𝜇CR = (1 − 𝑐) 𝜇CR + 𝑐 ⋅mean
𝐴
(𝑆CR) , (9)

where mean
𝐿
denotes the Lehmer mean and mean

𝐴
denotes

the arithmetic mean and 𝑆
𝐹
is the set of successful 𝐹

𝑖
’s while

𝑆CR is the set of successful CR
𝑖
’s at generation 𝐺.

2.2.3. Optional External Archive. At each generation, the
failed parents are sent to the archive. If the archive size
exceeds 𝑁

𝑝
, some solutions are randomly deleted from it to

keep its size equal to𝑁
𝑝
. The archive inferior solutions play a

roll in JADE’s mutation strategy with archive.The archive not
only provides information about direction but improves the
diversity as well.

2.3. BFGS. The BFGS method, also known as the quasi
Newton algorithm, employs the gradient and Hessian in
finding a suitable search direction. BFGS is considered as a
good LS method due to its efficiency. The detailed algorithm
of BFGS is presented in Algorithm 1.

Journal of Optimization 3

Input: error: desired accuracy;
𝛾: number of iterations.
x: the starting vector.
H: The Hessian matrix, initalize as identity matrix.

(1) 𝑖 = 0.
(2) while 𝑖 < 𝛾 do
(3) Find the difference d

𝑥
= x

𝑖+1
− x

𝑖
;

(4) Compute the difference of gradients d
𝑔
= ∇𝑓(x

𝑖+1
) − ∇𝑓(x

𝑖
);

(5) if d
𝑥

̸= 0 and d
𝑔

̸= 0 then
(6) 𝑡𝑒𝑚𝑝

1
= d

𝑔
H
𝑖
d
𝑔
;

(7) 𝑡𝑒𝑚𝑝
2
= d

𝑥
d
𝑔
;

(8) Revise the Hessian matrix as:

H
𝑖+1

= H
𝑖
+
(d

𝑥
d
𝑥
)(1 + (𝑡𝑒𝑚𝑝

1
/𝑡𝑒𝑚𝑝

2
))

𝑡𝑒𝑚𝑝
2

−
(H

𝑖
d
𝑔
d
𝑥
+ d

𝑥
d
𝑔
H
𝑖
)

𝑡𝑒𝑚𝑝
2

(9) end if
(10) Compute the search direction s

𝑖
by using the current Hessian matrix s

𝑖
= −H

𝑖
∇𝑓(x

𝑖
);

(11) Calculate 𝛼
𝑖
by golden section method [23];

(12) x
𝑖+1

= x
𝑖
+ 𝛼

𝑖
s
𝑖
;

(13) end while
Output: x

𝑖+1
is the output of the algorithm.

Algorithm 1: Pseudocode of BFGS method [23].

3. Brief Review of Variants of
DE and Hybridization of DE with
Local Search Methods

To improve the performance ofDE,many researchers devised
modifications to the classic DE and proposed different vari-
ants. Some researchers modified the selection scheme [24],
while others varied mutation and crossover operators [25].
Recently, in [26], orthogonal crossover was used instead of
binomial and exponential crossover. Some have introduced
new variants like opposition based DE (ODE) [27], centroid
based initialization (ciJADE) [28], jDE [15], and genDE [8],
while others introduced adaptation and self-adaptation of
control parameters 𝐹 and CR as in [29, 30], SaDE [31],
JADE [11, 12], SHADE [32], and EWMA-DECrF [33]. Some
introduced cooperative coevolution into DE for large-scale
optimization [34]. A group of researchers applied it to
discrete problems [35, 36], while others take advantage of its
global search ability in continuous domains [26, 37–40].

In recent years, the hybridization of DE with LS methods
has gained much attraction due to their individual merits.
Many hybrid algorithms have shown significant performance
improvement. Here, we review some of the methods in this
category.

A new differential evolution algorithm with localization
around the best point (DELB) is proposed in [41]. In DELB,
the initial steps are the same as those in DE except that the
mutation scale factor 𝐹 is chosen from [−1, −0.4] ∪ [0.4, 1]
randomly for each mutant vector. DELB also modifies the
selection step by introducing reflection and contraction. The
trial vector is compared with the current best and the parent
vector. If the parent is worse than the trial vector, it is replaced

by a new concentrated or reflected vector. In DELB, the trial
vector can be replaced by its parent vector or reflected vector
or contracted vector, while in classic DE only the trial vector
replaces the parent.

Recently in [42], DE is hybridized with nonlinear simplex
method. This method is known as NSDE. The authors of
[42] applied nonlinear simplexmethodwith uniform random
numbers to initialize DE population. Initially,𝑁

𝑝
individuals

are generated uniformly and then next 𝑁
𝑝
are generated

from these𝑁
𝑝
points by application of Nelder-Mead Simplex

(NMS). Now from 2𝑁
𝑝
population, the fittest𝑁

𝑝
are selected

as DE’s initial population and the rest of DE is unaltered
in NSDE. Thus, NSDE modifies DE in the population step
only. It has shown good performance in reducing function
evaluations and CPU time.

In another experiment, Brest et al. [43] hybridized DE
with Sequential Quadratic Programming (SQP), an effi-
cient but expensive gradient-based LS method. Their hybrid
applies the DE algorithm until function evaluations reach
30% of the maximum function evaluations. It then applies
SQP for the first time to the best point thus obtained.
Afterwards, SQP is applied after every 100 generations to the
best solution of the current search. Expensive local search
iteration number is set to ⌊√dimension/5⌋. In their hybrid,
the population size keeps reducing and the process ends with
minimumpopulation size. DEprovides the userswith flexible
offspring generation strategies [44]. Hence, hybridization of
DEwill continue to remain an active field ofmultidisciplinary
research in the years to come.

Thus, we present a new algorithm, DEELS, which utilizes
an expensive local search for refining the solutions. The
details of DEELS are presented in the following section.

4 Journal of Optimization

4. A New Hybrid Algorithm: DEELS

In this section, we present our new proposed algorithm,
DEELS, which is the combination of two methods with con-
trasting features. First, we will discuss themain features of the
algorithm.Then, we will describe it explicitly.

4.1. Main Idea. Though JADE, due to its adaptive parameter
control strategy, performs better than classic DE on many
optimization problems, however, its performance worsens
with the increase in dimension. BFGS is a LS technique
which has a strong self-correcting ability [45] in searching the
optimal solution, but it is not globally as good as JADE. The
important question is how to reconcile two different aspects
to solve the minimization problem.

A very natural way would be to hybridize these two tech-
niques, JADE and BFGS, together for solving unconstrained
optimization problems.The issue is how to combine them in a
waywhich is easy to understand and implement.Manyhybrid
approaches incorporate expensive methods to find the best
solution. But, here, the new algorithm incorporates the robust
and costly method not only for refining good solutions, but
for locating them in the population during the search process.

DEELS begins with JADE and allows it to search for 𝜉
generations. It then selects the 𝑞 best individuals from this
population and applies to them the expensive LS, that is,
BFGS, for the first time. The objective of applying efficient
search is tomake thempotential individuals to produce better
offspring and lead the search in promising directions. These
are then introduced into the population and the worse 𝑞
solutions are removed from it.

The purpose of calling BFGS after 𝜉 generations is to
concentrate the population and add local search ability to
the overall scheme and thus help it avoid getting trapped
in the local optimal solutions. For these reasons, BFGS is
invoked two more times in the evolution, with an interval of
𝜉 generations. If function value is less than a threshold 𝑒𝑟𝑟𝑜𝑟,
this means that it is in the neighborhood of the value to reach
and this current best solution might lead the search to the
desired optimal solution. Hence, it is desirable to apply the
efficient LS by more than one iteration to this best solution.
Thus, BFGS is applied by 𝜍 iterations when the best solution
is in the vicinity of a local optimum. If the output solution of
BFGS is the best known solution, then the algorithm stops;
otherwise, it continues until the allowed maximum number
of function evaluations is met.

In [43], the population size is reduced dynamically, while
in our hybrid algorithm, we keep the population size fixed,
since reducing the population size might result in losing
population diversity, which is very important for DE. DEELS
has gotmuch inspiration from the state-of-the-art paper [46].
We apply expensive LS in combination with an EA (DE)
instead of their inexpensive LS. In [46], bothmethods are LSs,
while DEELS combines BFGS with JADE to investigate the
effect of combing an EA with a LS method. In [46], a restart
is also incorporated, while this is not necessary in DEELS.

4.2. Algorithmic Framework of DEELS. The details of DEELS
are given inAlgorithm2.Here, we explain the different strate-
gies used in DEELS.

4.2.1. Global Search. JADE improves the population of solu-
tions by updating it from generation to generation with the
help of genetic operators, mutation, and crossover. These
operators help the search by producing promising solutions.
JADE also possesses global search ability and thus adds it to
DEELS. Moreover, JADE being a population based method
can keep the diversity of the population and thus decreases
the chances of DEELS getting trapped in local optima.

4.2.2. LS. The BFGS method has very strong self-correcting
properties (when the right line search is used). If, at some
iteration, the Hessian matrix contains bad curvature infor-
mation, it has the ability to correct these inaccuracies by only
few updates [45]. For this reason, BFGS generally performs
very well, and once in the neighborhood of a minimizer
it can attain superlinear convergence [45]. Though BFGS is
efficient, it is a costly method, since it computes the gradient
at the given point, which utilizes 2𝑛 function evaluations
per gradient in DEELS. Further, it approximates the Hessian
matrix H, which is an (𝑛 × 𝑛)matrix of second-order partial
derivatives [47], the computational cost of which is 𝑂(𝑛2)
per iteration [47]. BFGS needs 𝑂(𝑛2) function evaluations
per iteration [45]. Thus, the overall overhead of BFGS is also
𝑂(𝑛2) per iteration.

The BFGS method plays two roles in DEELS; first, it
is employed for generating promising solutions in the pop-
ulation after specified intervals of evolution. Secondly, it
improves the quality of the best solution found so far by JADE
and BFGS together.

Next, we explain what we mean by the terms concentra-
tion and refinement. As said earlier, the issue is to have an
easy-to-understand and easy-to-implement search process.
To achieve this, we need to rely on the fact that the problem is
to distinguish between ordering points of which we have a lot
and good ones (local optima) of which we have relatively few
and the best points (global optima) of which we, potentially,
may have only one or none.

Let us draw a diagram (see Figure 1) of the main process
which is to rely on LS to do a course clustering (i.e., bring
towards the basin of local optima of the majority of the good
points in the population) and a refinement step in which
hopefully the local optimum will be identified. It is clear
that, initially, this process will be rather ineffective because
of the sheer randomness of the population of solutions
as shown in Figure 1(a); unless we are very lucky, it is
unlikely to generate good points in the first population. But
the important thing is that the process will become more
and more effective as concentration takes its toll, on the
population (see Figure 1(c)).

4.2.3. Updating the Population. Adding promising solutions
to the population of DEELS and removing the worst points

Journal of Optimization 5

(1) Inputs: Generate𝑁
𝑝
uniform and random points, x

1
, x

2
, . . . , x

𝑁𝑝
from the search space to form population 𝑃;

(2) 𝑞: the number of points selected for LS;
(3) 𝛾: the number of iterations of LS for concentration;
(4) 𝜍: the number of iterations of LS for refining solution;
(5) 𝑁

𝑝
: population size;

(6) FES: number of function evaluations;
(7) 𝐺: generation counter;
(8) 𝜉: interval between the LS calls;
(9) error: desired accuracy for LS method;
(10) 𝜇CR = 0.5, 𝜇𝐹 = 0.5;
(11) Evaluate the population;
(12) Set FES = 𝑁

𝑝
and 𝐺 = 0;

(13) while FES < 𝑀𝑎𝑥𝐹𝑒V𝑎𝑙 do
(14) Start the algorithm with JADE by using (4) for generating mutant vector, (2) for trial vector,

(3) for best solution selection and (6) and (7) for adaptation of control parameters;
(15) Explore the population for 𝜉 generations.
(16) Sort the objective values;
(17) Select 𝑞 best points;
(18) for 𝑖 = 1 to 𝑞 do
(19) Apply 𝛾 iteration of BFGS to these 𝑞 points;
(20) if 𝑏𝑒𝑠𝑡V𝑎𝑙𝑜𝑓𝐵𝐹𝐺𝑆 < 𝑓(x∗) + 𝑒𝑟𝑟𝑜𝑟

0
then

(21) Break;
(22) else if 𝑏𝑒𝑠𝑡V𝑎𝑙𝑜𝑓𝐵𝐹𝐺𝑆 < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑏𝑒𝑠𝑡V𝑎𝑙 then
(23) Update the population 𝑃 by adding 𝑞 new points to it such that its size becomes𝑁

𝑝
+ 𝑞;

(24) Sort the objective values;
(25) Delete the 𝑞 worse individuals from 𝑃;
(26) end if
(27) end for
(28) Apply JADE to this new population until next 𝜉 generations;
(29) if 𝑓(x) − 𝑓(x∗) ≤ 𝑒𝑟𝑟𝑜𝑟

0
then

(30) Break;
(31) else
(32) 𝐺 = 𝐺 + 1;
(33) end if
(34) end while

Algorithm 2: Pseudocode of DEELS.

from it can improve the quality of offspring in the next
generations. As if good parents can produce good offspring,
worse parents also have the chance of producing worse
solutions. Hence, their removal can have a good effect on the
entire population. New potential solutions can also increase
the convergence rate.

4.2.4. Stopping Condition. DEELS stops when one or both of
the following conditions are met:

(1) The maximum number of function evaluations is
reached.

(2) |𝑓(x) −𝑓(x∗)| < 𝑒𝑟𝑟𝑜𝑟
0
, where x is the best individual

found in a run and x∗ is the known value to reach of
the test instance.

The maximum number of function evaluations is set to 3 ×
10+06 for CEC2010 test instances with dimension 1000, while
for 30-dimensional problems (CEC2005), these are chosen as
3 × 10+05.

5. Comparison Studies

This section reports on two sets of experiments. In Experi-
ment 1, DEELS is compared with jDE, while in Experiment 2,

6 Journal of Optimization

Initial random population

Local optimum

(a)

Local optimum

A bit concentrated population

(b)

Refined local optimumConcentrated solutions

x1

x2

x3

(c)

Figure 1: Concentration and refinement of solutions in a population.

DEELS is compared with SDENS andDASA. For comparison
with SDENS andDASA, the experimental results for the best,
median, mean, and standard deviation values are obtained
from [17]. Moreover, all the experiments are conducted in
MATLAB environment.

5.1. Experiment 1. In our preliminary results [14], DEELSwas
compared with JADE only, which is its internal optimization
technique. However, here we compare DEELS with another
state-of-the-art algorithm jDE [15], which is a self-adaptive
DE variant for 30-dimensional problems.

5.1.1. Test Instances for Experiment 1. To study the perfor-
mance of DEELS, we use CEC2005 test suit (see Table 1).This
test suit was especially designed for single-objective uncon-
strained continuous optimization. Further, it was developed
for low dimensions, for example, 30 and 50 dimensions. That
is why we selected these instances for our experimental study.
More details about these instances can be found in [48]. The
instances of CEC2005 can be divided into the following:

(i) Unimodal test instances (𝐹
1
–𝐹

5
).

(ii) Multimodal test instances:

(1) Basic multimodal test instances (𝐹
6
–𝐹

12
),

(2) Expanded multimodal test instances (𝐹
13
-𝐹
14
).

(iii) Hybrid composition test instance (𝐹
15
).

The 15th test instance, 𝐹
15
is designed by combining ten dif-

ferent benchmark functions, that is, two Rastrigin’s functions,
two Weirstrass’s functions, two Griewank’s functions, two
Ackley’s functions, and two Sphere functions. Its value to
reach is 120.

5.2. Parameter Settings for Experiment 1. The population size
𝑁
𝑝
is set to 75, because 𝑁

𝑝
should be between 2𝑛 and 4𝑛 as

suggested in [49]. Here, the problem dimension 𝑛 is set to 30
for all the test instances in both jDE and DEELS. The other
two parameters 𝐹 and CR are initially set to 0.5, since this
initial setting works well for all the test instances [11]. Later,
the parameter values used in JADE are adopted. The number
of elite solutions that undergo LS 𝑞 is chosen as 3. The inten-
sity of LS for concentration 𝛾 is set to 1 and the number
of iterations of LS for refining the solution 𝜍 is set to 3.

Journal of Optimization 7

Ta
bl
e
1:
CE

C2
00
5
te
st
in
st
an
ce
s.

Te
st
in
sta

nc
e

Te
st
in
sta

nc
es

de
fin

iti
on

𝑓
(
x∗
)

In
iti
al
iz
at
io
n
ra
ng
e

Va
lu
et
o
re
ac
h

𝐹
1

M
in
im

iz
e𝑓

1
=
∑
𝑛 𝑖
=
1
𝑧
2 𝑖
+
𝑓
bi
as
1
,

0
[
−
1
0
0
,
1
0
0
]
𝑛

−
45
0

w
he
re

z
=
x
−
o
an
d
x
=
(
𝑥
1
,
𝑥
2
,
.
.
.
,
𝑥
𝑛
)
,

w
he
re
𝑛
is
th
ed

im
en
sio

n
an
d
o
=
(
𝑜
1
,
𝑜
2
,
.
.
.
,
𝑜
𝑛
)
is
th
es

hi
fte

d
gl
ob

al
op

tim
um

.

𝐹
2

M
in
im

iz
e𝑓

2
=
∑
𝑛 𝑖
=
1
(
∑
𝑖 𝑗
=
1
𝑧
𝑗
)
2

+
𝑓
bi
as
2
,

0
[
−
1
0
0
,
1
0
0
]
𝑛

−
45
0

w
he
re

z
=
x
−
o
an
d
x
=
(
𝑥
1
,
𝑥
2
,
.
.
.
,
𝑥
𝑛
)
,

w
he
re
𝑛
is
th
ed

im
en
sio

n
an
d
o
=
(
𝑜
1
,
𝑜
2
,
.
.
.
,
𝑜
𝑛
)
is
th
es

hi
fte

d
gl
ob

al
op

tim
um

.

𝐹
3

M
in
im

iz
e𝑓

3
=
∑
𝑛 𝑖
=
1
(
1
0
6

)
(
𝑖
−
1
)
/
(
𝑛
−
1
)

𝑧
2 𝑖
+
𝑓
bi
as
3
,

0
[
−
1
0
0
,
1
0
0
]
𝑛

−
45
0

w
he
re

z
=
(
x
−
o)
∗
M

an
d
x
=
(
𝑥
1
,
𝑥
2
,
.
.
.
,
𝑥
𝑛
)
,

w
he
re
𝑛
is
th
ed

im
en
sio

n,
o
=
(
𝑜
1
,
𝑜
2
,
.
.
.
,
𝑜
𝑛
)
is
th
es

hi
fte

d
gl
ob

al
op

tim
um

.
M

is
th
eo

rt
ho

go
na
lm

at
rix

.

𝐹
4

M
in
im

iz
e𝑓

4
=
(
∑
𝑛 𝑖
=
1
(
∑
𝑖 𝑗
=
1
𝑧
𝑗
)
2

)
∗
(
1
+
0
.
4
|
𝑁
(
0
,
1
)
|
)
+
𝑓
bi
as
4
,

0
[
−
1
0
0
,
1
0
0
]
𝑛

−
45
0

w
he
re

z
=
x
−
o
an
d
x
=
(
𝑥
1
,
𝑥
2
,
.
.
.
,
𝑥
𝑛
)
,

w
he
re
𝑛
is
th
ed

im
en
sio

n
an
d
o
=
(
𝑜
1
,
𝑜
2
,
.
.
.
,
𝑜
𝑛
)
is
th
es

hi
fte

d
gl
ob

al
op

tim
um

.

𝐹
5

M
in
im

iz
e𝑓

5
=
m
ax
{
|
A
𝑖
x
−
B 𝑖
|
}
+
𝑓
bi
as
5
,

0
[
−
1
0
0
,
1
0
0
]
𝑛

−
31
0

w
he
re
𝑖
=
1
,
.
.
.
,
𝑛
,x
=
(
𝑥
1
,
𝑥
2
,
.
.
.
,
𝑥
𝑛
)
,𝑛

is
th
ed

im
en
sio

n,
A
=
𝑛
×
𝑛
m
at
rix

,𝑎
𝑖𝑗
ar
er

an
do

m
nu

m
be
rs
∈
[
−
5
0
0
,
5
0
0
]
,

de
t(A

)
̸
=
0
,A

𝑖
is
th
e𝑖
th

ro
w
of

A
,B

𝑖
=
A
𝑖
∗
o,

o
is
an
𝑛
∗
1
ve
ct
or
,a
nd

𝑜
𝑖
ar
er

an
do

m
nu

m
be
rs
∈
[
−
1
0
0
,
1
0
0
]
.

𝐹
6

M
in
im

iz
e𝑓

6
=
∑
𝑛
−
1

𝑖
=
1
(
1
0
0
(
𝑧
2 𝑖
−
𝑧
𝑖
+
1
)
2

+
(
𝑧
𝑖
−
1
)
2

)
+
𝑓
bi
as
6
,

0
[
−
1
0
0
,
1
0
0
]
𝑛

39
0

w
he
re

z
=
x
−
o
an
d
x
=
(
𝑥
1
,
𝑥
2
,
.
.
.
,
𝑥
𝑛
)
,

w
he
re
𝑛
is
th
ed

im
en
sio

n
an
d
o
=
(
𝑜
1
,
𝑜
2
,
.
.
.
,
𝑜
𝑛
)
is
th
es

hi
fte

d
gl
ob

al
op

tim
um

.

𝐹
7

M
in
im

iz
e𝑓

7
=
∑
𝑛 𝑖
=
1
(
𝑧
2 𝑖
/
4
0
0
0
)
−
∏
𝑛 𝑖
=
1
co
s(
𝑧
𝑖
/
√
𝑖
)
+
1
+
𝑓
bi
as
7
,

0
[
0
,
6
0
0
]
𝑛

−
18
0

w
he
re

z
=
(
x
−
o)
∗
M

an
d
x
=
(
𝑥
1
,
𝑥
2
,
.
.
.
,
𝑥
𝑛
)
,

w
he
re
𝑛
is
th
ed

im
en
sio

n
an
d
o
=
(
𝑜
1
,
𝑜
2
,
.
.
.
,
𝑜
𝑛
)
is
th
es

hi
fte

d
gl
ob

al
op

tim
um

.
M

is
th
el
in
ea
rt
ra
ns
fo
rm

at
io
n
m
at
rix

,M
=
M

(
1
+
0
.
3
|
𝑁
(
0
,
1
)
|
)
.

𝐹
8

M
in
im

iz
e𝑓
8
=
−
2
0
ex
p(
−
0
.
2
√
(
1
/
𝑛
)
∑
𝑛 𝑖
=
1
𝑧
2 𝑖
)
−
ex
p(
(
1
/
𝑛
)
∑
𝑛 𝑖
=
1
co
s(
2
𝜋
𝑧
𝑖
)
)
+
2
0
+
𝑒
+
𝑓
bi
as
8
,

0
[
−
3
2
,
3
2
]
𝑛

−
14
0

w
he
re

z
=
(
x
−
o)
∗
M
,x
=
(
𝑥
1
,
𝑥
2
,
.
.
.
,
𝑥
𝑛
)
,

𝑛
is
th
ed

im
en
sio

n,
an
d
o
=
(
𝑜
1
,
𝑜
2
,
.
.
.
,
𝑜
𝑛
)
is
th
es

hi
fte

d
gl
ob

al
op

tim
um

.
M

is
th
el
in
ea
rt
ra
ns
fo
rm

at
io
n
m
at
rix

.

𝐹
9

M
in
im

iz
e𝑓

9
=
∑
𝑛 𝑖
=
1
(
𝑧
2 𝑖
−
1
0
co
s(
2
𝜋
𝑧
𝑖
)
+
1
0
)
+
𝑓
bi
as
9
,

0
[
−
5
,
5
]
𝑛

−
33
0

w
he
re

z
=
x
−
o
an
d
x
=
(
𝑥
1
,
𝑥
2
,
.
.
.
,
𝑥
𝑛
)
,

w
he
re
𝑛
is
th
ed

im
en
sio

n
an
d
o
=
(
𝑜
1
,
𝑜
2
,
.
.
.
,
𝑜
𝑛
)
is
th
es

hi
fte

d
gl
ob

al
op

tim
um

.

𝐹
1
0

M
in
im

iz
e𝑓

1
0
=
∑
𝑛 𝑖
=
1
(
𝑧
2 𝑖
−
1
0
co
s(
2
𝜋
𝑧
𝑖
)
+
1
0
)
+
𝑓
bi
as
1
0
,

0
[
−
5
,
5
]
𝑛

−
33
0

w
he
re

z
=
(
x
−
o)
∗
M

an
d
x
=
(
𝑥
1
,
𝑥
2
,
.
.
.
,
𝑥
𝑛
)
,

w
he
re
𝑛
is
th
ed

im
en
sio

n
an
d
o
=
(
𝑜
1
,
𝑜
2
,
.
.
.
,
𝑜
𝑛
)
is
th
es

hi
fte

d
gl
ob

al
op

tim
um

.
M

is
th
el
in
ea
rt
ra
ns
fo
rm

at
io
n
m
at
rix

.

𝐹
1
1

M
in
im

iz
e𝑓

1
1
=
∑
𝑛 𝑖
=
1
(
∑
𝑘
m
ax

𝑘
=
0
[
𝑎
𝑘

co
s(
2
𝜋
𝑏
𝑘

(
𝑧
𝑖
+
0
.
5
)
)
]
)
−
𝐷
∑
𝑘
m
ax

𝑘
=
0
[
𝑎
𝑘

co
s(
2
𝜋
𝑏
𝑘

⋅
0
.
5
)
]
+
𝑓
bi
as
1
1
,w

he
re

0
[
−
0
.
5
,
0
.
5
]
𝑛

90
𝑎
=
0
.
5
,𝑏
=
3
,𝑘
m
ax
=
2
0
,z
=
(
x
−
o)
∗
M
,

𝑛
is
th
ed

im
en
sio

n,
o
=
(
𝑜
1
,
𝑜
2
,
.
.
.
,
𝑜
𝑛
)
is
th
es

hi
fte

d
gl
ob

al
op

tim
um

,

8 Journal of Optimization

Ta
bl
e
1:
C
on

tin
ue
d.

Te
st
in
sta

nc
e

Te
st
in
sta

nc
es

de
fin

iti
on

𝑓
(
x∗
)

In
iti
al
iz
at
io
n
ra
ng
e

Va
lu
et
o
re
ac
h

x
=
(
𝑥
1
,
𝑥
2
,
.
.
.
,
𝑥
𝑛
)
,a
nd

M
is
th
el
in
ea
rt
ra
ns
fo
rm

at
io
n
m
at
rix

.

𝐹
1
2

M
in
im

iz
e𝑓

1
2
=
∑
𝑛 𝑖
=
1
(
A
𝑖
−
B 𝑖
(
x)
)
2

+
𝑓
bi
as
1
2
,w

he
re

0
[
−
𝜋
,
𝜋
]
𝑛

−
46

0
A
𝑖
=
∑
𝑛 𝑗
=
1
(
𝑎
𝑖𝑗
sin

𝛼
𝑗
+
𝑏
𝑖𝑗
co
s𝛼

𝑗
)
,

B 𝑖
(
𝑥
)
=
∑
𝑛 𝑗
=
1
(
𝑎
𝑖𝑗
sin

𝑥
𝑗
+
𝑏
𝑖𝑗
co
s𝑥

𝑗
)
,𝑖
=
1
,
2
,
.
.
.
,
𝑛
,

x
=
(
𝑥
1
,
𝑥
2
,
.
.
.
,
𝑥
𝑛
)
,𝑛

is
th
ed

im
en
sio

n,
𝛼
=
[
𝛼
1
,
𝛼
2
,
.
.
.
,
𝛼
𝑛
]
,a
nd

𝛼
𝑗
ar
er

an
do

m
in
te
ge
rs
∈
[
−
𝜋
,
𝜋
]
.

M
is
th
el
in
ea
rt
ra
ns
fo
rm

at
io
n
m
at
rix

.

𝐹
1
3

M
in
im

iz
e𝑓

1
3
=
𝑓
𝑔
(
𝑓
𝑟
(
𝑧
1
−
𝑧
2
)
)
+
𝑓
𝑔
(
𝑓
𝑟
(
𝑧
2
−
𝑧
3
)
)
+
⋅
⋅
⋅
+
𝑓
𝑔
(
𝑓
𝑟
(
𝑧
𝑛
−
1
−
𝑧
𝑛
)
)
+
𝑓
𝑔
(
𝑓
𝑟
(
𝑧
𝑛
−
𝑧
1
)
)
+
𝑓
bi
as
1
3
,

0
[
−
3
,
1
]
𝑛

−
13
0

G
rie

w
an
k’s

fu
nc
tio

n
is
as

fo
llo

w
s:
𝑓
𝑔
(
𝑥
)
=
∑
𝑛 𝑖
=
1
(
𝑥
2 𝑖
/
4
0
0
0
)
−
∏
𝑛 𝑖
=
1
co
s(
𝑥
𝑖
/
√
𝑖
)
+
1
.

Ro
se
nb

ro
ck
’s
fu
nc
tio

n
is
as

fo
llo

w
s:
𝑓
𝑟
(
𝑥
)
=
∑
𝑛
−
1

𝑖
=
1
(
1
0
0
(
𝑥
2 𝑖
−
𝑥
𝑖
+
1
)
2

+
(
𝑥
𝑖
−
1
)
2

)
,z
=
x
−
o
+
1
,x
=
(
𝑥
1
,
𝑥
2
,
.
.
.
,
𝑥
𝑛
)
.

𝑛
is
th
ed

im
en
sio

n.
o
=
(
𝑜
1
,
𝑜
2
,
.
.
.
,
𝑜
𝑛
)
is
th
et
he

sh
ift
ed

gl
ob

al
op

tim
um

.

𝐹
1
4

M
in
im

iz
e𝑓

1
4
=
𝐸
𝑓
(
𝑧
1
−
𝑧
2
)
+
𝐸
𝑓
(
𝑧
2
−
𝑧
3
)
+
⋅
⋅
⋅
+
𝐸
𝑓
(
𝑧
𝑛
−
1
−
𝑧
𝑛
)
+
𝐸
𝑓
(
𝑧
𝑛
−
𝑧
1
)
+
𝑓
bi
as
1
4
.

0
[
−
1
0
0
,
1
0
0
]
𝑛

−
30
0

𝑓
1
4
is
th
ee

xp
an
sio

n
of
𝑓
(
𝑥
,
𝑦
)
=
0
.
5
+
(
sin

2

(
√
𝑥
2
+
𝑦
2
)
−
0
.
5
)
/
(
1
+
0
.
0
0
1
(
𝑥
2

+
𝑦
2

)
)
2

,
z
=
(
x
−
o)
∗
M
+
1
,x
=
(
𝑥
1
,
𝑥
2
,
.
.
.
,
𝑥
𝑛
)
,a
nd

𝑛
is
th
ed

im
en
sio

n.
o
=
(
𝑜
1
,
𝑜
2
,
.
.
.
,
𝑜
𝑛
)
is
th
es

hi
fte

d
gl
ob

al
op

tim
um

.
M

is
th
el
in
ea
rt
ra
ns
fo
rm

at
io
n
m
at
rix

.

Journal of Optimization 9

Table 2: Experimental results of jDE and DEELS on 15 test instances of 30 variables with 3 × 105 FES. Mean error and std. dev. of the function
error values obtained in 30 independent runs.

Test instance jDE (mean error ± std. dev.) DEELS (mean error ± std. dev.) jDE SR DEELS SR
𝐹
1

9.19𝐸 − 09 ± 7.42𝐸 − 10 0.00𝐸 + 00 ± 0.00𝐸 + 00≈ 100% 100%≈

𝐹
2

1.94𝐸 − 08 ± 1.89𝐸 − 08 5.32𝐸 − 08 ± 9.48𝐸 − 08≈ 43.3% 36.7%

𝐹
3

1.94𝐸 + 05 ± 9.95𝐸 + 04 8.37E + 03 ± 5.94E + 03 0 0

𝐹
4

3.90𝐸 − 02 ± 9.04𝐸 − 02 9.73E − 09 ± 3.19E − 10 0 100%
𝐹
5

8.21𝐸 + 02 ± 3.86𝐸 + 02 3.30E − 05 ± 1.34E − 04 0 20.0%
𝐹
6

6.08𝐸 + 00 ± 1.21𝐸 + 01 6.15𝐸 + 00 ± 2.24𝐸 + 01≈ 0 86.7%
𝐹
7

4.70𝐸 + 03 ± 1.93𝐸 − 12 2.22E + 02 ± 2.51E + 01 0 0

𝐹
8

2.09𝐸 + 01 ± 5.33𝐸 − 02 2.09𝐸 + 01 ± 1.81𝐸 − 01≈ 0 0

𝐹
9

8.97𝐸 − 09 ± 1.05𝐸 − 09 5.21𝐸 − 09 ± 4.57𝐸 − 09≈ 100% 100%≈

𝐹
10

4.89𝐸 + 01 ± 6.34𝐸 + 00 2.19E + 01 ± 5.53E + 00 0 0

𝐹
11

2.75𝐸 + 01 ± 1.48𝐸 + 00 2.49E + 01 ± 1.75E + 00 0 0

𝐹
12

4.30𝐸 + 03 ± 4.92𝐸 + 03 4.17E + 03 ± 3.09E + 03 0 0

𝐹
13

1.47𝐸 + 00 ± 1.49𝐸 − 01 1.36E + 00 ± 8.91E − 02 0 0

𝐹
14

1.30𝐸 + 01 ± 1.99𝐸 − 01 1.23E + 01 ± 3.09E − 01 0 0

𝐹
15

3.60𝐸 + 02 ± 9.32𝐸 + 01 3.00E + 02 ± 1.31E + 02 0 3.3%

The interval between the LS calls 𝜉 is selected to be 300 gener-
ations which is equivalent to 300 × 𝑁

𝑝
function evaluations.

5.3. Evaluation Metrics. Thirty independent runs were con-
ducted for DEELS and jDE.Themean and standard deviation
of the function error |𝑓(x) − 𝑓(x∗)| values are recorded for
each run. We also record the success rate (SR) [31], for each
test instance. A run is considered as successful if it achieves
the desired accuracy within the maximum allowed function
evaluations. The SR for a particular function is calculated as
follows:

SR = 100 ×
Number of successful runs

Number of total runs
. (10)

5.4. Comparison of DEELS with jDE. The experimental
results for function error values and SR of jDE and DEELS
are presented in Table 2. The convergence graphs of both
algorithms are obtained by plotting the number of function
evaluations against the objective function values. DEELS
outperforms jDE on 10 out of 15 test instances, while on
the remaining 5 test instances the performance of both
algorithms is comparable. In the following, we comment on
the DEEL’s behavior in each category of test instances.

5.4.1. Unimodal Test Instances (𝐹
1
–𝐹

5
). As can be observed

from Table 2, DEELS performed well for three out of five
test instances, 𝐹

3
–𝐹

5
in terms of function error values. For

the remaining two instances, 𝐹
1
and 𝐹

2
, both algorithms are

considered to be comparable.

Considering SR, here again DEELS performed well for
two unimodal test instances, 𝐹

4
and 𝐹

5
. jDE only showed

a higher SR in the case of 𝐹
2
. Overall, on unimodal test

instances, DEELS is better than jDE, which can be observed
in the last column of Table 2.

5.4.2. Multimodal Test Instances (𝐹
6
–𝐹

14
). In the case of

multimodal test instances, DEELS performed very well on six
test instances, 𝐹

7
and 𝐹

10
–𝐹

14
in achieving a good solution

(see Table 2). The graphs presented in Figure 2 for these
multimodal test instances also prove that the yellow curve
(jDE) is above the green curve (DEELS). This means that
DEELSs obtained solutions are smaller than those obtained
by jDE. This proves that DEELS outperforms jDE. Both
algorithms showed equal performance on the rest (i.e., 𝐹

6
,

𝐹
8
, and 𝐹

9
) of multimodal test instances: ≈ symbol in Table 2

shows this fact.
For 𝐹

9
, both algorithms attained the 100% accuracy level

as given in Table 2. For the remaining multimodal test
instances, neither of the algorithms could reach the desired
accuracy in any run except for 𝐹

6
, on which DEELS obtained

86.7% SR over zero SR of jDE. Thus, one can conclude here
again that DEELS is better than jDE in the case ofmultimodal
test instances.

5.4.3. A Hybrid Composition Test Instance (𝐹
15
). This test

instance, being the combination of other test functions, is
a challenging test function. Hence, it is not an easy task to
find its global optimum or attain 100% SR for it. DEELS is
successful in getting a better local optimum for it than jDE

10 Journal of Optimization

jDE
DEELS

1 2 30
Function evaluations

0

2000

4000

6000

8000

10000

12000

f
 av

er
ag

e e
rr

or
 v

al
ue

×105

(a)

20.8

20.9

21

21.1

21.2

21.3

21.4

21.5

f
 av

er
ag

e e
rr

or
 v

al
ue

1 2 30
Function evaluations

jDE
DEELS

×105

(b)

1 2 30
Function evaluations

0

200

400

600

800

1000

f
 av

er
ag

e e
rr

or
 v

al
ue

jDE
DEELS

×105

(c)

20

25

30

35

40

45

50

f
 av

er
ag

e e
rr

or
 v

al
ue

1 2 30
Function evaluations

jDE
DEELS

×105

(d)

12

12.5

13

13.5

14

14.5

f
 av

er
ag

e e
rr

or
 v

al
ue

1 2 30
Function evaluations

jDE
DEELS

×105

(e)

1 2 30
Function evaluations

200

400

600

800

1000

1200

1400

f
 av

er
ag

e e
rr

or
 v

al
ue

jDE
DEELS

×105

(f)

Figure 2: Convergence graphs of jDE and DEELS for six representative test functions at 𝑛 = 30, with population size = 75. (a) 𝐹
7
, (b) 𝐹

8
, (c)

𝐹
10
, (d) 𝐹

11
, (e) 𝐹

14
, and (f) 𝐹

15
.

Journal of Optimization 11

(please see the convergence graphs of Figure 2). DEELS also
obtained a 3.3% SR for this test instance against 0 SR of jDE.
This good performance of DEELS may be due to the fact that
DEELS benefits from global search and LS, while jDE is only
a global search method and so may not be good in exploiting
better solutions.

In general, it is interesting to note that jDE, though
equivalent to DEELS on five out of 15 test instances, could
not get a better function error value than DEELS for any test
instance.

5.5. Experiment 2. In this section, we compare DEELS first
with SDENS [50] and then with DASA [17] on the CEC2010
test instances with problem dimension 1000.

5.5.1. Test Instances for Experiment 2. We further investigate
the behavior of DEELS on ten new and complex test instances
with problem dimension 𝑛 = 1000, used in CEC2010 Special
Session and Competition on Large-Scale Global Optimiza-
tion [51]. The test instances used in our experiments are the
first ten test instances of CEC2010, which can be divided into
two categories as follows:

(i) Unimodal test instances (𝐹
1
, 𝐹

4
, 𝐹

7
and 𝐹

9
).

(ii) Multimodal test instances (𝐹
2
, 𝐹

3
, 𝐹

5
, 𝐹

6
, 𝐹

8
and 𝐹

10
).

5.5.2. Parameter Setting for Experiment 2. The parameters
settings are kept the same as demanded in the original paper
[51] for CEC2010 instances. For this experiment, the popula-
tion size 𝑁

𝑝
= 50 is chosen and the problem dimension 𝑛 is

set to 1000. The maximum function evaluations are chosen
as 3 × 10+06. The value to reach is set to 10−2. Twenty-five
independent runs of DEELS have been performed for all test
instances.

5.6. Comparison with SDENS. The best, median, mean, and
standard deviation of function error values obtained in 25
runs of DEELS are presented in Table 3.

As can be seen from Table 3, overall DEELS performed
well as compared with SDENS in reaching the best solution
for seven out of ten test instances, 𝐹

2
, 𝐹

4
, 𝐹

5
, 𝐹

7
, to 𝐹

10
. Surely,

this better performance is due to the additional exploitation
abilities of DEELS. For the remaining three test instances, 𝐹

1
,

𝐹
3
, and 𝐹

6
, SDENS dominated the best solutions of DEELS.

𝐹
1
and 𝐹

3
are separable functions, while 𝐹

6
is a single-group

nonseparablemultimodal function.Themean value obtained
by DEELS on 𝐹

6
in Table 3 is substantially larger than that

of SDENS. Therefore, it may be reasonable to think that the
failure of DEELS is due to the BFGS, which may get trapped
at a local optimum.

It is interesting to note from Table 3 that, based on
median and mean values, DEELS found consistently better
median and mean of the average error values than SDENS
for the seven out of ten test instances, 𝐹

2
, 𝐹

4
, 𝐹

5
, and 𝐹

7
–𝐹

10
.

However, for the remaining three test instances, 𝐹
1
, 𝐹

3
, and

𝐹
6
, SDENS maintained its dominance over DEELS. This

poor performance of DEELS might be due to one of the
abovementioned reasons.

Both algorithms, DEELS and SDENS, achieved 50%
success based on standard deviation values as illustrated in
Tables 3. That is, for five test instances, 𝐹

4
, 𝐹

5
, and 𝐹

7
to 𝐹

9
,

DEELS performed well in terms of standard deviation values,
while for the other five test instances, 𝐹

1
to 𝐹

3
, 𝐹

6
, and 𝐹

10
,

SDENS outperforms DEELS.
Overall, DEELS performance was better than SDENS on

best, median, and mean values. However, in case of standard
deviation values, the performance of both algorithms is 50%.

5.7. Comparison with DASA. Table 3 presents the best,
median, mean, and standard deviation values for DASA,
which are obtained from [17]. This table shows that DEELS is
superior to DASA on four test instances, 𝐹

4
, 𝐹

6
, 𝐹

8
, and 𝐹

10
,

in terms of best function error values. These test instances
are mainly 𝑚-group nonseparable except 𝐹

10
, which is

𝑛/2𝑚-group nonseparable; all are multimodal except 𝐹
4
. For

the remaining six test instances, DEELS performed poorly
against DASA in achieving the best function error values.
Please note that, among these six functions, 𝐹

1
, 𝐹

2
, and 𝐹

3
are

separable. Table 3 shows that DEELS outperforms DASA in
finding good median and mean of the function error values
for the five test instances, 𝐹

4
, 𝐹

5
, 𝐹

6
, 𝐹

8
, and 𝐹

10
, while it is

inferior to DASA on the other five test instances, 𝐹
1
to 𝐹

3
,

𝐹
7
, and 𝐹

9
; here, 𝐹

7
is𝑚-group nonseparable and 𝐹

9
is 𝑛/2𝑚-

group nonseparable.
The worse performance of DEELS against DASA can be

seen only in case of standard deviation values, where DEELS
is superior only in three test instances, 𝐹

4
, 𝐹

5
, and 𝐹

8
, while

DASA surpasses DEELS on seven test instances, 𝐹
1
to 𝐹

3
, 𝐹

6
,

𝐹
7
, 𝐹

9
, and 𝐹

10
.

Thus, one can conclude that based on the median and
mean function error values DASA and DEELS have similar
performance on nonseparable test functions except standard
deviation and the minimum objective values where DASA is
better than DEELS. The latter failed totally on separable test
functions, 𝐹

1
to 𝐹

3
. It also remained poor on two nonsepara-

ble test functions, 𝐹
7
and 𝐹

9
.

6. Conclusion

In this paper, we described DEELS, a new hybrid algorithm
that combines two well known algorithms, JADE and BFGS,
to keep a balance between exploration and exploitation.
DEELS showed efficient performance on majority of the
tested test instances against jDE and SDENS except DASA.
Based on the experimental results, it can be concluded that
LS method can improve the local tuning of the solutions
provided that these are hybridized at a proper gap with the
global optimizer; otherwise, it can cause early termination of
the algorithm and results in premature convergence. It is also
observed that DEELS fails on separable functions.

12 Journal of Optimization

Ta
bl
e
3:
Ex

pe
rim

en
ta
lr
es
ul
ts
of

SD
EN

S,
D
A
SA

,a
nd

D
EE

LS
on

10
te
st
in
sta

nc
es

of
10
00

va
ria

bl
es

w
ith

3
⋅1
0+

0
6

FE
S.
Be

st,
m
ed
ia
n,

m
ea
n,

an
d
std

.d
ev
.o
ft
he

fu
nc
tio

n
er
ro
rv

al
ue
so

bt
ai
ne
d

ov
er

25
ru
ns
.

Te
st
in
sta

nc
e

Be
st

M
ed
ia
n

M
ea
n

St
d.
de
v.

SD
EN

S
D
A
SA

D
EE

LS
SD

EN
S

D
A
SA

D
EE

LS
SD

EN
S

D
A
SA

D
EE

LS
SD

EN
S

D
A
SA

D
EE

LS
𝐹
1

1.
75
𝐸
−
06

+

5.
59
𝐸
−
23

+

4.
58
𝐸
+
05

2.
54
𝐸
−
06

+

5.
42
𝐸
−
22

+

1.
50
𝐸
+
06

5.
73
𝐸
−
06

+

1.
52
𝐸
−
21

+

3.
11
𝐸
+
06

4.
46
𝐸
−
06

+

2.
33
𝐸
−
21

+

3.
68
𝐸
+
06

𝐹
2

2.
14
𝐸
+
03

+

3.
98
𝐸
+
00

+

4.
82
𝐸
+
02

2.
17
𝐸
+
03

−

7.
96
𝐸
+
00

+

9.
80
𝐸
+
02

2.
21
𝐸
+
03

−

8.
48
𝐸
+
00

+

9.
28
𝐸
+
02

8.
95
𝐸
+
01

+

2.
52
𝐸
+
00

+

2.
77
𝐸
+
02

𝐹
3

1.
23
𝐸
−
05

+

5.
54
𝐸
−
11

+

9.
89
𝐸
−
01

2.
35
𝐸
−
05

+

7.
37
𝐸
−
11

+

1.
16
𝐸
+
00

2.
70
𝐸
−
05

+

7.
20
𝐸
−
11

+

1.
20
𝐸
+
00

1.
54
𝐸
−
05

+

8.
27
𝐸
−
12

+

1.
62
𝐸
−
01

𝐹
4

3.
26
𝐸
+
12

−

2.
26
𝐸
+
11

−

7.
27
𝐸
+
10

3.
72
𝐸
+
12

−

4.
94
𝐸
+
11

−

1.
16
𝐸
+
11

5.
11
𝐸
+
12

−

5.
05
𝐸
+
11

−

1.
19
𝐸
+
11

2.
16
𝐸
+
12

−

2.
22
𝐸
+
11

−

3.
62
𝐸
+
10

𝐹
5

7.
66
𝐸
+
07

−

4.
41
𝐸
+
08

−

3.
52
𝐸
+
07

1.
17
𝐸
+
08

−

6.
36
𝐸
+
08

−

6.
98
𝐸
+
07

1.
18
𝐸
+
08

−

6.
20
𝐸
+
08

−

6.
86
𝐸
+
07

2.
88
𝐸
+
07

−

7.
87
𝐸
+
07

−

1.
47
𝐸
+
07

𝐹
6

1.
53
𝐸
−
04

+

1.
96
𝐸
+
07

−

1.
97
𝐸
+
01

1.
76
𝐸
−
04

+

1.
97
𝐸
+
07

−

1.
98
𝐸
+
01

2.
02
𝐸
−
04

+

1.
97
𝐸
+
07

−

7.
03
𝐸
+
04

4.
29
𝐸
−
05

+

4.
45
𝐸
+
04

+

2.
43
𝐸
+
05

𝐹
7

6.
36
𝐸
+
07

−

2.
57
𝐸
+
00

+

5.
98
𝐸
+
05

8.
57
𝐸
+
07

−

7.
18
𝐸
+
00

+

9.
45
𝐸
+
05

1.
20
𝐸
+
08

−

7.
78
𝐸
+
00

+

9.
87
𝐸
+
05

6.
56
𝐸
+
07

−

3.
10
𝐸
+
00

+

2.
27
𝐸
+
05

𝐹
8

3.
96
𝐸
+
07

−

2.
84
𝐸
+
03

+

1.
22
𝐸
+
05

4.
09
𝐸
+
07

−

1.
21
𝐸
+
06

−

4.
15
𝐸
+
05

5.
12
𝐸
+
07

−

4.
98
𝐸
+
07

−

4.
05
𝐸
+
06

2.
12
𝐸
+
07

−

8.
95
𝐸
+
07

−

7.
62
𝐸
+
06

𝐹
9

4.
77
𝐸
+
08

−

2.
83
𝐸
+
07

+

3.
83
𝐸
+
07

5.
75
𝐸
+
08

−

3.
58
𝐸
+
07

+

4.
92
𝐸
+
07

5.
63
𝐸
+
08

−

3.
60
𝐸
+
07

+

4.
97
𝐸
+
07

5.
78
𝐸
+
07

−

4.
78
𝐸
+
06

+

5.
85
𝐸
+
06

𝐹
1
0

5.
78
𝐸
+
03

−

6.
78
𝐸
+
03

−

4.
00
𝐸
+
03

7.
03
𝐸
+
03

−

7.
33
𝐸
+
03

−

4.
38
𝐸
+
03

6.
87
𝐸
+
03

−

7.
29
𝐸
+
03

−

4.
79
𝐸
+
03

5.
60
𝐸
+
02

+

2.
69
𝐸
+
02

+

1.
09
𝐸
+
03

−
6

4
7

5
7

5
5

3
+

4
6

3
5

3
5

5
7

≈ “−
,”
“+
,”
an
d
“≈

”d
en
ot
et
ha
tt
he

pe
rfo

rm
an
ce

of
th
eS

D
EN

S
an
d
D
A
SA

al
go
rit
hm

si
sw

or
se

th
an
,b
et
te
rt
ha
n,

an
d
sim

ila
rt
o
th
at
of

D
EE

LS
,r
es
pe
ct
iv
ely

.

Journal of Optimization 13

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, andM. F. Tasgetiren,
“Differential evolution algorithm with ensemble of parameters
and mutation strategies,” Applied Soft Computing Journal, vol.
11, no. 2, pp. 1679–1696, 2011.

[2] S. Y. Yuen and C. K. Chow, “A genetic algorithm that adaptively
mutates and never revisits,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 2, pp. 454–472, 2009.

[3] R. C. Eberhart and J. Kennedy, “A new optimizer using particle
swarm theory,” in Proceedings of the 6th International Sym-
posium on Micromachine and Human Science1995., pp. 39–43,
Nagoya, Japan, 1995.

[4] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, vol. 4, pp. 1942–1948, Perth, Australia, December
1995.

[5] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Com-
puting, Natural Computing Series, Springer, Berlin, Germany,
2003.

[6] R. Storn, Differential Evolution (DE) Research-Trends and Open
Questions, vol. SCI 143, Springer, Berlin, Germany, 2008.

[7] R. Storn and K. V. Price, “Differential evolution—a simple
and efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

[8] N. Noman andH. Iba, “Accelerating differential evolution using
an adaptive local search,” IEEE Transactions on Evolutionary
Computation, vol. 12, no. 1, pp. 107–125, 2008.

[9] Z.-F. Hao, G.-H. Guo, and H. Huang, “A particle swarm opti-
mization algorithm with differential evolution,” in Proceedings
of the International Conference onMachine Learning and Cyber-
netics, pp. 1031–1035, IEEE, Hong Kong, August 2007.

[10] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Com-
prehensive learning particle swarm optimizer for global opti-
mization of multimodal functions,” IEEE Transactions on Evo-
lutionary Computation, vol. 10, no. 3, pp. 281–295, 2006.

[11] J. Zhang and A. C. Sanderson, “JADE: adaptive differential
evolution with optional external archive,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009.

[12] C. Zhang and L. Gao, “An effective improvement of JADE for
real-parameter optimization,” in Proceedings of the 6th Inter-
national Conference on Advanced Computational Intelligence
(ICACI ’13), pp. 58–63, Hangzhou, China, October 2013.

[13] R. Fletcher, Practical Methods of Optimization, John Wiley &
Sons, New York, NY, USA, 2nd edition, 1987.

[14] R. A. Khanum and M. A. Jan, “Hybridization of adaptive dif-
ferential evolution with BFGS,” in Research and Development in
Intelligent Systems XXIX: Incorporating Applications and Inno-
vations in Intelligent Systems XX Proceedings of AI-2012, The
Thirty-second SGAI International Conference on Innovative
Techniques and Applications of Artificial Intelligence, pp. 441–
446, Springer, Berlin, Germany, 2012.

[15] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Zumer,
“Self-adapting control parameters in differential evolution: a
comparative study on numerical benchmark problems,” IEEE

Transactions on Evolutionary Computation, vol. 10, no. 6, pp.
646–657, 2006.

[16] H. Wang, Z. Wu, S. Rahnamayan, and D. Jiang, “Sequential DE
enhanced by neighborhood search for large scale global opti-
mization,” in Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 1–7, IEEE, Barcelona, Spain, July 2010.

[17] P. Korosec, K. Tashkova, and J. Silc, “The differential ant-stig-
mergy algorithm for large scale global optimization,” inProceed-
ings of the IEEE Congress on Evolutionary Computation (CEC
’10), pp. 1–8, IEEE, Barcelona, Spain, July 2010.

[18] R. Storn and K. Price, “Home page of differential evolution,”
Tech. Rep., 2003, http://www1.icsi.berkeley.edu/∼storn/code
.html.

[19] S. Das and P. N. Suganthan, “Tutorial: differential evolution,
foundations, prospectives and applications,” in Proceedings of
the IEEE Symposium Series on Computational Intelligence (SSCI
’11), pp. 1–59, Paris, France, April 2011.

[20] P. N. Suganthan and Swagatam, “Tutorial: differential evolu-
tion,” in Proceedings of the IEEE Symposium Series on Computa-
tional Intelligence (SSCI ’11), pp. 1–76, Paris, France, April 2011.

[21] F. Neri and V. Tirronen, “Recent advances in differential evolu-
tion: a survey and experimental analysis,” Artificial Intelligence
Review, vol. 33, no. 1-2, pp. 61–106, 2010.

[22] S. Das and P. N. Suganthan, “Differential evolution: a survey of
the state-of-the-art,” IEEE Transactions on Evolutionary Com-
putation, vol. 15, no. 1, pp. 4–31, 2011.

[23] P. Venkataraman, Applied Optimization with Matlab Program-
ming, John Wiley & Sons, New York, NY, USA, 2002.

[24] V. V. D. Melo and A. C. Botazzo Delbem, “Investigating Smart
Sampling as a population initialization method for differential
evolution in continuous problems,” Information Sciences, vol.
193, pp. 36–53, 2012.

[25] D. Zaharie, “A comparitive analysis of crossover varients in
differential evolution,” in Proceedings of the International Mul-
ticonference on Computer Science and Information Technology,
Wisła, Poland, October 2007.

[26] Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with
composite trial vector generation strategies and control param-
eters,” IEEE Transactions on Evolutionary Computation, vol. 15,
no. 1, pp. 55–66, 2011.

[27] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Oppo-
sition-based differential evolution,” IEEE Transactions on Evo-
lutionary Computation, vol. 12, no. 1, pp. 64–79, 2008.

[28] R. A. Khanum andM. A. Jan, “Centroid-based Initialized JADE
for global optimization,” in Proceedings of the 3rd Computer
Science and Electronic Engineering Conference (CEEC ’11), pp.
115–120, IEEE, Colchester, UK, July 2011.

[29] J. Brest, A. Zamuda, B. Boskovic, S. Greiner, and V. Zumer,
Advances in Differential Evolution, vol. SCI143 of An Analysis
of the Control Parameters’ Adaptation in Differential Evolution,
2008.

[30] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evo-
lution with neighborhood search,” in Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’08), pp. 1110–1116,
IEEE Press, June 2008.

[31] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evo-
lution algorithm with strategy adaptation for global numerical
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 13, no. 2, pp. 398–417, 2009.

[32] R. Tanabe and A. Fukunaga, “Success-history based parameter
adaptation for differential evolution,” in Proceedings of the IEEE

14 Journal of Optimization

Congress on Evolutionary Computation (CEC ’13), pp. 71–78,
Cancún, Mexico, June 2013.

[33] J. Aalto and J. Lampinen, “A mutation and crossover adaptation
mechanism for differential evolution algorithm,” in Proceedings
of the IEEE Congress on Evolutionary Computation (CEC ’14),
pp. 451–458, Beijing, China, July 2014.

[34] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary opti-
mization using cooperative coevolution,” Journal of Information
Sciences, vol. 178, no. 15, pp. 2985–2999, 2008.

[35] C.-S. Deng, B.-Y. Zhao, A.-Y. Deng, and C.-Y. Liang, “Hybrid-
coding binary differential evolution algorithm with application
to 0-1 knapsack problems,” in Proceedings of the International
Conference on Computer Science and Software Engineering
(CSSE ’08), pp. 317–320, Wuhan, China, December 2008.

[36] C. S. Deng, B. Y. Zhao, and C. Y. Liang, “Hybrid binary differ-
ential evolution algorithm for 0-1 knapsack problem,”Computer
Engineering and Design, vol. 31, no. 8, pp. 1795–1798, 2010.

[37] C. Segura, C. A. C. Coello, E. Segredo, and C. León, “An analysis
of the automatic adaptation of the crossover rate in differential
evolution,” in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC ’14), pp. 459–466, IEEE, July 2014.

[38] A. K.Qin, K. Tang,H. Pan, and S. Xia, “Self-adaptive differential
evolution with local search chains for real-parameter single-
objective optimization,” in Proceedings of the IEEE Congress
on Evolutionary Computation (CEC ’14), pp. 467–474, IEEE,
Beijing, China, July 2014.

[39] F. Wei, Y. Wang, and T. Zong, “Variable grouping based differ-
ential evolution using an auxiliary function for large scale global
optimization,” in Proceedings of the IEEE Congress on Evolution-
aryComputation (CEC ’14), pp. 1293–1298, IEEE, Beijing, China,
July 2014.

[40] R. A. Khanum, N. Tairan, M. A. Jan, W. K. Mashwani, and A.
Salhi, “Reflected adaptive differential evolution with two exter-
nal archives for large-scale global optimization,” International
Journal of Advanced Computer Science and Applications, vol. 7,
no. 2, pp. 675–683, 2016.

[41] P. Kaelo and M. M. Ali, “A numerical study of some modified
differential evolution algorithms,” European Journal of Opera-
tional Research, vol. 169, no. 3, pp. 1176–1184, 2006.

[42] M. Ali, M. Pant, and A. Abraham, “Simplex differential evolu-
tion,”Acta PolytechnicaHungarica, vol. 6, no. 5, pp. 95–115, 2009.

[43] J. Brest, A. Zamuda, B. Bošković, S. Greiner, M. S. Maučec,
and V. Žumer, “Self-adaptive differential evolution with SQP
local search,” in Proceedings of the 3rd International Conference
on Bioinspired Optimization Methods and their Applications
(BIOMA ’08), pp. 59–69, Ljubljana, Slovenia, October 2008.

[44] S. Das, S. S. Mullick, and P. Suganthan, “Recent advances in
differential evolution—an updated survey,” Swarm and Evolu-
tionary Computation, vol. 27, pp. 1–30, 2016.

[45] A. Skajaa, Limited memory bfgs for nonsmooth optimization
[M.S. thesis], 2010.

[46] F. J. Hickernell and Y. Yuan, “A simple multistart algorithm for
global optimization,”ORTransactions, vol. 1, no. 2, pp. 1–12, 1997.

[47] R. B. Schnabel, “Concurrent function evaluations in local and
global optimization,” Computer Methods in Applied Mechanics
and Engineering, vol. 64, no. 1–3, pp. 537–552, 1987.

[48] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evo-
lution algorithm for numerical optimization,” in Proceedings of
the IEEE Congress on Evolutionary Computation (CEC ’05), vol.
2, pp. 1785–1791, September 2005.

[49] J. Ronkkonen, V. Kukkonen, and K. V. Price, “Real-parameter
optimization with differential evolution,” in Proceedings of
the IEEE Congress on Evolutionary Computation, pp. 506–513,
Edinburgh, Scotland, September 2005.

[50] H. Wang, Z. Wu, S. Rahnamayan, and D. Jiang, “Sequential
DE enhanced by neighborhood search for large scale global
optimization,” in Proceedings of the 6th IEEE World Congress
on Computational Intelligence (WCCI ’10), pp. 1–7, Barcelona,
Spain, July 2010.

[51] K. Tang, P. N. Xiodongo, Z. Yang, and T. Weise, “Benchmark
functions for the CEC2010 special session and competition on
large scale global optimization,” Tech. Rep., Nature Inspired
Computation and Application Laboratory (NICAL), University
of Science and Technology of China, 2010.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

